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PACS 11.10.Ef – Lagrangian and Hamiltonian approach
PACS 11.10.Lm – Nonlinear or nonlocal theories and models

Abstract – We show how to deal with the generalized q-Schrödinger and q-Klein-Gordon fields
in a variety of scenarios. These q-fields are meaningful at very high energies (TeVs) for q = 1.15
high ones (GeVs) for q = 1.001 and at low energies (MeVs) for q = 1.000001 (Plastino A. and
Rocca M., Nucl. Phys. A, 948 (2016) 19; Plastino A. et al., Nucl. Phys. A, 955 (2016) 16).
(See the Alice experiment of LHC.) We develop here the quantum field theory (QFT) for the
q-Schrödinger and q-Klein-Gordon fields showing that both reduce to the customary Schrödinger
and Klein-Gordon QFTs for q close to unity. Further we analyze the q-Klein-Gordon field for
q ≥ 1.15. In this case for 2q − 1 = n (n integer ≥ 2) and analytically compute the self-energy and
the propagator up to second order.

Copyright c© EPLA, 2017

Introduction. – Classical fields theories (CFT) associ-
ated to Tsallis’ q-scenarios have been intensely studied re-
cently [1–3]. Associated quantum (QFT) treatments have
also been discussed [3]. In this paper we show how to
treat the q-Schrödinger and q-Klein-Gordon (KG) fields in
a variety of cases. It has been shown in [4,5] that q-fields
emerge at 1) very high energies (TeV) for q = 1.15, 2) high
(GeV) for q = 1.001, and 3) low (MeV) for q = 1.000001.
LHC-Alice experiments show that Tsallis q-effects mani-
fest themselves [6] at TeV energies.

In this effort we develop QFTs associated to q-
Schrödinger and q-Klein-Gordon fields. Moreover we study
the q-KG field in the case 2q − 1 = n, n integer ≥ 2.
Here we evaluate the self-energy and propagator up to
second order thus generalizing results of [3]. In this re-
spect note also recent work on Proca-de Broglies’ classical
field theory [7].

Motivations for nonlinear quantum evolution equations
can be divided up into two types namely A) as ba-
sic equations governing phenomena at the frontiers of
quantum mechanics mainly at the boundary between
quantum and gravitational physics (see [8,9] and refer-
ences therein). The other possibility is B) to regard
nonlinear-Schrödinger-like equations (NLSE) as effective
single-particle mean field descriptions of involved quantum
many-body systems. A paradigmatic illustration is that
of [10]. In earlier applications of nonlinear Schrödinger
equations one encounters situations involving a cubic
nonlinearity in the wave function.

Referring to A) our present NLSE can be used for a de-
scription of dark matter components since the associated
variational principle (the one that leads to the NLSE) is
seen to describe particles that cannot interact with the
electromagnetic field [11]. With reference to B) we re-
mark that the NLSE displays strong similarity with the
Schrödinger equation linked to a particle endowed with a
time-position–dependent effective mass [12–15] involving
particles moving in nonlocal potentials reminiscent of the
energy density functional quantum many-body problem’s
approach [2].

During the last years the search for insight into a
number of complex phenomena produced interesting pro-
posals involving localized solutions attached to nonlinear
Klein-Gordon and Schrödinger equations i.e., nonlinear
generalizations of these equations [1,11]. Following [11]
we extend these generalizations here by developing quan-
tum field theories (QFT) associated to the q-Schrödinger
and q-Klein-Gordon equations [1].

Here we develop first the classical field theory (CFT)
associated to that q-Schrödinger equation deduced in [16]
from the hypergeometric differential equation. We de-
fine the corresponding physical fields via an analogy with
treatments in string theory [17] for defining physical states
of the bosonic string. Our ensuing theory reduces to the
conventional Schrödinger field theory for q → 1.

Secondly we develop the QFT for that very q-
Schrödinger equation (see also [18]). This equation
is similar but not identical to that advanced in [1].
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Its treatment is however much simpler than that em-
ployed in [11].

In the third place we develop the QFT for the q-KG
Field in several scenarios generalizing results of [3] and
showing that the ensuing q-KG field reduces to the cus-
tomary KG field for q → 1.

