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In this paper we report the results obtained when calculating the electronic structure of the H4 molecular
system within the framework of the G-particle-hole Hypervirial equation (GHV). This method determines
directly the G-particle-hole matrix of the state considered without a previous knowledge of the wave-
function. Our primary aim is to compare the GHV performance with that of other standard ab initio meth-
ods having as ultimate reference the FCI results, when the system considered is strongly correlated.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that the H4 aggregate is a highly complex sys-
tem due to its molecular orbital degeneracies leading to different
geometries, close-by in energy in its potential energy surface
(PES). Moreover, the singlet ground state of this system is clearly
multideterminantal. This complexity has motivated that many
authors had studied it using different methods. For instance, Pal-
dus et al. [1] as well as Kowalski and Jankowski [2,3] studied this
hydrogen model in order to analyse the performance of the Hil-
bert-space state-universal coupled-cluster (SU-CC) theory. Like-
wise, Van Voorhis and Head-Gordon [4] applied the variational
coupled-cluster (VCCD) to the H4 aggregate which they considered
as a probe system in order to test different methodologies. Using
the density matrix variational theory (DMVT), which represents a
conceptually different approach to those previously mentioned,
Nakata et al. [5] studied the ground-state at several geometries
and obtained excellent results.

Our aim here is to study the H4 within the framework of the G-
particle-hole Hypervirial equation (GHV) [6–11]. In a similar way
to the DMVT, this methodology does not look for the wave-
function of the state considered but it looks directly for the G-
particle-hole matrix [12] which, as the 2-order reduced density
matrix, determines the energy as well as all the other state
ll rights reserved.
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observables of the system [13–15]. Here, we wish to compare the
GHV performance with some of the methods applied in the previ-
ously mentioned works [1–5] as well as with the FCI values.

For the sake of that comparison, the H4 system is a very inter-
esting one. It has no more than four electrons, strongly correlated,
with possible degeneracies due to the spatial symmetry. Its FCI re-
sults are readily accessible. The same system has also been used in
the past to test other methodologies whose results are available.
Hence, it has been selected as a challenging system to test the
new method in the study of a molecular aggregate.

This paper is organized as follows. After a section where the ba-
sic notations and definitions are given we dedicate Section 3 to
give a brief overview of the GHV method. A description of the dif-
ferent calculations which have been carried out and a discussion of
the results obtained are given in Section 4.

2. Basic notations and definitions

In second-quantization language and in the occupation number
representation [16] the 1- and 2-order reduced density matrices
(1- and 2-RDM) corresponding to a state may be described as:

1Di;j ¼ U ayi aj

�� ��U� �
; 2Dij;rs ¼

1
2!

U ayi a
y
j asar

��� ���UD E
ð1Þ

where the operator’s labels i, j, r, s,.. refer to a set of 2K orthonormal
spin–orbitals forming the basis and the number of electrons of the
system is denoted N.
:10.1016/j.chemphys.2011.06.025
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The two other matrices which are at the center of our interest are
the 2-order correlation matrix, 2C, and the G-particle-hole matrix, G.
These matrices are interrelated and, although they have different
properties, they describe pure 2-body effects and cannot be factor-
ized in terms of the 1-RDM [14,15,17–19]. The 2C can be defined as:

2Cij;tv ¼
X
U0–U

U ayi at

�� ��U0� �
U0 ayj av

��� ���UD E
� U ayi at

bQ ayj av

��� ���UD E
ð2Þ

where the symbol bQ represents the orthogonal complement of pro-
jector operator bP ¼ jUihUj.

The G-particle-hole matrix elements are the same as those of
the 2C although located at different row–column positions in the
matrix. Those elements are the expectation values of the corre-
sponding operators.

U 2bCij;tv

��� ���UD E
� 2Cij;tv � Git;v j � U bGit;v j

��� ���UD E
ð3Þ

It should be also recalled that the 1-RDM can easily be obtained
by contracting either the 2-RDM or the G-particle-hole matrix
[13–15].

