
Minimum distance method for directional data and outlier detection∗

Abstract

In this paper, we propose estimators based on the minimum distance for the unknown param-
eters of a parametric density on the unit sphere. We show that these estimators are consistent
and asymptotically normally distributed. Also, we apply our proposal to develop a method that
allows us to detect potential atypical values. The behavior under small samples of the proposed
estimators is studied using Monte Carlo simulations. Two applications of our procedure are
illustrated with real data sets.
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1 Introduction

Statistics of directional data refer to methodologies and procedures designed to deal with random
variables taking values over a d−dimensional space. For instance, in a two-dimensional space,
directional observations can be regarded as points on the unit circle (circular data) and in a three-
dimensional space as points on the unitary sphere of dimension 2 (spherical data). These types of
data arise naturally in a wide range of natural science problems such as Climatology (see Mardia
and Jupp (2000)), Neuroscience (see Leong and Carlile (1998)), Biology (see Ferguson (1967)) and
Geology (see Embleton and Giddings (1974)), among others. However, in order to handle these
problems appropriately, special methods of estimation and inference are necessary. The reason for
this is the structure and the complexity of these sample spaces.

Several authors (see, for instance, Fisher et al. (1993), Mardia and Jupp (2000) and the ref-
erences therein) have discussed estimation methods for spherical and circular data. Exponential
models in the context of directional data were considered by Beran (1979). Hering and Genton
(2010) worked on the problem of predicting electricity production and showed the advantage of
considering the wind direction as a circular variable instead of a linear variable. Cox (1974) studied
maximum likelihood estimators for the von Mises distribution and Beran (1979) extended these
results to exponential families, which include the von Mises and Bingham distributions. Non-
parametric kernel methods for estimating densities of spherical data have been studied in Hall et
al. (1987) and Bai et al. (1988).

∗AMS Subject Classification 1990: Primary 62F35, Secondary 62G05.
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Robustness is a key notion in statistics. Maximum likelihood estimators work well if the assumed
model is accurate. However, these estimators are badly affected by outliers. The goal of robust
statistical methods is to work under the presence of departures from the assumed models. The
development of robust procedures for directional data has gained a lot of attention over the last
years. The fact that the variables belong to a compact set requires that the problem be addressed
in a different way than in the Euclidean case. A survey on robust methods for circular data can be
found in He (1992). Ko and Chang (1993) extended M-estimators for location and concentration
parameters to the case of the von Mises distribution, while Ko and Guttorp (1988) studied some
properties in order to quantify robustness introducing the concept of SB–robustness. The SB-
robustness considers a new measure using the influence function and introduces this concept of
standardized bias robustness. Recently, Agostinelli (2007) extended the minimum disparity and
weighted likelihood methods to circular data, i.e., the special case of d = 1.

The aim of this paper is to study a natural extension of the minimum distance estimators
introduced in Cao et al. (1995). More precisely, under the assumption that directional variables
follow a parametric model, we develop estimators for the unknown parameters. For this purpose, we
assume that directional variables have a common density function f that belongs to a parametric
class of densities. Then, we measure the distance between a nonparametric density estimator of
f adapted to circular data and the parametric family. We define the estimators for the unknown
parameters as the parameters that minimize this distance.

A large number of families of parametric densities exist in the context of directional data; some
of them are described in Mardia and Jupp (2000). In particular, an important family corresponds
to the model with rotational symmetry that generalizes the von Mises distribution. We would like
to remark that our proposal can be applied to any parametric family.

As pointed out in Basu and Lindsay (1994), the minimum distance procedures allow a simple
parametric adjustment with a trade-off between efficiency and robustness, just as one can do with
tuning constants in M-estimation. However as we remark below, unlike M-estimation, the minimum
distance methods are applicable to a wide range of models, not just to location or scale models.
Therefore, the minimum distance methods provide a robust alternative to take into account when
we consider parametric models.

As summary, in this work we propose an extension of the minimum distance estimator in the
context of directional data. This estimators requiare the use of a proper kernel density estimator
adapted to this type of data. The proposed estimators allow us to developed a method to outliers
detection. We belive that the progress presented in this work constitute an advance when dealing
with directional data, extended the technics and results knnown in the Euclidean case.

