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We present numerical evidence of how three-dimensionalization occurs at small scale
in rotating turbulence with Beltrami (ABC) forcing, creating helical flow. The Zeman
scale `Ω at which the inertial and eddy turn-over times are equal is more than
one order of magnitude larger than the dissipation scale, with the relevant domains
(large-scale inverse cascade of energy, dual regime in the direct cascade of energy E
and helicity H, and dissipation) each moderately resolved. These results stem from the
analysis of a large direct numerical simulation on a grid of 30723 points, with Rossby
and Reynolds numbers, respectively, equal to 0.07 and 2.7 × 104. At scales smaller
than the forcing, a helical wave-modulated inertial law for the energy and helicity
spectra is followed beyond `Ω by Kolmogorov spectra for E and H. Looking at the
two-dimensional slow manifold, we also show that the helicity spectrum breaks down
at `Ω , a clear sign of recovery of three-dimensionality in the small scales.
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1. Introduction
Many studies have been devoted to rotating flows because of their prevalence

in geophysical and astrophysical settings, and also because they present one clear
example of how coherent structures, turbulent eddies and waves interact, and of how
turbulence statistics is affected by such interactions. For example, it was shown in
Hopfinger, Browand & Gagne (1982) (see also Hopfinger & van Heijst 1993, for a
review) that, as expected by the Taylor–Proudman theorem (Proudman 1916; Taylor
1917) and its recent dynamical extension (Waleffe 1993), vortical structures organize
in the direction of rotation. Strictly speaking, the Taylor–Proudman theorem shows
that columns, or rather two-dimensional (2D) flows, are steady-state solutions of the
equations in the presence of rotation. However, this result does not explain how
the system evolves dynamically towards these states; the argument in Waleffe (1993)
extends the result to take into account the time evolution.

Recent laboratory experiments have been able to study such flows in more detail.
For example, the development of anisotropy and cyclonic and anticyclonic vortices
is studied in Moisy et al. (2011) for freely decaying rotating flows. The statistical
properties of rotating flows can vary significantly, as seen when examining the scaling
of high-order structure functions of velocity gradients, shown in Simand (2002),
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Baroud et al. (2003), Seiwert, Morize & Moisy (2008) and van Bokhoven et al.
(2009). Although the origin of such differences in scaling is not clear, studies using
direct numerical simulation (DNS) suggest that the presence of helicity may be one
of the causes of these variations, as may be the strength of rotation (as measured by
the Rossby number), and the range of scales in which measurements are made (direct
cascade to small scales versus inverse cascade to large scales).

Helicity (i.e. velocity–vorticity correlations) is an invariant of the ideal equations
of motion (see Moffatt & Tsinober 1992, for a review). The dynamical effects of
helicity in rotating flows have not been the topic of intense studies until recently.
However, it was postulated early on that helicity may play a role in the stabilization
of rotating convective storms in the atmosphere (Lilly 1986), and it has been measured
recently in the atmosphere (Koprov et al. 2005), with a spectral law close to that of
Kolmogorov, during both the day and the night. The influence of helicity on spectral
laws was studied in Chakraborty & Batthacharjee (2007), whereas Orlandi & Fatica
(1997) showed that, in a helical rotating pipe flow, drag reduction occurs through the
modification of near-wall structures with spiral motions entraining streamwise vorticity.
Although in a maximally helical flow the Lamb vector ω × u is equal to zero (where
ω is the vorticity and u the velocity), in turbulent helical flows nonlinear interactions
are drastically reduced but not cancelled. This is because, as was shown early on by
Kraichnan (1973) using a derivation of statistical equilibrium ensembles, the energy
cascade cannot take place with maximal helicity at all scales, and therefore relative
helicity

r(k)= H(k)

kE(k)
(1.1)

(where H and E are respectively the helicity and the energy) must decrease with
wavenumber. Moreover, it is known that Beltrami flows are unstable (see e.g.
Podvigina & Pouquet 1994).

In spite of this reduction of nonlinear interactions, in the absence of rotation the
presence of helicity only results in a delay in the onset of energy decay: the maximum
of enstrophy (integral of the square vorticity) occurs at later time, but otherwise the
energy decay proceeds at the same rate as in the non-helical case. This is to be
expected, as it takes a longer time for the cascade to begin, but once it is established
the cascade rate is the same – see Chen, Chen & Eyink (2003, and references therein)
for numerical studies of helical turbulence in the absence of rotation. On the other
hand, the decay rate is greatly reduced in the presence of both rotation and helicity
(Teitelbaum & Mininni 2011).

In this paper we investigate numerically the coexistence of several dynamical
regimes in forced rotating turbulence. Specifically, we focus on the transition between
a large-scale anisotropic inertial range dominated by rotation (which could be
called the ‘Coriolis subrange’) and an isotropic inertial subrange (the ‘Kolmogorov
subrange’) associated with the return to classical non-rotating Kolmogorov nonlinear
interactions, as hypothesized, for example, in Zeman (1994) and Canuto & Dubovikov
(1997). Note that, although we will consider here the particular case of helical rotating
turbulence, in the following we use the terms ‘Coriolis subrange’ and ‘Kolmogorov
subrange’ independently of whether the turbulence has net helicity or not.