Both the 2C and the G are the lower-order members of two large
families, the p-order correlation matrices (p-CM) and the p-order
G-particle-hole matrices (p-G) [19–22]. Although the matrices of
these two families are closely interrelated their properties are
drastically different. Thus, the p-G matrices are symmetric, posi-
tive, semi-definite matrices while no p-CM shares these properties.
On the other hand the p-CM follows the notation of the p-RDM
from which it derives by decomposition. These are the reasons
why one may use according to the needs whichever of these two
matrices is more convenient.

Let us finish this section by describing the form of the many-
body Hamiltonian operator which we find more useful in this
methodology [23]:

bH ¼ 1
2

X
i;j;t;v

0Hij;tvayi a
y
j avat ð4Þ

where

0Hij;tv ¼
di;t�j;v þ dj;v�i;t

N � 1
þ hijjtvi ð5Þ

and where � is the matrix grouping the kinetic and attraction inte-
grals and where hijjtvi represents a 2-electron integral in the h12j12i
notation.

3. An overview of the GHV method

The GHV method has already been described in detail in
[6,8,10]. In consequence, only the main lines of this method will
be recalled here.

The GHV equation [6] may be expressed in compact form as:

0 ¼ U bH; bGh i��� ���UD E
ð6Þ

When replacing into this equation the operators bH and bG by rela-
tions (4) and (3) respectively and transforming all creator-annihila-
tor strings into their normal product form, one obtains an equation
which may be briefly expressed as:

0 ¼ Functionð0H; ð3;2;1ÞCÞ ð7Þ

where an element of the 3-order correlation matrix (3;2,1)C may be
written as:

ð3;2;1ÞCijm;rst ¼ U ayi a
y
j asar

bQ aymat

��� ���UD E
ð8Þ

Eq. (7) can be solved iteratively by initiating the process with the N-
representable [24] 1- and 2-RDMs which we expect to correspond
Please cite this article in press as: C. Valdemoro et al., Chem. Phys. (2011), doi
to a zero-order wave-function of the state being studied. In order
to evaluate the r.h.s. of Eq. (7) one needs to approximate the
(3;2,1)C elements in terms of the 2-order matrices. This is carried
out by applying a set of constructing algorithms [8,10] which are
a modification of those proposed by Nakatsuji and Yasuda [25,26].
Note that, although Eq. (7) involves a 3-order correlation matrix,
due to internal averaging of the different terms, the matrix equation
is in fact a 2-order one. Once the GHV equation represented in (7) is
established, it can be transformed into a system of differential equa-
tions [8] to be solved iteratively. This is done by adapting to the
GHV case the unitary transformation of operators technique
proposed by Kutzelnigg et al. [27] and in particular by Mazziotti
[28–30] for solving other Hypervirial equations. In terms of the
quantities obtained at the nth iteration, the resulting G-particle-
hole matrix error is [6,8,10]:

ðDGðnþ1ÞÞim;rj ¼ U bAðnÞ; bGim;rj

h i��� ���UD E
ð9Þ

where

bAðnÞ ¼ X
i;m;r;j

AðnÞim;rj
bGim;rj ð10Þ

is the anti-Hermitian operator appearing in the exponent of the uni-
tary operator used in the transformation and the matrix A is the
residual of the GHV equation [6,8,10]. At each iteration, the G-par-
ticle-hole matrix obtained is contracted in order to obtain the
corresponding 1-RDM, and the energy is calculated according to
the expression [31]:

E ¼
X
i;j;m;l

0Hij;ml
1Di;m

1Dj;l � dj;m
1Di;l þ Gim;lj

� �
ð11Þ

or, when W is a singlet state, to the spin-adapted formula [31]:

E ¼
X

i;l

2hc
i;l � hx

i;l

n o
1Di;l �

X
i;j;l;m

0Hij;ml 2Gi�l;m�j � Gi �m;l�j

� �
ð12Þ

where the bar over the indices denotes that the spin–orbital has a
beta spin and where

hc
i;l ¼

X
j

0Hij;lj hx
i;l ¼

X
j

0Hij;jl

are one-body contractions of the 0H of the coulomb and exchange
types respectively. Fehlberg’s method [32] for numerical integration
of differential equations is applied in order to accelerate
convergence.