The paper is organized as follows. In Section 2, we propose the estimators and analyze their
asymptotic properties. In Section 3, we present a procedure based on the proposed estimators
to detect anomalous data. In Section 4, we report the results of a Monte Carlo study conducted
to evaluate the performance of the proposed estimators. In Section 5, we show how the method
developed to detect outliers can be applied to analyze two real data sets. Finally, proofs are
relegated to the Appendix.
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2 Minimum distance estimators

Let Sd ⊂ Rd+1 be the d−dimensional unit sphere of radius one centered at 0. Let x1, ...,xn be
independent observations of a random variable, x taking values in Sd. We denote by f the density
function of x. Notice that

∫
Sd f(x) ωd(dx) = 1 where ωd is the Lebesgue measure on the sphere.

Let fθ(x) be a family of density functions parametrized with a vector of parameters θ ∈ Rq. We
are interested in estimating the unknown parameter θ.

Given a distance function in the space of density functions, we define a minimum distance
density-based estimator θn as any value satisfying

D(f̂n, fθn) ≤ inf
θ
D(f̂n, fθ) + δn, (1)

where δn → 0 as n → ∞ and f̂n is a nonparametric density estimator. Notice that if the infimum
of D(f̂n, fθ) is achieved, then the estimator can be defined as follows:

θ̂ = argmin
θ
D(f̂n, fθ). (2)

For instance, this occurs when θ belongs to a compact set and the family of densities is continuous
with respect to the parameter θ. The family of rotationally symmetric densities has this property
as can be observed below.

In the context of spherical data, the kernel density estimator needs to be adapted to the structure
of the data. In the literature there are several contributions in this direction. Let us mention, for
example, the proposals suggested in Bai et al. (1988) and Hall et al. (1987). These proposals
are based on the inner products between the sample x1 . . .xn and x, but have a slightly different
notation. We consider the following estimator,

f̂hn(x) =
c(hn)

n

n∑
i=1

K

(
1− xtxi

h2n

)
, (3)

where hn is the smoothing parameter and c(hn) is a normalizing constant given by c(hn)−1 =∫
Sd K((1− xty)/h2n) ωd(dy).

Some standard choices for D are the distance induced by the Lp norm or the L∞ norm, i.e.,
Dp(f̂hn , fθ) =

∫
|f̂hn(x) − fθ(x)|p ωd(dx) and D∞(f̂hn , fθ) = supx |f̂hn(x) − fθ(x)|, respectively.

The Hellinger distance DH(f̂hn , fθ) =
∫

(

√
f̂hn(x)−

√
fθ(x))2 ωd(dx) could be another choice. This

distance was studied in Beran (1979), where the author showed that robustness properties together
with efficiency could be obtained using this distance. Another alternative could be to consider D
as discrepancy measures or divergences. This approach was considered in Agostinelli (2007) for
circular data and in Basu and Lindsay (1994) for Euclidean data, among others.

To compute the estimator, it is necessary to select the smoothing parameter hn. The choice
of the smoothing parameter is a major problems in density estimation. In the linear case, several
authors dealt with the problem of providing an automatic procedure to select the bandwidth.
For directional data, a cross validation criterion was considered in Hall et al. (1987), while a
plug-in bandwidth selector was considered in Taylor (2008). Garćıa-Portugués (2013) introduced
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three alternatives. One of them assumes that the underlying distribution is von Mises and the
other considers a mixture of von Mises densities. However, as Cao et al. (1995) remarked, it
seems reasonable to take into account the particular features of the problem and consider another
alternative. We consider an automatic bandwidth as in Cao et al. (1995). The idea is to incorporate
the smoothing parameter hn as an additional component in the vector θ. Therefore, we can obtain
simultaneously an automatic bandwidth and the estimator of θ as follows:

(θ̃, h̃n) = argmin
θ,h

D(f̂h, fθ) (4)

The proposed estimators, defined in (2), are strongly consistent and asymptotically normally
distributed. These properties follow easily using analogous arguments to those considered in Cao
et al. (1995). The following assumptions are needed in order to obtain the desired results.

Assumptions:

A1. The nonparametric estimator satisfies that lim
n→∞

D(f̂hn , fθ) = 0 a.s. under fθ.

A2. For all θ0 ∈ Θ and a sequence θm ⊂ Θ such that lim
m→∞

D(fθ, fθm) = D(fθ, fθ0), we have that

lim
m→∞

θm = θ0.

A3. The kernel K : R≥0 → R≥0 is a bounded and integrable function with compact support.

For the following hypotheses, we are considering the extension of f to Rd+1\{0} given by f(x) =
f(x/‖x‖) for all x 6= 0, where ‖x‖ denotes the Euclidean norm of x.