A nonlinear q-Schrödinger equation. –

Classical theory. We develop here the CFT for that
particular q-Schrödinger equation advanced in [18] from
the Hypergeometric Differential Equation. This NLSE is
different from the pioneer one proposed in [1], but exhibits
better qualitative features. One has

ih̄
∂

∂t
ψ(�x, t)q = Hψ(�x, t). (1)

In the free particle instance one writes

H0 = − h̄2

2m
Δ, (2)

whose solution reads

ψ(�x, t) = [1 + (1 − q)
i

h̄
(�p · �x − Et)]

1

1−q . (3)

Introduce now the action

S =
1

(4q − 2)V

∞
∫

−∞

∫

V

(

ih̄ψ†q∂tφ
† − ih̄ψq∂tφ

− h̄2

2m
∇ψ∇φ − h̄2

2m
∇ψ†∇φ†

)

dt d3x, (4)

with V the Euclidian volume. Our action can be rewritten
in the fashion

S =

∞
∫

−∞

∫

V

L(ψ, ψ†, ∂tφ, ∂tφ
†, ∇ψ, ∇ψ†∇φ, ∇φ†)dt d3x.

(5)
One obtains from (5) the field’s motion equations

ih̄
∂

∂t
ψq(�k, t) +

h̄2

2m
Δψ(�x, t) = 0, (6)

ih̄qψ(�x, t)q−1 ∂

∂t
φ(�k, t) − h̄2

2m
Δφ(�x, t) = 0. (7)

whose solution is (3). Instead that for (7) reads

φ(�x, t) =

[

1 + (1 − q)
i

h̄
(�p · �x − Et)

]

2q−1

q−1

. (8)

If q → 1 φ becomes ψ† the adjoint of ψ. Now the con-
comitant canonically conjugated momenta are

Πψ =
∂L

∂(∂tψ)
= 0; Πψ† =

∂L
∂(∂tψ†)

= 0,

Πφ =
∂L

∂(∂tφ)
= − ih̄ψq

(4q − 2)V
; (9)

Πφ† =
∂L

∂(∂tφ†)
=

ih̄ψ†q

(4q − 2)V
,

and the associated Hamiltonian is

H = Πφ∂tφ + Πφ†∂tφ
† − L, (10)

that we cast in terms of ψ, φ as

H =
h̄2

(8q − 4)mV
(∇ψ∇φ + ∇ψ†∇φ†). (11)

The field energy is

E =

∫

V

Hd3x. (12)

If we replace the solutions (3) and (8) into (12) one has

E =

∫

V

h̄2

(8q − 4)mV
(4q − 2)

p2

h̄2 d3x, (13)

or

E =
p2

2m
, (14)

that exactly corresponds to the wave energy (3) as one
should expect. The field-momentum density reads

�P = − ∂L
∂(∂tψ)

∇ψ − ∂L
∂(∂tφ)

∇φ

− ∂L
∂(∂tψ†)

∇ψ† − ∂L
∂(∂tφ†)

∇φ†, (15)

or
�P =

ih̄

(4q − 2)V
(ψq∇φ − ψ†q∇φ†), (16)

the field-momentum becoming

�P =

∫

V

�Pd3x. (17)

Employing (3) and (8) one finds for the momentum

�P =
ih̄

(4q − 2)V

∫

V

4q − 2

ih̄
�pd3x, (18)

or
�P = �p. (19)

The probability density is now

ρ =
1

2V
[ψqφ + ψ†qφ†], (20)

verifying
∂

∂t
ρ + ∇ ·�j = K, (21)

where

�j =
h̄2(q + 1)

8mV qi
[φ∇ψ − ψ∇φ + ψ†∇φ† − φ†∇ψ†], (22)

is the probability current. K reads

K =
h̄2(q − 1)

8mV qi
[ψ†Δφ† + φ†Δψ† − φΔψ − ψΔφ] (23)

that vanishes at q = 1. However the physical fields are
those for which K = 0. For example one lists as physi-
cal the solutions (3) and (8) since for them probability is
indeed conserved.