4. Six H4 potential-energy curves for planar conformations

In the introduction we have mentioned the studies on the H4

model by Paldus et al. [1], Kowalski et al. [2,3], Van Voorhis and
Head-Gordon [4] and Nakata et al. [5]. Here, in order to evaluate
the GHV performance, we have selected the same basic geometries
which have been investigated by these authors. These geometries
are represented in Fig. 1 where the variable parameters are also
shown. As Paldus et al. mentioned in [1], this choice of geometries
and parameters permits to break and generate, in a continuous
way, orbital and configuration degeneracies when transforming
one geometry into another.

4.1. Calculations and results

In order to suitably control the quality of the GHV results, a FCI
calculation has been carried out in all cases. The Huzinaga–Dun-
ning DZ basis set [33], which is also the basis set used in the DMVT
calculation [5], has been used here. The GAMESS program [34]
have been used to calculate the integrals matrix 0H and the initial
values of all the matrices required in the GHV method. In the tables
:10.1016/j.chemphys.2011.06.025
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Fig. 1. Nuclear conformations and definitions of the variable parameters for the S4
(D4h), P4 (D2h), D4 (D1h) and H4 (C2v) models.

Table 2
Errors with respect to the FCI values of the H4 ground-state energy (in mEh) obtained
with standard methods for the S4/P4 model for R = 0.869 Å and h variable. The FCI
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reported below for the S4 and S4/P4 potential energy curves (PECs)
we have omitted the values which were also obtained with the
DMVT because within the precision considered here, the values ob-
tained with this method coincide with the FCI ones. The disadvan-
tage of the DMVT is that it is too costly for calculating larger
systems and somewhat inadequate for the study of other molecu-
lar systems including dissociative species [35].

4.1.1. S4 conformation, h = 90�, R variable (D4h)
A study of the determinant coefficient values in the ground-

state wave-function shows that two determinants initially domi-
nate the wave-function but as the R increases this multireferential
character becomes stronger. This, as was previously pointed out
[1–3], is what renders difficult the study of the PECs of this system
in this conformation.

In Table 1 we compare the errors with respect to the FCI with
those of RHF, MP2, CISD, CCSD and the GHV methods for the square
stretching dissociation of the H4. A column with the FCI values
completes the data given in this table. As can be seen, the CCSD
and the GHV, which are the two most accurate methods, give er-
rors of the order of 10 mEh, the CCSD by excess and the GHV by de-
fect. Up to R = 1.6 Å, the curve is better described by the GHV, after
which distance all the calculations give diverging results with re-
spect to the FCI values. The GHV maximum absolute energy error,
16.34 mEh, occurs at 2.0 Å.

4.1.2. S4/P4 conformations, h variable (D2h)
Two rectangular conformation PECs with a variable h have been

calculated while keeping constant the distance R.

� R = 0.869 Å constant. Here, as h decreases the H4 aggregate
splits into two H2 moieties. The most stable conformation in
this PEC occurs at h = 50� when the internuclear distance at each
of the two H2 moieties is 0.734 Å.
Table 1
Errors with respect to the FCI values of the H4 ground state energy (in mEh) obtained
with standard methods for the S4 model with h = 90� (D4h) and R variable. The FCI
reference values (in Eh) are given in the last column.