A thorough discussion of the departure from isotropy in rotating flows can be
found in Cambon & Jacquin (1989) (with recent reviews in Cambon & Scott 1999;
Cambon, Rubinstein & Godeferd 2004; Bellet et al. 2006)). However, the problem of
recovery of isotropy at small scales (in both helical and non-helical flows) is seldom
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studied, due in part to the experimental difficulty in quantifying the properties of
small-scale vortices, and in part to the numerical one of resolving several inertial
subranges, to both small and large scales. Phenomena associated with large scales,
such as the inverse cascade of energy in strongly rotating flows (Smith, Chasnov
& Waleffe 1996; Smith & Waleffe 1999; Chen et al. 2005), or the generation of
zonal flows by Rossby wave resonances (Newell 1969), have been studied extensively,
whereas the interplay between initially two-dimensional structures becoming three-
dimensional (3D) and vice versa was studied in Bartello, Métais & Lesieur (1994), by
varying the rotation rate in numerical simulations with hyperviscosity. Note also that
Nazarenko & Schekochihin (2011) have claimed, using phenomenology and critical
balance arguments between the inertial time and the eddy turn-over time, that a
recovery of isotropy should take place at sufficiently small scales. However, Lamriben,
Cortet & Moisy (2011) recently were able to measure anisotropic energy transfers in
an experiment of freely decaying rotating turbulence, and found anisotropy to be more
pronounced at smaller scales.

Here, the recovery of isotropy at small scales in forced rotating turbulence is studied
using DNS as described in § 2. A simulation at unprecedented resolution allows us
to resolve and identify both ranges, and the transition from one to the other. The
phenomenological context for non-helical rotating flows, developed in Dubrulle &
Valdetarro (1992), Zeman (1994), Zhou (1995) and Canuto & Dubovikov (1997), is
extended to the helical case in § 3; numerical results are described in § 4, while in § 5
brief conclusions are presented.

2. Numerical set-up
The simplest way to include rotation in a turbulent flow, and to prevent effects of

an Ekman layer from affecting the overall flow, is to consider solid-body rotation with
planar geometry using periodic boundary conditions. We thus have performed a DNS
run of rotating helical turbulence on a grid of N3 = 30723 points using approximately
2× 104 processors, with a box size L0 = 2π (corresponding to a wavenumber kmin = 1),
and with forcing at kF/kmin = 4. Even though such a choice of forcing wavenumber
precludes the development of a sizable inverse cascade, it nevertheless allows for
sufficient energy transfer to the large scales, rendering the energy transfer to small
scales presumably small (see below).

Detailed information about the specific procedure and the code can be found in
our previous papers dealing with studies of rotating turbulence performed at lower
resolution, and in which isotropy was not allowed to develop fully at small scale
(Mininni & Pouquet 2009, 2010a,b; Pouquet & Mininni 2010). These papers discuss
phenomenological theories for rotating turbulence with and without helicity (Pouquet
& Mininni 2010), results from numerical simulations showing evidence of a distinct
scaling of the energy and the helicity in rotating helical flows (Mininni & Pouquet
2009, 2010a), and evidence of the absence of intermittency in such flows (Mininni
& Pouquet 2010b). In the present paper, on the other hand, the focus is on the
recovery of isotropy at small scales when the Reynolds number is large enough. For
the purpose of completeness, we present again in this paper the scaling of energy
and helicity spectra in the Coriolis subrange obtained in the simulations. We also
present new phenomenological results associated with a requirement that the Zeman
wavenumber for both the energy and helicity spectra be the same, and numerical
evidence confirming our prediction. To our knowledge this is the first time that
the isotropization of the small scales in a DNS of forced rotating turbulence has
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been achieved. Also note that the phenomenological understanding of helical rotating
turbulence is confirmed by this large computation.

The equations to be integrated numerically using a pseudo-spectral code are written
in the rotating frame for the velocity field and the vorticity ω =∇ × u:

∂u
∂t
+ ω × u+ 2Ω × u=−∇P + ν∇2u+ FABC . (2.1)

Here P is the total pressure modified by the centrifugal term, and is obtained self-
consistently by taking the divergence of (2.1), assuming incompressibility, ∇ · u = 0.
The rotation Ω is imposed in the vertical direction. The Reynolds number at the
onset of the inverse cascade is Re = U0LF/ν ≈ 2.7 × 104 (with U0 the r.m.s. velocity,
LF = 2π/kF the forcing scale, and ν = 6.5 × 10−5 the kinematic viscosity), and the
Rossby number is Ro= U0/(LFΩ)≈ 0.07. The micro-Rossby number is defined as the
ratio of r.m.s. vorticity to imposed rotation, Roω = ωrms/Ω; at the onset of the inverse
cascade, we find Roω ≈ 4.5. Such a rather high value can be associated with the
isotropization of small scales, with the enstrophy spectrum peaking at the dissipation
wavenumber since one recovers at small scales a Kolmogorov law (see § 4). When
computed using the r.m.s. vorticity at the Zeman scale (see § 3), the micro-Rossby
number is found to be of the order of unity. As explained in Cambon, Mansour
& Godeferd (1997), the value of the micro-Rossby number plays a central role in
the development of anisotropies and in the determination of the velocity derivative
skewness; in practice, Roω should be unity or larger for nonlinear interactions not to
be completely damped by scrambling effects of inertial waves. Finally, the Reynolds
number computed at the Zeman scale is of the order of 400.

