
the mRNA X and mRNA Y corresponding to
protein X and protein Y, respectively. Although
protein X and protein Y are coordinated for all
four motifs in Fig. 3, this is not the case for their
mRNA levels. This can be explained by the dis-
parate time scales of mRNA and protein. Fast-
degrading mRNA may exhibit fluctuations with
a broad frequency bandwidth. Conversely, slow
degradation of proteins filters out fast fluctua-
tions but keeps slow fluctuations. Constitutively
expressed mRNA X has both fast and slow fluc-
tuations, but protein X only transmits the slow
fluctuations downstream. The result is that the
dynamics of mRNA X and mRNA Y are dom-
inated by uncorrelated fast fluctuations, which
overshadow their correlated slow fluctuations. On
the other hand, protein X and protein Y only
contain the better-correlated slow fluctuations.
That is, two mRNA species can be mostly un-
correlated with one another, yet produce protein
in a coordinated fashion. Gandhi et al. (18) ob-
served such a circumstance in budding yeast,
when they found very little correlation between
pairs of transcripts that encode coordinated pro-
teins of the same protein complex, including pro-
teasome and RNA polymerase II subunits. They
even found correlation lacking in two alleles of
the same gene. In a related study, Taniguchi et al.
(27) analyzed more than 1000 genes in E. coli
and measured both mRNA and protein copy
numbers in single cells. They found that for most
genes, even the numbers of mRNA and protein
molecules were uncorrelated. These studies sug-
gest that understanding of regulatory phenomena
requires one to consider regulation at both the
mRNA and the protein level.

From these studies, it is now clear that var-
iability in single-cell measurements contains a
wealth of information that can reveal new in-
sights into the regulatory phenomena of specific
genes and the dynamic interplay of entire gene
networks. As modern imaging techniques begin
to beat the diffraction limitations of light (28) and
flow cytometers become affordable for nearly
any laboratory bench (29), we find ourselves in
the midst of an explosion in single-cell research.
With the advent of single-cell sequencing (30, 31),
it might be possible to determine the full tran-
scriptome of many single cells in the near future
and to determine the full expression distributions
and correlations for all genes in the genome. We
expect that the approaches described in this re-
view, which have been pioneered with the model
microbial systems, will be readily applied tomam-
malian cells and tissues (32, 33).
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REVIEW

Computational Approaches
to Developmental Patterning
Luis G. Morelli,1,2,3 Koichiro Uriu,1,4 Saúl Ares,2,5,6 Andrew C. Oates1*

Computational approaches are breaking new ground in understanding how embryos form. Here,
we discuss recent studies that couple precise measurements in the embryo with appropriately
matched modeling and computational methods to investigate classic embryonic patterning
strategies. We include signaling gradients, activator-inhibitor systems, and coupled oscillators,
as well as emerging paradigms such as tissue deformation. Parallel progress in theory and
experiment will play an increasingly central role in deciphering developmental patterning.

Animal and plant patterns amaze and per-
plex scientists and lay people alike. But
how are the dynamic and beautiful pat-

terns of developing embryos generated? Used
appropriately, theoretical techniques can assist
in the understanding of developmental processes
(1–5). There is considerable art in this, and the
key to success is an open dialogue between exper-

imentalist and theorist. The first step in this dia-
logue is to formulate a theoretical description of
the process of interest that captures the properties
and interactions of the most relevant variables
of the system at a level of detail that is both use-
ful and tractable. Once formulated, the second
step is to analyze the theoretical model. If the
model is sufficiently tractable, it may be possible