R/Å RHF MP2 CISD CCSD GHV FCI

0.6 �103.72 �55.28 �9.87 �4.67 �4.66 �1.951120
0.8 �128.09 �70.78 �9.83 �0.36 �4.61 �2.061044
1.0 �156.21 �86.81 �12.89 4.28 �4.69 �2.068375
1.2 �190.63 �104.37 �19.30 8.93 �7.53 �2.047426
1.4 �230.70 �122.64 �26.67 12.18 �6.93 �2.024629
1.6 �274.49 �139.35 �26.64 12.60 �7.66 �2.008466
1.8 �318.89 �150.84 �21.70 10.58 �11.20 �1.999208
2.0 �360.46 �153.48 �18.35 7.63 �16.34 �1.994539

Please cite this article in press as: C. Valdemoro et al., Chem. Phys. (2011), doi
� R = 1.738 Å constant. In this case, the equilibrium is reached for
h = 30� and here the internuclear distance at each of the two H2

moieties is 0.900 Å.

The analysis of the value of the largest determinant coefficient
of the FCI wave-function in these two PECs shows that the multi-
configurational character diminishes with h. In particular, when
R = 1.738 Å the initial value of this coefficient for h = 90� is 0.54;
for h = 75� is 0.72 and for h = 30�, which is the equilibrium point,
this coefficient value is 0.99. That value indicates that, at that
geometry, the wave-function is almost monoconfigurational. In Ta-
bles 2 and 3 we report the errors with respect to the FCI values of
different methods for these two PECs. The FCI energy values are
shown in the last column of these tables. Here also, the CCSD
and the GHV are the two methods which give a closer result to
the FCI one. It is interesting to note that also here the signs of
the CCSD and of the GHV errors, are opposite.

4.1.3. P4 conformation, a = 1.058 Å, a variable (D2h)
In this PEC two H2 moieties keep constant their internuclear

distance at 1.058 Å while varying their separating distance a (see
Fig. 1). As can be appreciated in Table 4, the largest error in all cal-
culations corresponds to the S4 conformation (a = 1.058 Å) which
is highly multiconfigurational. Here the CCSD’s are the most accu-
rate ones. Although the values obtained with the GHV show
slightly higher errors than the CCSD ones, they are of the same or-
der. The CISD’s errors are slightly higher than the GHV ones but
still acceptable while MP2 and RHF are several orders higher.

4.1.4. Potential energy curve describing the dissociation of the D4,
a = 1.058 Å (linear, D1h) as the two H2 moieties separate

The different methods examined perform here in a similar way
as in the other PECs. Thus, the CCSD, the GHV and the CISD give
accurate results as can be appreciated in Table 5. The larger errors
appear at a = 0.794 Å and a = 1.058 Å which correspond to the
points with largest orbital degeneracy. The best results are ob-
tained with the CCSD followed by the GHV.

4.1.5. Potential energy curve evolving from the H4 (C2v) conformation
to the D4 (linear, D1h) conformation

In Table 6 we show the energy errors (in mEh), obtained with
various standard methods, for H4 (C2v). While the distance
a = 1.058 Å is kept constant, the d angle varies from 0� to 90�. Thus
when d = 0� the conformation is the S4 (D4h) and as d augments, the
conformation evolves towards D4 (linear, D1h) conformation
which is reached when d = 90�. The FCI energy value (in Eh) is given
in the last column of Table 6. As can be seen the CCSD gives the
smallest error for all calculated points of this PEC and, although
slightly larger, the values obtained with the GHV are of the same
reference values (in Eh) are given in the last column.

h/Degrees RHF MP2 CISD CCSD GHV FCI

90.0 �137.13 �76.15 �10.48 1.22 �4.69 �2.069685
89.9 �136.21 �75.32 �10.38 1.16 �4.31 �2.069691
89.5 �132.66 �72.13 �9.99 0.93 �3.15 �2.069840
89.0 �128.52 �68.43 �9.50 0.68 �1.77 �2.070301
88.0 �121.20 �61.97 �8.55 0.32 �0.22 �2.072098
85.0 �105.36 �48.60 �6.28 �0.12 1.95 �2.083031
80.0 �90.12 �37.14 �4.17 �0.17 1.43 �2.110601
75.0 �80.36 �30.78 �3.01 �0.13 0.73 �2.141413
70.0 �72.87 �26.36 �2.26 �0.10 0.44 �2.172051
60.0 �61.34 �20.10 �1.31 �0.06 0.18 �2.226445
50.0 �52.50 �15.69 �0.78 �0.04 0.13 �2.257406
40.0 �45.20 �12.41 �0.48 �0.03 0.08 �2.226763