The procedure used to initialize the run is the following. A first simulation is done
starting from null initial velocity field (fluid at rest), and with weak rotation. The
forcing FABC is a Beltrami (fully helical) ABC acceleration centred on kF:

FABC = f0{[B cos(kFy)+ C sin(kFz)]x̂+ [A sin(kFx)+ C cos(kFz)]ŷ
+ [A cos(kFx)+ B sin(kFy)]ẑ}, (2.2)

with f0 = 0.45, A= 0.9, B= 1 and C = 1.1 (this choice of the A, B and C coefficients
allows for a slightly faster instability and development of turbulence; see Archontis,
Dorch & Nordlund (2003)). Note that, in the absence of rotation, the use of ABC
forcing results in an approximately isotropic (but not mirror-symmetric) flow, with
modes excited in the kx, ky and kz axes in Fourier space with approximately equal
intensity. In this first run the imposed rotation Ω is set equal to 0.06, and the run is
continued for approximately three turn-over times, in order to let the flow establish
a statistically steady state. With Ω = 0.06, the resulting value of the Rossby number
is so large that the flow is in practice unaware of the imposed rotation, and this
choice (as opposed to Ω ≡ 0) allows one to verify that, indeed, at small rotation rate,
the turbulence is unaffected by the rotation. Indeed, at this stage the flow displays
an isotropic Kolmogorov inertial range; any anisotropy that develops at large scale
once Ω is increased will thus be related with the effect of rotation, and will happen
dynamically.

Once the statistically weak-rotation steady stage is reached, at a time arbitrarily
relabelled t = 0, Ω is set equal to 5. The initial time step is 1t = 2.5 × 10−4; it was
decreased twice by a factor of 2, at around t = 2 and t = 4, in order to accommodate
the increase in energy due to the inverse cascade. In the following we will mostly
focus on the late-time state of this run. At late times, the injection rates of energy
and helicity are respectively ε ≈ 0.2 and ε̃ ≈ 0.8; thus, ε̃ ≈ kFε and indeed helicity
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injection is close to maximal. On the other hand, the direct cascade fluxes of energy
and helicity, Π and Σ , are Π ≈ 0.1 and Σ ≈ 0.7, respectively. The Schwarz inequality
H(k) 6 kE(k), in terms of energy and helicity spectra H(k) and E(k), also applies to
their injection rates: one can force independently the energy (symmetric part of the
velocity correlation tensor) and the helicity (antisymmetric part of the tensor) (see
e.g. Pouquet & Patterson 1978), with the inequality giving a bound on the amount of
helicity one can inject. The inequality implies that |r(k)| 6 1, with maximal helicity
when the equality is fulfilled. However, the fluxes themselves are independent of this
inequality, as each quantity can a priori cascade with different cascade times.

The code used for the simulations is parallelized using a hybrid MPI/OpenMP
scheme, and applies a 2/3 de-aliasing rule (Gómez, Mininni & Dmitruk 2005; Mininni
et al. 2011); the temporal scheme is a second-order Runge–Kutta. In the absence of
dissipation, the energy E and the helicity H = 〈u ·ω〉/2 are ideal invariants; note that
in runs with maximally helical forcing, the isotropic helicity spectrum is of one sign
until the dissipation scale. As will be shown later, this property will not hold for other
(anisotropic) spectra. Finally, note that no hyperviscosity is used, and no friction at
large scale is introduced either.

3. The Zeman scale
We now recall how the Zeman scale is derived, i.e. the scale at which the eddy

turn-over time and the inertial wave time become equal. The phenomenology below
is isotropic since the Zeman scale is the scale where isotropy is hypothesized to be
recovered; it is thus consistent with the hypothesis to use isotropic phenomenological
arguments to derive it. The validity of the hypothesis can be (and is) later confirmed
by the large DNS analysed in this paper.

One can write the overall energy and helicity spectra as stemming from a
combination of a rotation component and of a classical Kolmogorov component. The
former, dealing with rotation and helicity, were derived in Pouquet & Mininni (2010)
using dimensional analysis (see table 1 therein, case M09). Omitting constants of order
unity, one has

E(k)∼ εaε̃bΩ f k−e + ε2/3k−5/3, H(k)∼ εcε̃dΩgk−h + ε̃ε−1/3k−5/3. (3.1)

The first terms in these expressions correspond to the Coriolis subrange, while
the second terms correspond to the Kolmogorov subrange. Assuming constancy with
wavenumber of the flux of helicity in the Coriolis subrange, and using the fact that
the helicity flux is the ratio of the total helicity divided by a characteristic time, which
we associate with the transfer time τtr ∼ τ 2

NL/τΩ ∼Ω/[k3E(k)], where τΩ is the inertial
wave time and τNL is the eddy turn-over time, we obtain the following relationships:

a+ c= 0, b+ d = f + g= 1, b= 3− 2a− e, f = 3a+ 3e− 7 (3.2)

and

e+ h= 4. (3.3)

The last two laws in (3.2) stem from dimensional compatibility in terms of length
scales and time scales. Equation (3.3) relates the energy and helicity spectral indices,
and has been verified in the numerical simulations analysed in Mininni & Pouquet
(2009, 2010a). The actual values of the spectral indices may a priori depend on
the fraction of helicity in the flow; the indeterminacy in (3.3) in terms of spectral
exponents may be lifted under the assumption of maximal helicity at all scales, and
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yields e = 5/2 and h = 3/2. Note, however, that it can be argued that a state of
maximal helicity at all scales is not reachable, at least in the framework of statistical
mechanics of a truncated system of Fourier modes (Kraichnan 1973).