to understand its behavior with “pencil-and-
paper” analysis and compare this analytical solu-
tion directly with experimental data. Very often,
however, the number of variables and the com-
plexity of their interactions preclude this ap-
proach, and the behavior ofmodelsmust be solved
or simulated by using computers in order to be
understood and compared with data. This com-
bined approach, which we refer to as computa-
tional biology, has become popular recently with
the availability of powerful computers and in-
creasingly sophisticated numerical algorithms.
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In this Review, we hope to introduce scientists
familiar with computational methods (geeks) to a
selected set of interesting developmental problems
(Fig. 1) and to illustrate to developmental biologists
(nerds) a selected set of powerful tools.We focus on
recent studies investigating four developmental
patterning strategies: (i) gradients of signaling mol-
ecules released from localized source cells that
guide global patterns across target cell populations
(Fig. 1A). This external control contrasts with self-
organizing strategies within the cell population that
use local interactions, such as (ii) activator-inhibitor
mechanisms (Fig. 1B) and (iii) the synchronization
of cellular oscillations (Fig. 1C). (iv) Mechanical
deformations can also change the pattern of a cel-
lular population (Fig. 1D). Although models are
often useful in explaining and predicting develop-
mental phenomena, the eventual fate of a given
model is to be provenwrong and thenmodified or
replaced, as illustrated in the companion article on
cell polarity by Mogilner and colleagues on page
175 of this special issue. Perhaps the greatest impact
of computational approaches in developmental
biology right now is to force hypotheses to be pre-
cisely stated and to stimulate corresponding new
quantitative experiments to test them.

Patterning with Signaling Gradients
Morphogens are diffusible signaling molecules
that can activate target genes in a concentration-
dependent manner. During development, mor-
phogen gradients are established across tissues,
diffusing away from localized sources (Fig. 1A). It
has been proposed that cells read morphogen
levels to determine their position within the tissue
and differentiate accordingly (6), and there is good
evidence that morphogen gradients can direct
cell differentiation in target cells. How these gra-
dients are formed, and whether they are sufficient
to control differentiation in very precise domains,
are open questions that have benefited from com-
putational approaches.

An important model system for studying these
questions is the early embryo of the fruit fly Dro-
sophila, in part because its geometry and symmetry
simplify description and quantitation (Fig. 2A).
One of the maternally deposited cues that breaks
the symmetry along the embryo’s long axis is bicoid
mRNA, which is present only in the anterior pole.
Bicoid protein is translated and transported (7),
creating within an hour an exponentially decreas-
ing concentration gradient over several hundred
micrometers along the embryo’s axis. This gradient
directs the formation of precise domains of four
target genes—among them hunchback—that es-
tablish the first segments of the future fly body (Fig.
2A).Given the stochastic nature of gene expression,
discussed in the companion article by Munsky
and colleagues on page 183 of this special issue,
morphogen concentration is expected to fluctuate,
both over developmental time and from one indi-
vidual to another. The stunning precision in the
position of the boundaries of the segmented out-
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Fig. 1. Patterning strategies. (A) Signaling gradients supply global positional information. Horizontal
axis is position within target tissue. Morphogen-producing cells are green; cells in tissue take identities
(blue, white, and red) according to morphogen concentration. (B) Activator-inhibitor systems incorporate
local positive and negative feedbacks to generate pattern. Distinct cell types are in red and blue. (C)
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time. (D) Tissue deformation can drive patterning reactions. Downstream of patterning information, the
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put pattern that is found despite these fluctua-
tions puzzles both nerds and geeks. The field has
wrestled with the issue of whether this precision
can be achieved through theBicoid gradient alone,
or whether other mechanisms are required.

Contributing to this debate, recent papers by
Manu et al. (8, 9) formulated the interactions be-
tween four target genes downstream of the ma-
ternal gradients in the early embryo using a gene
regulatory network (GRN) model, in which each
variable represents the quantity of a molecular spe-
cies (Fig. 2B). One of the limitations of GRNmod-
els is that great experimental effort is often required
to estimate relevant values of the model’s many
parameters in the embryo. Parameters for thisDro-
sophila segmentation model were obtained com-
putationally by finding those combinations that
best reproduced a time series of quantitative spatial
gene expression data from the embryo. The model
hinted that cross-regulatory interactions between
target genes in the GRN reduce the variability in
the position of their expression domains.

One problem in understanding a model is that
as the parameters vary, the general dynamic be-
havior of the system can change dramatically.
These changes are called bifurcations, and using
powerful tools from dynamical systems theory (10),
Manu et al. (9) performed a bifurcation analysis of
the model to identify the fundamental behaviors
that the system can display over a given set of real-
istic parameter values. Themodel predicts that cells

in the anterior of the embryo select a stable state
of the dynamics, and the concentrations of targets
change as Bicoid levels drop. In the posterior of
the embryo, the system never reaches a stable state
because gastrulation happens first. Describing the
simple behaviors of a complex regulatory network
in this compact way is appealing because it makes
similarities to other regulatory systems clearer and
also makes falsifiable predictions about distinctive
behaviors that can be experimentally tested.