61004-p2



Quantum q-field theory: q-Schrödinger and q-Klein-Gordon fields

Quantum theory. We start with the action

S = −
∫

(

ih̄ψq∂tφ − ih̄ψ†q∂tφ
† +

h̄2

2m
∇ψ∇φ

+
h̄2

2m
∇ψ†∇φ†

)

dt d3x. (24)

We develop first a theory for 1) q close to unity and 2)
weak fields ψ. In these condiitions one appeals to the
approximation

ψq ≃ ψ + (q − 1)ψ lnψ, (25)

and since ψ is a weak field

ψ ≃ I + (q − 1)η. (26)

Consequently the action (24) becomes

S = −(q − 1)

∫
(

ih̄η∂tφ − ih̄η†∂tφ
† +

h̄2

2m
∇η∇φ

+
h̄2

2m
∇η†∇φ†

)

dt d3x, (27)

where we used
∫

η(�x, t)dt d3x =

∫

φ(�x, t)dt d3x = 0, (28)

since the fields are

η(�x, t) =
1

(2πh̄)
3

2

∫

a(�p )e
i
h̄

(�p·�x−Et)d3p, (29)

(see [19])

η†(�x, t) =
1

(2πh̄)
3

2

∫

a†(�p )e− i
h̄

(�p·�x−Et)d3p, (30)

φ(�x, t) =
1

(2πh̄)
3

2

∫

b(�p )e
i
h̄

(�p·�x−Et)d3p, (31)

and

φ†(�x, t) =
1

(2πh̄)
3

2

∫

b†(�p )e− i
h̄

(�p·�x−Et)d3p. (32)

Surprisingly enough the q-Schrödinger field (qSF) reduces
to the usual SF of low energies! Creation-destruction op-
erators verify

[a(�p ), a†(�p ′)] = [b(�p ′), b†(�p ′)] = δ(�p − �p ′). (33)

The propagator for the field η is [19]

Δη(�x, t) =
( m

2πih̄

)
3

2

t
− 3

2

+ e
im�x2

2h̄t , (34)

that in terms of energy and momentum reads

Δ̂η(�p, E) =
ih̄

E − �p2

2m
+ i0

. (35)

These two representations are related via

Δη(�x, t) =
1

(2πh̄)4

∫

Δ̂(�p, E)e
i
h̄

(�p·�x−Et)dEd3p. (36)

The convolution of this propagator with itself with E and
�p as variables is NOT finite. It can be calculated however
by appeal to distributions’ theory using the relation

f̂ ∗ ĝ = (2πh̄)4F(fg). (37)

This is so because divergences in the convolution of
two phase space functions derive from the multiplica-
tion of distributions possessing singularities at the same
configuration-space point. Keeping in mind that

Δ2
η(�x, t) =

( m

2πih̄

)3

t−3
+ e

im�x2

h̄t , (38)

(37) yields

1

(2πh̄)4

(

Δ̂η(�p, E) ∗ Δ̂η(�p, E)
)

=

∫

( m

2πih̄

)3

t−3
+ e

im�x2

h̄t e− i
h̄

(�p·�x−Et)dt d3x. (39)

The spatial integral is

∫

e
im�x2

h̄t e− i
h̄

(�p·�x)d3x = π
3

2

(ih̄t)
3

2

m
3

2

e−
i�p2t
4h̄m , (40)

so that the convolution becomes

F Δ̂η(�p, E) ∗ Δ̂η(�p, E)

=
(2πh̄)4

8

( m

iπh̄

)
3

2

∫

t
− 3

2

+ e
i
h̄

(

E−
�p2

4m

)

t
dt. (41)

Using the result below (see [20])

F [xλ
+] = ie

iπλ
2 Γ(λ + 1)(k + i0)−λ−1, (42)

one finds

Δ̂η(�p, E) ∗ Δ̂η(�p, E) = 4π2h̄2m
3

2

(

E − �p2

4m
+ i0

)
1

2

. (43)

A nonlinear q-Klein-Gordon equation. – The clas-
sical FT associated to the q-Klein-Gordon equation was
developed in [3]. Here we tackle the quantum version
whose action is