:10.1016/j.chemphys.2011.06.025
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Table 3
Errors with respect to the FCI values of the H4 ground-state energy (in mEh) obtained
with standard methods for the S4/P4 model for R = 1.738 Å and h variable. The FCI
reference values (in Eh) are given in the last column.

h/Degrees RHF MP2 CISD CCSD GHV FCI

90.0 �305.27 �148.07 �23.15 11.38 �9.63 �2.001469
89.9 �304.76 �147.91 �23.23 11.26 �9.49 �2.001469
89.5 �302.70 �147.24 �23.55 10.80 �8.99 �2.001488
89.0 �300.14 �146.41 �23.99 10.20 �8.74 �2.001545
88.0 �295.08 �144.75 �24.96 9.01 �7.60 �2.001771
85.0 �280.21 �139.73 �28.67 5.53 �5.36 �2.003270
80.0 �255.70 �130.51 �37.13 1.62 �2.78 �2.008003
75.0 �230.87 �119.65 �42.57 0.35 �0.98 �2.015271
70.0 �205.72 �107.23 �34.51 0.07 0.05 �2.025517
60.0 �156.46 �79.81 �19.45 �0.01 0.81 �2.058411
50.0 �113.12 �53.64 �8.97 �0.01 0.53 �2.113761
40.0 �79.97 �33.12 �3.46 0.00 0.15 �2.193770
30.0 �57.97 �19.75 �1.21 0.00 0.02 �2.281126
20.0 �44.05 �12.31 �0.45 0.00 �0.03 �2.265302

Table 4
Errors with respect to the FCI values of the H4 ground-state energy (in mEh) obtained
with standard methods for the P4 model for a = 1.058 Å and a variable. The FCI
reference values (in Eh) are given in the last column.

a/Å RHF MP2 CISD CCSD GHV FCI

0.794 �63.22 �20.06 �1.37 �0.18 0.19 �2.091125
0.953 �83.55 �33.90 �3.61 �0.65 1.35 �2.056263
1.058 �121.67 �66.82 �9.61 �1.54 �4.71 �2.047746
1.164 �93.45 �40.64 �4.73 �0.48 1.18 �2.075871
1.270 �84.75 �33.66 �3.48 �0.21 1.29 �2.110929
1.588 �75.82 �28.48 �2.63 �0.09 0.32 �2.182053
2.646 �69.19 �26.27 �2.18 �0.01 0.08 �2.233339
3.704 �68.60 �26.17 �2.15 0.00 0.06 �2.235382

Table 5
Errors with respect to the FCI values of the H4 ground-state energy (in mEh) obtained
with standard methods for the D4 model for a = 1.058 Å and a variable. The FCI
reference values (in Eh) are given in the last column.

a/Å RHF MP2 CISD CCSD GHV FCI

0.794 �75.77 �27.31 �1.98 �0.60 1.74 �2.188525
1.058 �68.92 �24.68 �1.81 �0.31 0.86 �2.214929
1.588 �68.08 �25.03 �2.06 �0.16 0.24 �2.230760
2.646 �68.74 �26.07 �2.16 �0.02 0.08 �2.235443
3.704 �68.60 �26.16 �2.15 0.00 0.07 �2.235426
4.233 �68.58 �26.17 �2.15 0.00 0.06 �2.235402

Table 6
Errors with respect to the FCI values of the H4 ground-state energy (in mEh) obtained
with standard methods for the H4 model for a = 1.058 Å and angle d variable (C2v).
The FCI reference values (in Eh) are given in the last column.

d/degrees RHF MP2 CISD CCSD GHV FCI

0.0 �121.67 �66.82 �9.61 �1.54 �4.71 �2.047746
15.0 �80.68 �32.00 �3.05 �0.34 1.53 �2.128004
30.0 �73.23 �27.49 �2.28 �0.32 0.95 �2.176595
45.0 �70.48 �25.77 �1.99 �0.30 0.83 �2.198710
60.0 �69.41 �25.05 �1.87 �0.30 0.81 �2.208967
75.0 �69.01 �24.76 �1.82 �0.31 0.84 �2.213587
90.0 �68.92 �24.68 �1.81 �0.31 0.86 �2.214929
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order. The CISD’s errors although larger are still acceptable; this is
not the case for the RHF nor for the MP2.