Fluctuations in gene product levels generate
molecular noise that limits the precision of sig-
naling gradients and also degrades the targets’
outputs. This problem can be formulated precise-
ly by using the tools and concepts from information
theory—originally used in engineering—which
quantifies the flow of information through com-
munication channels. A key concept is the mutual
information between two variables, such as, for
example, Bicoid andHunchback levels. An elegant
computation by Tkačik and Walczak used exist-
ing precise measurements of morphogen levels
(11) to estimate the mutual information between
Bicoid and Hunchback (12). On the basis of their
result, they argued that if similar results hold for
the other target genes under Bicoid control, the
combined information conveyed by the four genes
would be enough so that each of the roughly 100
rows of nuclei could unambiguously determine its
position along theDrosophila embryo. To test this
hypothesis, combined high-quality spatial expres-

sion data for the other target genes in the system
will be necessary. Thus, information theory is emerg-
ing as a potentially powerful tool to quantify inf-
ormation transmission in developmental GRNs.
As yet, it is unclear whether the bicoid gradient is
sufficiently precise to instruct the precise bound-
aries of its target gene domains, or whether other
mechanisms are necessary, but computational biol-
ogy has a central role in this discussion.

Patterning with Activator-Inhibitor Systems
Cells in a morphogen gradient use the local level
of an externally provided signal to produce pat-
terns (Fig. 1A). However, patterns such as spots
and stripes can arise spontaneously from entirely
local interactions. In 1952, Alan Turing proposed
a reaction-diffusion (RD) mechanism to explain
spontaneous pattern formation without signaling
gradients (13). Specifically, he considered two
diffusing chemical components, an activator and
an inhibitor (Figs. 1B and 3A). By self-activation,
the activator can locally increase its concentration
(Fig. 3A). The activator in that region produces
the inhibitor, which suppresses the activator in
surrounding space because of faster diffusion. As
a result, local peaks of activator self-organize from
the almost homogeneous starting state, leading to
the spontaneous formation of spatial patterns, such
as stripes and spots in a two-dimensional (2D)
space (so-called Turing patterns) (Fig. 1B).

Subsequently, RD systems have been con-
sidered to play important roles in spontaneous
pattern formation (14, 15). Although spatial struc-
tures very similar to simulated Turing patterns
have been observed in development, until recent-
ly there was scant evidence showing that the
Turing mechanism causes these structures. In-
deed, conceptually elegant RD models of the
Drosophila segmentation process introduced above
proved to be entirely wrong (16), and this failure
may even have left some developmental biologists
wary of further theoretical efforts. However, iden-
tification of interaction rules and key molecular
components in several putative RD systems (17, 18)
now suggests the potential of a long-awaited ex-
perimental verification of these ideas.

Skin pattern formation in fish has long been
a candidate for patterning by use of the Turing
mechanism (19). To identify key interaction rules
in the system, Nakamasu et al. studied stripe for-
mation in zebrafish skin (20). These black and
yellow stripes are self-organized over 3 weeks by
local interactions between black and yellow pig-
ment cells, which fulfill the condition for Turing
patterns (Fig. 3B). To confirm that the experi-
mentally observed interactions between pigment
cells can generate stripes, the authors first used
deterministic partial differential equations to mod-
el cellular dynamics. However, because the width
of each stripe in zebrafish is only ~10 cells,
Nakamasu et al. pointed out that stochastic effects
caused by smaller cell numbers might prevent
stable stripe formation. In that situation, it would
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Fig. 3. Patterning with activator-inhibitor systems. (A) Local activation and lateral inhibition generates
spatially heterogeneous patterns. (B) Interactions between black and yellow pigment cells produce Turing
patterns in zebrafish skin. Mutual inhibition between them functions as self-activation for the yellow cells.
Each yellow cell activates distant black cells. Therefore, inhibition of the yellow cell by the black cell works
as a lateral inhibition. (C) Different modeling approaches to spontaneous pattern formation.
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be a better formulation to explicitly
describe stochastic behaviors of each
singlepigment cell, suchasbirth,move-
ment, and cell death. The authors de-
veloped a cellular automaton-based
model (Fig. 3C) that includes the ob-
served pigment cell interactions to
study the robustness of stripe patterns
against stochastic effects. Although
such detailed models usually include
several parameters not measured ex-
perimentally, simulations of the cell-
basedmodel produced patterns similar
to those obtained by the deterministic
model and observed on the zebrafish
skin. Combining investigations of the
molecular and cellular basis of the
cellular-level interaction rules (21) with
further theoretical studies should reveal
whether this is indeed a Turing system.