It is then straightforward to write an expression for the wavenumber at which there
is equality of the inertial wave time and the eddy turn-over time, using for the eddy
turn-over time the spectra in (3.1), and with e < 3 to ensure convergence of energy
dissipation:

kΩG ∼ εα ε̃βΩδ, (3.4)

with

α = −a

3− e
, β = e+ 2a− 3

3− e
, δ = 3(3− a− e)

3− e
. (3.5)

Let us call kE and kH the wavenumbers at which, respectively, the two components
of the energy and helicity spectra balance in (3.1). Their expressions can be easily
found as

kE ∼ εκ ε̃λΩµ, kH ∼ εξ ε̃ρ Ωψ , (3.6)

with

κ = 3a− 2
3e− 5

, λ= 3(3− 2a− e)

3e− 5
, µ= 3(3a+ 3e− 7)

3e− 5
, (3.7)

ξ = 3a− 1
3e− 7

, ρ = 3b

3e− 7
, ψ = −3(3a+ 3e− 8)

3e− 7
, (3.8)

and with e 6= 5/3, e 6= 7/3.
If we now impose that kΩG = kE, this leads to kΩG = ε−1/2Ω3/2, with 2a = 3 − e,

b = 0 and 2f = 3e − 5; then, kH = kΩG follows. Note that the physically plausible
condition that kE and kH increase with rotation leads to e < 7/3. This bound was
also derived in Chakraborty (2007) from a different point of view on the basis of a
non-rotating helicity cascade following Brissaud et al. (1973). It is noteworthy that
e< 7/3 excludes a state of maximal helicity for which e= 5/2.

Plugging these exponents into the expression of the scale at which the inertial wave
time and the eddy-turnover time are equal, equation (3.4), then leads to the same
formulation as in the non-helical case as derived by Zeman (1994), an expression that
is independent of the energy spectral index, and hence of the helicity index as well:

kΩ ∼ ε−1/2Ω3/2. (3.9)

Under the hypothesis that isotropy is recovered at the same wavenumber for the energy
and helicity spectra, we thus arrive at the conclusion that this wavenumber does not
depend on the amount of helicity, nor does it depend on the spectral indices e and
h. We propose here to name this characteristic scale the Zeman scale, so that we can
distinguish it from the Ozmidov scale, familiar when studying non-rotating stratified
flows and obtained in a similar fashion by using the inverse of the Brunt–Väissälä
frequency instead of the inertial wave frequency. Then, the energy and helicity spectra
in the direct Coriolis subrange, with kΩG = kΩ = kE = kH , simplify to

E(k)∼ εmΩnk−e, H(k)∼ εpε̃Ωqke−4, (3.10)
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with

m= 3− e

2
, n= 3e− 5

2
, p= −(3− e)

2
, q= 7− 3e

2
. (3.11)

It is then straightforward to derive the dependence of the relative helicity spectrum
on the energy spectral index:

r(k)= H(k)

kE(k)
∼ k2e−5. (3.12)

The actual prefactor in this expression is given by the relative helicity imposed by
the forcing at the forcing scale. In the Coriolis subrange, and as long as e > 2, the
relative helicity thus decreases with wavenumber more slowly than in the isotropic
Kolmogorov subrange, where r(k)∼ 1/k.

The final expressions in (3.10) and (3.11) imply b = 0 in (3.1). One can remark
that b = 0 might possibly have been hypothesized to start with. If b were not equal
to zero, ε̃ being a pseudo-scalar and the energy a scalar, the constant in front of
the energy spectrum in (3.1) should be a pseudo-scalar as well; it is noteworthy that
in fact this condition (b = 0) arises directly from the analysis under the plausible
hypothesis of equality of the Zeman wavenumber and the wavenumber at which the
two components of the energy (and helicity) spectra equilibrate. Also, as in the non-
rotating case, the cascade of helicity is linear in the rate ε̃, hence no constraint on the
relative energy and helicity fluxes appear from the condition kΩG = kΩ = kE = kH . As
e approaches the value of 7/3 (respectively, 5/3), the dependence on rotation becomes
linear for the energy spectrum (respectively, the helicity spectrum), and is weak for
H(k) (respectively, E(k)).

As stated previously, many studies have been devoted to the case of rotation that is
sufficiently strong that anisotropy prevails at all scales since `Ω → 0 when Ω →∞.
This is what is found when using a closure of rotating turbulence as described in detail
in Bellet et al. (2006, see e.g. the general discussion): for the so-called asymptotic
quasi-normal Markovian (AQNM) model, developed for strong rotation by removing
rapid oscillations, anisotropy increases with wavenumber (see Bellet et al. (2006,
figures 5 and 8), but also note that the Reynolds number of these computations,
Re≈ 5, is rather low). Indeed, in numerical simulations, in numerical modelling and/or
in laboratory experiments in which the Reynolds number is moderate, it often happens
that the Zeman scale is smaller than the dissipation scale and hence anisotropy
prevails at all resolved scales in the inertial range. In many of these previous studies,
anisotropy was reported to increase with wavenumber (see e.g. Bellet et al. 2006).
Recent measurements in experiments of freely decaying turbulence (Lamriben et al.
2011) also indicate stronger anisotropy at small scales, with anisotropy prevailing at all
scales.