S =

∫
{

∂μφ(xμ)∂μψ(xμ) + ∂μφ†(xμ)∂μψ†(xμ)

− qm2

[

φ2q−1(xμ)ψ(xμ) + φ†2q−1(xμ)ψ†(xμ)

]}

d4x. (44)

This theory is 1) adequate for very energetic (TeVs)
q-particles according to CERN-Alice experiments and
2) non-renormalizable for any q > 1. Thus it cannot be
dealt neither with dimensional regularization nor with
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differential one. A way out is provided by the ultra-
distributions’ convolution of Bollini and Rocca [21–24].
Ultradistributions provide a general formalism to treat
non-renormalizable theories and gives in the configuration
space a general product in a ring with zero divisors (a
product of distributions of exponential type). For exam-
ple we can treat cases with q ≥ 1.15 as we will do later.

The concomitant theory is tractable here for weak fields
and for A) q ∼ 1 or B) particular q-values. We analyze
first the case q ∼ 1 associated to energies smaller that 1
TeV. We can thus write

qm2φ2q−1 = qm2φ + 2(q − 1)m2φ ln φ. (45)

Since the field is weak, we have

φ ≃ I + (q − 1)η, (46)

ln φ ≃ (q − 1)η, (47)

Using (45), (46) and (47) the field’s action becomes

S = (q − 1)

∫
{

∂μη(xμ)∂μψ(xμ) + ∂μη†(xμ)∂μψ†(xμ)

− (3q − 2)m2

[

η(xμ)ψ(xμ) + η†(xμ)ψ†(xμ)

]}

d4x. (48)

where we employed
∫

η(xμ)d4x =

∫

ψ(xμ)d4x = 0. (49)

Defining

3q − 2 �= 0, μ2 = (3q − 2)m2. (50)

one has

S = (q − 1)

∫
{

∂μη(xμ)∂μψ(xμ) + ∂μη†(xμ)∂μψ†(xμ)

− μ2

[

η(xμ)ψ(xμ) + η†(xμ)ψ†(xμ)

]}

d4x. (51)

The low-energy field is just the usual Klein-Gordon one!
For the fields we have

η(xμ) =
1

(2π)
3

2

∫
[

a(�k)√
2ω

e−ikμxμ

+
b†(�k)√

2ω
eikμxμ

]

d3k, (52)

ψ(xμ) =
1

(2π)
3

2

∫
[

c(�k)√
2ω

e−ikμxμ

+
d†(�k)√

2ω
eikμxμ

]

d3k (53)

where k0 = ω =

√

�k2 + μ2.

Field quantization proceeds then along familiar lines:

[a(�k), a†(�k′)] = [b(�k), b†(�k′)] = [c(�k), c†(�k′)] =

[d(�k), d†(�k′)] = δ(�k − �k
′). (54)

For 3q −2 = 0, i.e., q = 2
3 the low-energy theory is one for

a null mass field

S = −1

3

∫

[

∂μη(xμ)∂μψ(xμ) + ∂μη†(xμ)∂μψ†(xμ)
]

d4x,

(55)

where k0 = ω = |�k|.

We tackle now the q-KG theory for an integer n such
that 2q − 1 = n for m small where the action is

S =

∫
{

∂μφ(xμ)∂μψ(xμ) + ∂μφ†(xμ)∂μψ†(xμ)

− n + 1

2
m2

[

φn(xμ)ψ(xμ) + φn†(xμ)ψ†(xμ)

]}

d4x. (56)

Now we define i) the free action S0 and ii) that corre-
sponding to the interaction SI as

S0 =

∫
[

∂μφ(xμ)∂μψ(xμ) + ∂μφ†(xμ)∂μψ†(xμ)

]

d4x, (57)

SI = −n + 1

2
m2

∫
[

φn(xμ)ψ(xμ) + φ†n(xμ)ψ†(xμ)

]

d4x.