4.1.6. Permanent electric dipole and quadrupole values in the H4 (C2v)
conformation

The permanent dipole (l) and (traceless) quadrupole (Q) mo-
ments as well as the r.m.s. deviation of the 1-RDM with respect
to the corresponding FCI matrix can be considered suitable tests
Please cite this article in press as: C. Valdemoro et al., Chem. Phys. (2011), doi
for the N- and spin-representability [19,24,36–38] of the 1-RDM
as well as for its accuracy. Therefore these quantities have been
calculated for the H4 (C2v) conformation and their values are re-
ported in Table 7 for the various standard approaches. In both cases
it is assumed that the molecular system H4 lies in the (y,z) plane, so
that the x-axis is perpendicular to the molecular plane. The coordi-
nate origin is at the center of mass of the molecular system, and the
molecule is oriented in a way shown in Fig. 2. According to this
choice, the only nonvanishing dipole and quadrupole components
are lz, Qxx, Qyy, and Qzz.

While the electronic dipole moments obtained with the GHV as
well as with the CCSD compare well with the FCI value, the situa-
tion changes when considering the quadrupole moments and the
r.m.s. deviation. Thus for d = 0�, which corresponds to the S4
(D4h) conformation, the 1-RDM r.m.s. deviation is significant and,
what is more, the cartesian components of the quadrupole tensor
are far from the FCI results. The calculations show that, for the
S4 conformation, the space symmetry is broken.

On the other hand, when the angle d augments, and conse-
quently the orbitals degeneracy disappears, the values obtained
both for the quadrupole moments and for the 1-RDM r.m.s. devia-
tion compare well with the FCI values.

4.2. General comments on the GHV performance and the symmetry
problem

In the first part of this section we have reported and compared
the results obtained with the RHF, the MP2, the CISD, the CCSD and
the GHV methods for the six PECs considered. Clearly the RHF and
the MP2 performance is rather poor and, although the CISD per-
forms much better, the results obtained with this method are not
as good as the CCSD and GHV ones. The method which in general
yields the lowest absolute energy errors is the CCSD but the GHV
performance can really be considered comparable to the CCSD
one. Thus, when examining the maximum absolute energy errors
(MAE) of these two methods, the results show that both PECs fol-
low rather faithfully the FCI curve; the different MAE values in mEh

occurring for the square planar (D4h) conformation are given in the
following list.
:1
0.1016/j
R = 0.748 Å
.chemphys.201
R = 0.869 Å
1.06.025
R = 1.6 Å
 R = 1.738 Å
 R = 2.0 Å

CCSD
 1.54
 1.22
 12.60
 11.38
 –

GHV
 4.71
 4.69
 –
 9.63
 16.34
Let us conclude our comments concerning the energy by noting
that the most stable of the H4 conformations examined corre-
sponds to the S4/P4 with R = 1.738 Å and h = 30�. At this geometry
the FCI energy value is �2.281126 Eh while that obtained with the
GHV is �2.281141 Eh, which can be considered excellent. Evi-
dently, this H4 structure is very close to that of two parallel hydro-
gen molecules separated by the distance R.

Let us now consider the results obtained for the non-vanishing
quadrupole components for the S4 square planar conformation. It
is clear that the GHV results resulting from the calculated 1-RDM,
and consequently the matrix itself, do not correctly describe the
symmetry properties of this H4 geometry. Our initial trial G-
particle-hole matrix is derived from the RHF wave-function and,
since the RHF results show an extreme lack of symmetry of the quad-
rupole components, we think that this is at the root of the GHV
errors.