By contrast, the present work is devoted to the issue of resolving the Zeman scale
and below, so that the isotropic inertial range can be unravelled; this implies high-
Reynolds-number computations for realistically small Rossby numbers. It is found that,
as scales are decreased to reach the Zeman scale, anisotropy decreases (see § 3), and
that isotropy is indeed recovered at that scale. Note that this result, together with the
previous results indicating that anisotropy increases with wavenumber when the Zeman
scale is smaller than the dissipation scale, would indicate that anisotropy in rotating
flows is non-monotonic with wavenumber. If that is the case, this would not be the
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first documented case of non-monotonic behaviour in rotating flows. As an example,
in Bourouiba & Bartello (2007), it was shown using numerical simulations that the
degree of coupling between 2D and 3D modes varies non-monotonically with the
Rossby number, especially in what these authors call the intermediate Rossby number
regime, which is characterized by a positive transfer of energy from waves to vortices.

One can think of parameter regimes such that the Zeman scale lies in the inertial
range and plays a relevant role in the dynamics, in particular for geophysical and
astrophysical flows in which the Reynolds numbers are very large whereas Rossby
numbers are small but not exceedingly so. The condition η = lΩ , where η is the
dissipation scale, leads to ε = νΩ2, a parameter that involves the dimensionless
combination Ro2Re. This parameter was already proposed by Canuto & Dubovikov
(1997) (see their equation (38), with the energy dissipation rate being expressed by
the usual Kolmogorov law, ε ∼ U3

0/L0). In other words, small-scale isotropization
should occur for flows with Re > Ro−2, a common occurrence in geophysical and
astrophysical flows unless one is dealing with rapid rotators. Finally, note that, in our
run, the ratio of the Zeman scale to the Kolmogorov dissipation scale is found to be
≈25 (see below).

4. Recovery of isotropy beyond the Zeman scale: numerical results

Before proceeding to give the results of the numerical simulation, let us first define
more precisely the different energy spectra we shall be dealing with. Starting from the
velocity autocorrelation function Uij(k) written in Fourier space, with the assumption
of homogeneity but not of isotropy, one can define several sub-spectra in order to
take into account angular variations. In that spirit, we define the following based on
the trace of the tensor, U(k) = Uii(k). The axisymmetric energy spectrum in Cartesian
coordinates is

e(|k⊥|, k‖)=
∑

k⊥6|k×ẑ|<k⊥+1
k‖6kz<k‖+1

U(k)=
∫

U(k)|k| sin θ dφ = e(|k|, θ), (4.1)

with θ the co-latitude in Fourier space with respect to the vertical axis with unit vector
ẑ, and φ the longitude with respect to the x-axis. Similar definitions hold for h(|k⊥|, θ),
the axisymmetric helicity spectrum, which is based on the antisymmetric part of the
velocity correlation tensor.

Note that the axisymmetric spectrum can also be expressed in terms of polar
coordinates e(|k|, θ), with k = |k| and k⊥ = |k⊥| = |k| sin θ ; k‖ refers to the component
of k in the direction of the rotation axis. The first definition in (4.1), involving double
sums, is the discrete expression used in the simulations, and corresponds to counting
energy in all modes with the same values of k‖ and k⊥ (in shells of unit width) but
different values of φ; geometric factors in the integral are automatically considered in
the sums by the definition of k⊥, and as the number of modes per shell in k⊥ varies
as the distance from the origin. The spectra given for different angular variations are
obtained by plotting e(|k|, θ) along a line making an angle θ with the vertical axis;
θ = 0 corresponds to e(|k⊥| = 0, k‖) and θ = π/2 to e(|k⊥|, k‖ = 0). Note that when
plotting contour lines of axisymmetric spectra, a trigonometric factor 1/ sin θ will be
included so that circles obtain in the fully isotropic case.
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FIGURE 1. Spectral product E(k⊥)H(k⊥)k4
⊥/kF, compensated and normalized, as a function

of perpendicular wavenumber k⊥ and averaged for 5 6 t 6 6; kF = 4 is the forcing
wavenumber, and E(k⊥) and H(k⊥) are the reduced perpendicular energy and helicity spectra
(see text, equation (4.2)). Shown for reference are a −4 law (horizontal line), as well as a dual
Kolmogorov law, E(k) ∼ H(k) ∼ k−5/3 (slanted line). The Zeman wavenumber kΩ = 2π/`Ω
is indicated by an arrow. The inset shows the temporal evolution of the energy in a few
Fourier shells, both in the inverse cascade range (k⊥ = 1, upper solid line; and k⊥ = 2, dotted
line), and in the direct cascade range (k⊥ = 20, dashed line; k⊥ = 60, dash–dotted line; and
k⊥ = 100, lower solid line).

From the axisymmetric spectra above, one can define the so-called reduced spectra
E as a function of k⊥, k‖ and k as

E(k⊥)=
∫

e(|k⊥|, k‖) dk‖, E(k‖)=
∫

e(|k⊥|, k‖) dk⊥, E(k)=
∫

e(|k|, θ)|k| dθ.
(4.2)

All the reduced spectra have the physical dimension of an energy density, i.e. summed
over wavenumber they yield, through Parseval’s theorem, the total energy 〈|u |2〉/2.