Gradient patterning strategies can
also be formulated as RD systems be-
cause gradients can arise from diffu-
sion ofmorphogens, and the pattern emerges due to
reactions that involve these morphogens. However,
the different length-scales involved in activator-
inhibitor systems give rise to qualitatively different
patterns, which are local in nature. This is an ex-
ample of how very different developmental pattern-
ing strategies can be described by using similar
model formulations.

Patterning with Genetic Oscillations
The growing body axis of all vertebrate embryos is
rhythmically and sequentially subdivided into seg-
ments. For example, in the zebrafish embryo the
multicellular segments are ~50 mm long and form
with a periodicity of 30min. Inspired by such clock-
like regularity, Cooke and Zeeman proposed the
Clock and Wavefront model in 1976 (22). In this
model, a biological clock ticks at the posterior of the
elongating embryo, and the distance advanced by a
wavefront along the embryonic axis during a cycle
of the clock sets the length of a forming segment.
More than 20 years later, the model was revived
with the discovery of genetic oscillations in the chick
embryo (23). This segmentation clock appears to be
a tissue-level rhythmic pattern generator (24), in
which a population of progenitor cells behave as
coupled oscillators, self-organizing a collective
rhythm throughmutual synchronization (Fig. 1C).

A clue to the existence of such a synchronized
cell population came from zebrafish mutants that
disruptDelta-Notch intercellular signaling, inwhich
coherent oscillations and segmental patterning
are gradually lost (25). The current hypothesis is
that in the wild-type embryo, Delta ligands under
the control of a single-cell oscillator activateNotch
receptors in the membrane of neighboring cells,
and these receptors coordinate oscillating gene
expression in the receiving cell (Fig. 4A). With-
out Delta-Notch signaling, the single cells’ oscil-
lations gradually lose synchrony. The plausibility

of this synchronization hypothesis has been studied
by using GRN models showing that the Delta-
Notch mechanism described above could keep
neighboring cells oscillating in synchrony (26, 27).

Given the previously mentioned difficulty of
determining GRN parameters from embryos (28),
an alternative and complementary model formu-
lation is to use an effective theorywith variables that
represent processes for which there is a particular
interest or a possibility of experimental compar-
ison. For the segmentation clock, this approach has
been applied to investigate the synchronization hy-
pothesis by using theories based on coupled phase
oscillators (Fig. 4B). In a phase oscillatormodel, the
variables corresponding to oscillating molecular
species are substituted by a single variable: the phase
of the oscillation cycle, which advances in timewith
a given intrinsic frequency. The effect of Delta-
Notch signaling is captured by a coupling function
that speeds up or slows down a cellular oscillator
depending on the phase of neighboring cells. Phase
oscillator models do not offer direct insight about
dynamics of individual molecular species, but their
simplicity allows powerful insights about system-
level dynamics from paper-and-pencil analysis.
Furthermore, they allow a direct fit to experimental
data relying on a few coarse-grained parameters
such as the period of the oscillations (29).

Using a phase oscillator model, the synchroni-
zation problem of the segmentation clock was for-
mulated as a competition between noise and the
intercellular coupling that keeps cells in synchrony
(30). Together with quantitative experimental dis-
ruptions of Notch signaling in zebrafish, the mod-
el allowed estimation of the noise level and coupling
strength relevant for the tissue-level synchrony of
the clock. Coupling involves the new synthesis of
Delta ligand every cycle (Fig. 4A), and to repre-
sent the anticipated duration of the ligand-receptor
mechanism, Morelli et al. (29) included explicit

time delays in the coupling function of a phase os-
cillator model. This delayed coupling theory made
the prediction that changing the coupling strength
could change the clock period and motivated the
study of the dynamics of Notch mutants. Quanti-
tative time-lapse measurements of segmentation
period and analysis of clock gene-expression pat-
terns in mutants matched the theoretical predictions
and so identified the first candidates for segmen-
tation clock period mutants (31).