In the GHV method the N- and spin-representability of the ini-
tial G-particle-hole matrix (and hence of the 2-RDM and 2-HRDM)
is, in principle, maintained during the iterations. The only intrinsic
source of error of the method derives from the approximation
algorithms used at present for evaluating the 3-order cumulant
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Table 7
Nonvanishing cartesian components of dipole (l, in D) and (traceless) quadrupole (Q, in Buckingham) moments, and r.m.s. deviation of 1-RDM with respect to the FCI value in the
H4 (C2v) conformation of H4 obtained with standard methods for a = 1.058 Å and d (in degrees) variable.

d/Degrees Method lz Qxx Qyy Qzz r.m.s.

0.0 HF 0.0000 0.835 �3.974 3.138 1.129 10�2

MP2 0.0000 0.825 �3.790 2.965 9.439 10�3

CISD 0.0000 0.770 �0.896 0.127 1.516 10�3

CCSD 0.0000 0.774 �0.378 �0.396 6.39210�4

GHV 0.0000 0.798 �2.277 1.479 3.870 10�3

FCI 0.0000 0.769 �0.385 �0.385

15.0 HF �0.0275 0.365 �2.819 2.455 5.499 10�3

MP2 �0.0121 0.363 �2.700 2.337 3.604 10�3

CISD �0.0155 0.382 �2.356 1.975 5.381 10�4

CCSD �0.0057 0.388 �2.306 1.918 9.112 10�5

GHV �0.0043 0.393 �2.312 1.919 4.832 10�5

FCI �0.0066 0.390 �2.306 1.916

45.0 HF �0.1409 �0.253 �0.596 0.849 4.895 10�3

MP2 �0.0894 �0.200 �0.628 0.828 2.477 10�3

CISD �0.0774 �0.147 �0.603 0.750 3.532 10�4

CCSD �0.0658 �0.134 �0.612 0.746 4.541 10�5

GHV �0.0651 �0.128 �0.620 0.748 8.452 10�5

FCI �0.0660 �0.130 �0.618 0.748

75.0 HF �0.0925 �0.635 1.120 �0.485 5.230 10�3

MP2 �0.0561 �0.496 0.853 �0.357 2.328 10�3

CISD �0.0445 �0.404 0.687 �0.283 3.285 10�4

CCSD �0.0398 �0.383 0.646 �0.263 5.339 10�5

GHV �0.0389 �0.374 0.629 �0.255 4.640 10�5

FCI �0.0396 �0.378 0.637 �0.259

90.0 HF 0.0000 �0.696 1.393 �0.696 5.290 10�3

MP2 0.0000 �0.539 1.077 �0.539 2.318 10�3

CISD 0.0000 �0.439 0.877 �0.439 3.266 10�4

CCSD 0.0000 �0.416 0.831 �0.416 5.620 10�5

GHV 0.0000 �0.407 0.813 �0.407 3.659 10�5

FCI 0.0000 �0.411 0.822 �0.411

Fig. 2. Molecular orientation of the H4 (C2v) model. The coordinate origin is at the
center of mass of the H4 aggregate.
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needed for constructing the GHV equation. These algorithms are
extremely accurate when the state under study is only moderately
multiconfigurational but otherwise their accuracy diminishes
[9,39]. But, in the calculations reported above, in particular for
the S4 square planar conformation, we are inclined to think that er-
rors are mainly due to the choice of the initial trial G-particle-hole
matrix which was deduced from an RHF calculation. Thus, the va-
lue obtained for the S4 quadrupole moment components at the
RHF level of accuracy do not show up the space symmetry and,
as we stated in [9], the solution of the GHV equation will corre-
sponds to a Hamiltonian eigenstate provided the trial matrix initi-
ating the iterative procedure satisfies all the invariants of the
system such as N- and spin-representability, space symmetry
properties, etc. The question of how to determine the initial G-par-
ticle-hole matrix when studying a highly degenerate state is now
being investigated.
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