With these definitions, we now proceed to present the results of the numerical
simulation. In figure 1 is shown the product of the reduced Fourier spectra
k4
⊥E(k⊥)H(k⊥)/kF compensated by k4

⊥ and normalized by kF, in terms of k⊥. Unless
explicitly stated, the spectra and fluxes presented in this and subsequent plots are
averaged over the time interval 5 6 t 6 6, once stationarity is established in the
small scales. Superimposed on the graphs are two lines representing, respectively,
compensated k−4

⊥ and k−10/3
⊥ power laws, and the arrow gives the location of the Zeman

wavenumber kΩ = 2π/`Ω ≈ 35, computed from the imposed rotation and the energy
flux. It is clear from figure 1 that we obtain an e+ h= 4 regime (see (3.3)) dominated
by helicity transfer to small scales with a wave-induced transfer time at scales larger
than `Ω , and that we recover dual Kolmogorov spectra for both energy and helicity
at scales smaller than `Ω . Similar results obtain for the isotropic spectra. Also note
the good agreement between the phenomenological evaluation of `Ω and the numerical
result.

At these times, helicity is globally close to maximal, as measured, for example, on
integrated quantities, e.g. H/(kFE)= 0.88 at t = 6. The inertial range indices of energy
and helicity are equal to e = 2.2 and h = 1.8 at scales larger than `Ω , with both close
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FIGURE 2. Temporal evolution of the ratio of the perpendicular to the parallel integral scales
defined in (4.3) (solid line, left scale) and of the fraction of the kinetic energy that is in
the two-dimensional mode (dashed line, right scale). The initial condition is fully isotropic
developed turbulence (see text), and anisotropy grows subsequently due to the strong imposed
rotation.

to 5/3 at smaller scales where isotropy is recovered. However, it is worth noting that
the relative helicity (measuring the relative alignment of velocity and vorticity) is 92 %
at the injection scale and 14 % at the Zeman scale when examining the isotropic
spectra. A word of caution should be given here. For an anisotropic dynamical
evolution, the isotropic spectra can be misleading since they integrate over spherical
shells that are not equally populated (the k‖ direction is less populated because of
the quasi-bi-dimensionalization of the flow, at least up to kΩ). Yet one could ask
why the helicity decreases (isotropically) so substantially, in relative terms, in the
helically dominated large-scale direct cascade. This may be related to the fact that, in
such a flow, the helicity is concentrated in so-called Beltrami core vortices (BCVs),
with k‖ ≈ 0 (Mininni & Pouquet 2010b). Such structures are quasi-two-dimensional
fully helical tubes in the direction of the imposed rotation; they are concentrated
at the scale of the forcing and are embedded in a tangle of thinner and more
turbulent vortex filaments. With the velocity and the vorticity aligned in the BCVs,
the columns are laminar and long-lived, evolving on a dissipative time scale, whereas
the rest of the flow may contain only marginal amounts of helicity on average. The
BCVs could be viewed as Taylor columns, except that helicity plays an essential role
in their structure. Wave propagation is observed along these structures, reminiscent
of the linear wave propagation phenomenon invoked in Davidson, Staplehurst &
Dalziel (2006). By construction, Beltrami vortices will survive, and moderately helical
structures will transfer energy and helicity to small scale. Indeed, helicity is noticeably
more intermittent than energy, as shown in Mininni & Pouquet (2010b) by examining
the probability distribution functions of velocity and helicity increments.

In the inset of figure 1 is given the time evolution of a few individual modes (see
caption), showing that the large scales are growing in time due to the inverse cascade
of energy, whereas for the scales smaller than 2π/kF but either larger or smaller than
the Zeman scale `Ω , a quasi-steady state has already been reached at the times used
for the analysis (5 6 t 6 6).

Note that, as a rough measure of large-scale anisotropy, one can compute the ratio
of energy in the slow manifold (the 2D modes with k‖ = 0) to the total energy, E2D/E,
as shown in figure 2 (dashed line). In the run with Ro� 1, i.e. with negligible
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FIGURE 3. Isocontours of the axisymmetric energy spectrum e(k⊥, k‖)/ sin θ : (a) at t = 0
and (b) after rotation is turned on (averaged over 5 6 t 6 6). Only wavenumbers up to
kmax/2 = 512 are shown (with kmax the maximum wavenumber resolved in the computation).
The insets in each figure show a detail of the isocontours for small wavenumbers. Near-
circular contour levels at t = 0 for all wavenumbers indicate isotropy. At late times,
elliptical isocontours are an indication that anisotropy has developed, largely so for small
wavenumbers.

rotation, E2D/E ≈ 0.25 (also corresponding to t = 0 of the run with rotation), while
in the run with rotation E2D/E ≈ 0.72, i.e. almost three times larger and with most
of the energy in 2D modes. In figure 2 (solid line) is also shown the ratio of the
perpendicular to the parallel integral scales of the flow. These scales are defined from
the reduced spectra as

L‖ = 2π

∫
k−1
‖ E(k‖) dk‖∫
E(k‖) dk‖

, L⊥ = 2π

∫
k−1
⊥ E(k⊥) dk⊥∫
E(k⊥) dk⊥

. (4.3)

While at t = 0 (i.e. in the turbulent state of the run with negligible rotation) L⊥/L‖ ≈ 1,
corresponding to a flow that is isotropic, as time evolves this ratio fluctuates around 2,
indicating that large-scale anisotropy develops as a result of the increased rotation.
Since in both cases (t = 0 and t > 0) the forcing is the same and since we started
the strongly rotating run from the last state of the run with Ro� 1, we can safely
conclude that the source of anisotropy displayed for example in figure 2 is not due to
the forcing but rather is due to the nonlinear dynamics of this strongly rotating and
turbulent flow.