Although these studies have revealed some
surprising insights into the segmentation clock’s
dynamics, most quantitative data used to test
models have come from static images (28, 31),
and the desynchronization of the clock has not
been directly observed. The advent of new tech-
niques to observe cyclic gene expression in vivo
(32) will allow key assumptions of the existing
models to be directly tested.

Patterning with Mechanical Deformations
We complete our roster of patterning mechanisms
with a recently discovered case driven by tissue
deformations. An apparently simple behavior for an
epithelial sheet is to elongate along one axis while
shrinking along the orthogonal axis. During Dro-
sophila development, the wing blade epithelium
stretches into the familiar elongatewing shape, and
each of the hairs protruding from the wing cells
points distally—an example of planar cell polarity
(PCP) patterning (Fig. 5A). Although proximo-
distal gradients of PCP pathway components have
been observed, they are not sufficient to produce
the final wing hair polarity (33). Examination of
cell shapes and trajectories from time-lapse movies
shows that sharp contraction of the neighboring
hinge region exerts anisotropic tension on the wing
blade (34). Over a period of 15 hours, the blade
deforms with a shear gradient arising from the cel-
lular flow in the tissue.

Fig. 4. Patterning with genetic oscillations. (A) Cyclic gene expression oscillates in individual cells because of a
negative feedback loop, and oscillations are coupled to neighbor cells through the Notch pathway. (B) The mutual
effects of cellular oscillators can be described by models of coupled phase oscillators.
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Aigouy et al. explored the role of tissue shear
in aligning the axis of cellular polarity with the
proximo-distal axis of the wing blade by formu-
lating a 2D vertex model of epithelial cell shape
(Fig. 5B) (35), incorporating an effective descrip-
tion of the local recruitment of complementary PCP
molecules to apposing cell boundaries (34). This
new model predicts that polarity is reoriented by
local rotation and cell flow–induced shear. Simu-
lations show that shear associated with oriented cell
division, proximo-distal cell elongation, and cell re-
arrangement also contribute to the alignment of cell
polarity with the long axis of the wing. Future work
can investigate how the 3D baso-lateral surfaces of
the epithelial cells in the wing affect this description,
and how the PCP protein complexes involved dy-
namically reorganize during cellular rearrangement.
Thus, remarkably the final planar cell polarity of the
completed wingmay be a direct consequence of the
externally applied stresses responsible for its exten-
sion, via simple physical rules such as those that
determine molecular polarity in liquid crystals (36).

In this Review, we have mainly discussed
chemical aspects of pattern formation as separate
from downstream mechanics of morphogenesis
(37, 38). Turing already wondered whether a closer
linkage might be at work (13), and it seems timely
to reconsider development as having integrated
mechanochemical aspects (39). For example, mo-
tivated by recent findings on cell cortex dynamics
in the nematode Caenorhabditis (40), Bois et al.
studied pattern formation in an active fluid inwhich

mechanical contraction causes the flow of reactive
chemical species (41). This theoretical analysis
showed that an active fluid extends the parameter
space in which classical Turing systems generate
spatial patterns. To what extent continuous feed-
back between chemical and mechanical processes
also underlies tissue-level phenomena in develop-
ment is not yet clear, but it may be widespread.

Outlook
With the wide range of approaches in use, how
should the developmental biologist select the ap-
propriate modeling and computational methods?
And where should the computational scientist dig
for interesting problems in the vast field of develop-
mental biology? Previous reviews have given mul-
tiple examples and advice (1–5). Here, we argue
that the first step is key: The level of description
and model type should be matched to the best
available data. The data should be quantitative, ac-
curate, and precise, and the model should make
falsifiable predictions. Although some researchers
are fluent in both domains, most often a successful
computational approach to developmental biol-
ogy will involve a long-term dialogue between ex-
perts across disciplinary boundaries. As advances
in imaging and molecular methods increase ex-
perimental resolution and complexity, correspond-
ing theoretical and computational developments
will be required to assemble the puzzle. This co-
dependence should generate a wealth of new op-
portunities for geeks and nerds alike.
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Schematic of the vertex model used to calculate stable cell-packing geometries.
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