(58)

The fields in the interaction representation satisfy the
equations of motion for free fields corresponding to the
action S0. This is to satisfy the usual massless Klein-
Gordon equation. As a consequence we can cast the fields
φ and ψ in the fashion

φ(xμ) =
1

(2π)
3

2

∫
[

a(�k)√
2ω

eikμxμ +
b†(�k)√

2ω
e−ikμxμ

]

d3k (59)

ψ(xμ) =
1

(2π)
3

2

∫
[

c(�k)√
2ω

eikμxμ +
d†(�k)√

2ω
e−ikμxμ

]

d3k, (60)

where k0 = ω = |�k| The quantification of these two fields
is i) immediately tractable and ii) the usual one given by

[a(�k), a†(�k′)] = [b(�k), b†(�k′)] = [c(�k), c†(�k′)] =

[d(�k), d†(�k′)] = δ(�k − �k
′). (61)

The naked propagator corresponding to both fields is the
customary one and it is just the Feynman propagator for
massless fields

Δ0(kμ) =
i

k2 + i0
, (62)

where k2 = k2
0 − �k2. The dressed propagator which takes

into account the interaction is given by

Δ(kμ) =
i

k2 + i0 − iΣ(kμ)
, (63)

where Σ(kμ) is the self-energy. Let us calculate the self-
energy for the field φ at second order in perturbation the-
ory for which the only non-vanishing diagram corresponds
to the convolution of n− 1 propagators for the field φ and
one propagator for the field ψ. All remaining diagrams
are null. (this is easily demonstrated using the regulariza-
tion of Guelfand for integrals containing powers of x [20]).
Therefore we have for the self-energy the expression

Σ(kμ) =
(n + 1)2m4

4

(

i

k2 + i0
∗ i

k2 + i0

∗ i

k2 + i0
· · · ∗ i

k2 + i0

)

. (64)
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The convolution of n Feynman’s propagators of zero mass
is calculated directly using the theory of convolution of ul-
tradistributions [21–24]. Here we just give the result that
turns out to be rather simple. A detailed demonstration
lies beyond this paper’s scope. We arrive at

i

k2 + i0
∗ i

k2 + i0
∗ i

k2 + i0
· · · ∗ i

k2 + i0
=

iπ2(n−1)k2(n−2)

Γ(n)Γ(n − 1)
[ln(k2 + i0) + 2λ(1) − λ(n − 1) − λ(n)],

(65)

where λ(z) = d ln Γ(z)
dz

. The self-energy is then

Σ(kμ) =
(n + 1)2m4

4

iπ2(n−1)k2(n−2)

Γ(n)Γ(n − 1)

× ln(k2 + i0) + 2λ(1) − λ(n − 1) − λ(n)]. (66)

For both fields φ and ψ the self-energy and the dressed
propagator coincide up to second order.

Note that the current of probability is given by

Jμ =
i

4m
[ψ∂μφ − φ∂μψ + φ†∂μψ† − ψ†∂μφ†] (67)

and it is verified that

∂μJ μ = 0. (68)

This implies that the fields defined in the representation
of the interaction are physical fields.

Conclusions. – We have here obtained some results
that may be regarded as interesting.
1) We developed the CFT for the particular q-SE advanced
in [18].
2) For this CFT we showed that the customary dispersion
relations apply. We also introduced the physical fields,
i.e., those that the probability current is conserved. The
physical states are introduced via analogy with bosonic
string theory.
3) We developed the QFT associated to the q-SE of [18].
For weak fields this q-QFT coincides with the ordinary
SE-QFT. This result confirms our Nuclear Physics A re-
sults. These show that one needs energies of up to 1 TeV in
order to clearly distinguish between q-theories and q = 1
ordinary ones.
4) Using the distribution theory [20] we discussed the con-
volution of two Schrödinger propagators obtaining a finite
result.
5) We developed the QFT associated to the q-KGE gen-
eralizing our result of [3].
6) For low energies and q close to 1 this theory coincides
with the ordinary KG-QFT.
7) For particular q-values q = n+1

2 , n integer, we develop
the q-KG-QFT.
8) We calculate the convolution of n naked propagators
the corresponding self-energy up to the second order and

the dressed propagator. This was achieved appealing to
the ultradistributions theory.
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