A more complete picture of the development of anisotropy as the result of rotation
is given by the axisymmetric energy spectrum e(k⊥, k‖) at early and late times (see
figure 3). While at t = 0 the contour levels of e(k⊥, k‖)/ sin θ are nearly circular,
indicating isotropy at all wavenumbers, the spectrum at late times shows elliptical
isocontours for small wavenumbers, with more energy in modes with k‖ ≈ 0. As the
wavenumber increases, the contour levels become less elliptical, an indication that
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FIGURE 4. Fluxes of energy (solid line) and helicity (dashed line), normalized by the forcing
wavenumber, kF = 4, as a function of (isotropic) wavenumber, and averaged for 5 6 t 6 6.
The Zeman wavenumber is indicated by an arrow. Note the seamless transition from the
anisotropic to the isotropic regime at small scale. Similar results obtain when plotting the
fluxes against k⊥. In the inset is given the spectrum of relative helicity r(k) = H(k)/[kE(k)],
with the forcing and Zeman wavenumbers, kF and kΩ , indicated by arrows.

small scales are more isotropic. This re-isotropization at small scales will be studied in
more detail below using the angular distribution of energy for different co-latitudes θ
in Fourier space.

It is perhaps remarkable that the fluxes of energy and helicity, given in figure 4,
do not show any transition at the Zeman scale: the fluxes continue to be constant in
both direct cascades, with an overall excess of normalized helicity flux, as expected
for this value of the Rossby number, an excess that persists in the isotropy range.
There is a smooth apparently seamless transition from one (anisotropic, Coriolis)
subrange to the other (isotropic, Kolmogorov) subrange, indicative of a dual cascade
with constant energy and helicity fluxes. The constancy of flux persists up to slightly
beyond wavenumber k ≈ 100, after which dissipative effects are being felt (with the
maximum wavenumber resolved in the computation kmax = 1024). Note again that
no hyperviscosity scheme is employed in this DNS that would prolong the second
isotropic range to small scales closer to the cut-off. Finally, at wavenumbers smaller
than the forcing, an incipient inverse cascade of energy, indicated by the negative
energy flux, can also be observed even though it occurs over a narrow range of
wavenumbers.

In the inset of figure 4 is given the relative helicity r(k) = H(k)/[kE(k)]. One
observes that the relative helicity never reaches the maximum allowed value of
unity, although it is quite close to it at the forcing wavenumber. At wavenumbers
immediately larger than kΩ the relative helicity decreases with increasing wavenumber,
approaching the well-known decrease r(k) ∼ 1/k of isotropic helical turbulence for
wavenumbers close to and larger than kΩ , but smaller than k ≈ 100. A clearer, but
shallower, power law (∼k−1/2) is found in the dissipative range, beyond k ≈ 100. This
latter behaviour has been reported before in simulations of isotropic helical turbulence
(Mininni, Alexakis & Pouquet 2008): it is known that pointwise helicity grows in
a turbulent flow (Matthaeus et al. 2008), and that small-scale vortical structures in
non-rotating turbulence tend to be helical.

Figure 5 presents the angular distribution of the energy spectrum e(k⊥, k‖) defined
in (4.1) (see also figure 3): there is a wide distribution of power-law indices from
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FIGURE 5. Angular distribution of energy spectra for different co-latitudes θ , averaged for
5 6 t 6 6; the Zeman wavenumber is indicated with an arrow. Slopes −7/2 (corresponding
to ∼k−5/2 scaling in units of the reduced energy spectra) and −8/3 (corresponding to
Kolmogorov ∼k−5/3 scaling) are shown as a reference. Note the recovery of isotropy beyond
kΩ .
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FIGURE 6. Anisotropic spectra e(k⊥, k‖ = 0) (solid line) and h(k⊥, k‖ = 0) normalized by
kF (dashed line), both averaged for 5 6 t 6 6; the slopes −7/2 and −8/3 are shown as
references. Note the breakdown of the helicity spectrum at the Zeman wavenumber (indicated
by an arrow). The inset shows isolines of the axisymmetric helicity spectrum h(k⊥, k‖)/ sin θ
for small wavenumbers. Note the ellipsoidal isolines with lack of sign fluctuations for
|k| < kΩ ≈ 35, and the more circular lines, with rapid fluctuations in sign, indicated by
the increasingly noisier curves, for |k|> kΩ ≈ 35.

rather shallow for small co-latitudes to steep for large co-latitudes (k‖ = 0 modes).
Again, at scales smaller than the Zeman scale, isotropy recovers with all angular
spectra collapsing to the Kolmogorov spectrum (which corresponds to a −8/3 law in
those units) at those scales. A detail of the so-called slow manifold spectra (k‖ = 0)
is provided in figure 6 for the energy (solid line) and the helicity (dashed line).
The terminology of ‘slowness’ is of course linked to the fact that, for k‖ = 0, the
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inertial wave frequency is zero. Note, for the helicity, the consistent spectrum up to
kΩ = 2π/`Ω and the strong fluctuations in the helicity spectrum past that scale, with
no definite sign (however, the fully integrated helicity spectrum H(k) is positive all the
way to the dissipation scale, not shown). The −7/2 power law indicated as a reference
in the Coriolis subrange of both figures corresponds to the prediction for the energy
spectrum that follows from the e + h = 4 relation in the case of maximal helicity: the
−5/2 slope in the isotropic energy spectrum corresponds to −7/2 in the axisymmetric
spectra. In the inset of figure 6, contour levels of the axisymmetric helicity spectrum
are given, with a linear zoom on the smallest wavenumbers: for scales larger than the
Zeman scale, anisotropy shows up in the form of elliptical contours, whereas past that
scale, there is a breakdown of coherence of the angular helicity spectrum.

Finally, we note that in all the spectra displayed in figures 5 and 6, no bottlenecks
are visible: such a feature, i.e. the increase of energy at small scale just before the
onset of the dissipation range, is prominent in many simulations of isotropic (non-
rotating) turbulence – see e.g. Ishihara, Gotoh & Kaneda (2009) for a recent review of
DNS of isotropic turbulence. The absence (or weakness) of the bottleneck here may be
associated with non-local interactions between widely separated scales induced by the
imposed rotation (Mininni, Alexakis & Pouquet 2009).

5. Conclusions
We have analysed in this paper the recovery of isotropy in a turbulent rotating

flow with helical forcing. The helical regime found previously in Mininni &
Pouquet (2009, 2010a) also appears at intermediate scales, followed by an isotropic
Kolmogorov dual spectrum for energy and helicity at small scale. This indicates that
the small-scale isotropic eddies do not destroy the phase coherence of the helical
columnar structures at large scale (through up-scaling interactions), but that their
interactions and structure, as one goes to smaller scales, become predominant and
isotropize, with strong small-scale variations (not shown).

In shell models of turbulence as studied by Plunian & Stepanov (2010) to examine
the return to isotropy at small scales in rotating flows in the presence of an imposed
magnetic field and at low magnetic Prandtl number, it was shown that the shortest
time scale determined which spectrum develops. Here, as well, we confirm the
phenomenological analysis of Zeman (1994) that led to the prediction of a return
to isotropy in the small scales when the eddy turn-over time becomes shorter than the
inertial time beyond `Ω , including in the presence of helicity.

When computed at the Zeman scale, the micro-Rossby number is found to be of the
order of unity, as mentioned earlier. Note that the Rossby number appears to be in the
range of values given in Bourouiba & Bartello (2007) for ‘intermediate’ behaviour in
which the inverse cascade is strongest. This inverse cascade does indeed disappear, at
least at lowest order, in the weak turbulence derivation of rotating flows performed by
Galtier (2003), and yet it plays an essential role in leading to the dual helicity–energy
cascade to small scales. Hence, it would be of interest, but costly, to perform a run
similar to the one presented here at a smaller Rossby number, yet resolving better
all direct and inverse dynamical ranges. In this context, large eddy simulations could
possibly help in providing a model of rotating turbulent flows (see e.g. Baerenzung
et al. 2011).

We would expect that, in the case of a non-helical forcing such as the Taylor–Green
flow, the same behaviour would occur for the same range of parameters, with a k−2

spectrum dependence for the energy at scales of the order of the forcing scale and
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smaller (and a k−3
⊥ scaling of the modes with k‖ = 0 in the axisymmetric energy

spectrum), before re-isotropization beyond the Zeman scale. The reason is that the
expression for the Zeman scale does not depend on helicity and hence, presumably, the
dynamics of the isotropic Kolmogorov subrange should not either, since it is known
that in the non-rotating case turbulence dynamics with or without helicity is of the
Kolmogorov type. However, there would be no discernible cascade of helicity in the
Kolmogorov range, since it would likely be fluctuating around zero, contrary to what
is observed here with maximally helical forcing.

Many additional questions on the statistical properties of the flow described in
this paper need to be addressed, especially considering the role of anisotropy. In
particular, the simulation described here shows decreasing anisotropy with increasing
wavenumber at all scales, while recent experiments of freely decaying rotating
turbulence (Lamriben et al. 2011) observed increased anisotropy at smaller scales
(see also Bellet et al. (2006) for numerical and theoretical results). The reasons for this
discrepancy are not clear, and may be related with differences between freely decaying
and forced rotating flows (e.g. associated with the development of a quasi-steady
inverse cascade of energy in the forced case), or with non-monotonicity of anisotropy
with respect to wavenumber. If the case is the latter, it should be noted that, as a result
of limitations in resolution and computing power, our simulation has a short Coriolis
subrange, and even larger scale separations may be needed to observe anisotropy
increase with wavenumber before the Zeman scale is reached.

Finally, other questions to be addressed include properties of small-scale statistics
and intermittency. Indeed, several recent laboratory experiments of rotating turbulence
(Simand 2002; Baroud et al. 2003; Seiwert et al. 2008; van Bokhoven et al.
2009) as well as numerical simulations (Müller & Thiele 2007; Mininni & Pouquet
2009, 2010b) have found that rotating turbulence in the direct energy cascade is
closer to self-similarity than homogeneous and isotropic turbulence, with the exponents
of pth-order structure functions following ζp ≈ γ p. The exponent γ is found to be
either close to 1/2 (compatible with a k−2 non-helical spectrum), or in the range
0.7 6 γ 6 0.75 in the presence of helicity, compatible with an energy spectrum slightly
shallower than k−5/2. Other issues arise as to the universality of the scaling presented
here, for example, when one varies the relative helicity of the forcing term. These
questions are left for future work.
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