A4. The density function fθ is such that (for each θ ∈ Θ)

(a) ∇fθ(x) = (∂fθ(x)/∂x1, . . . , ∂fθ(x)/∂xd+1)
t and Hfθ(x) =

(
∂2fθ(x)/(∂xi∂xj)

)
1≤i,j≤d+1

exist and are continuous in Rd+1\{0}.
(b) ∂

∂θfθ(x) = (∂fθ(x)/∂θ1, . . . , ∂fθ(x)/∂θq)
t is integrable with respect to the measure gen-

erated by K and fθ .

A5. Ψ(x, θ) = ∂
∂θfθ(x) − Eθ

(
∂
∂θfθ(x)

)
is a differentiable function with respect to θ in an open

neighbourhood of θ0.

A6. If we denote by θ0 the true value of the parameter, the matrix A = Eθ0( ∂∂θΨ(x, θ)|θ=θ0) is
nonsingular.

A7. The sequence hn satisfies nh4n → 0 as n → ∞ and hdnc(hn) → λ as n → ∞ with λ−1 =
2d/2−1 τd−1

∫∞
0 K(r)rd/2−1 dr, where τd is the area of Sd and τd−1 = 2πd/2/Γ(d/2), for d ≥ 1.

Remark 1.

a) Assumption A1 was studied in Bai et al. (1988) for some metrics. In particular, if∫∞
0 s(d−2)/2K(s)ds < ∞, hn → 0 and nhdn → ∞ as n → ∞, Bai et al. (1988) showed the

strong L1−norm consistency, i.e., D1(f̂hn , fθ)
a.s.−→ 0. Also, they derived the uniform strong
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consistency. More precisely, under the assumptions h → 0, nhd

logn → ∞ and if the kernel

function is bounded on R>0 and satisfies
∫∞
0 sup{K(u) : |

√
u−
√
v| < 1}v(k−2)/2dv <∞ they

proved that D∞(f̂hn , fθ)
a.s.−→ 0. Besides, using the convergence in L∞ and L1, it is easy to see

that D2(f̂hn , fθ)
a.s.−→ 0 and DH(f̂hn , fθ)

a.s.−→ 0, respectively.

b) If the parametric density family fθ has a reasonable parameterization, the assumed A2 is
guaranteed. This assumption is related to the purpose of ensuring the identificability of the
parameters. For example, if we consider the distance L1, L2 or L∞ and the von Mises family,
it is easy to see that the assumption is fulfilled.

c) Assumptions A3 and A7 are standard when we consider kernel estimators in directional data.
Note that assumption A3 implies that the kernel must decrease fast unlike the kernel involved
in the Euclidean case. Notice that the assumption nh4n → 0 is related to the bias of the non-
parametric estimation (Zhao and Wu (2001)). When d > 4, an alternative is to take a kernel
with a higher order as in the Euclidean case, obtaining a different bias rate of convergence.
However, this interesting topic may be the subject of future research.

Under assumptions A1 and A2, the estimator defined in (2) is strongly consistent, i.e., θn
a.s.−→ θ.

The proof is the same as the one given in Cao et al. (1995), which is a direct consequence of a
general result given in Parr and Schucany (1982). Assumptions A3 to A7 are needed to obtain
the asymptotic distribution. We will establish the asymptotic normality for the case that D is the
distance induced by the L2 norm.

Theorem 1. Under assumptions A3 to A7, the estimator defined in (2) satisfies

√
n(θ̂ − θ0)

D−→ N(0, A−1ΣA−1)

where Ψ and A were defined in A5 and A6, respectively and Σ = Eθ0(Ψ(x, θ0)Ψ(x, θ0)
t).

Remark 2. It is worth noting that consistency and asymptotic normality results for θ̂ can be derived
when considering an automatic bandwidth parameter instead of a fixed one. More precisely, if ĥn
stands for a data-driven bandwidth, for instance, the cross-validation bandwidth defined in Hall et
al. (1987), and hn represents a sequence of real numbers satisfying A7 and ĥn/hn

p−→ 1, then a
careful inspection of the proof of Theorem 1 could show that the estimator defined in (2), using
ĥn has asymptotic distribution stated in Theorem 1. Nevertheless, this situation does not include
the estimator θ̃ defined in (4). This interesting situation is beyond the scope of the paper and may
be object of future research. A possible strategy in this case could be adapt the argument given in
Delecroix et al. (2006) to the directional setting.

Another property is that the estimator defined in (2) satisfies qualitative robustness. Hampel
(1971) introduced this concept with the idea to complement the notion of an influence function with
continuity conditions with respect to the Prokhorov distance. A simplified version of his definition
is that a sequence of estimators Tn is qualitatively robust at F if for every ε > 0, there exists
δ > 0 such that π(LF (Tn),LG(Tn)) < ε if π(F,G) < δ, where π and LF (Tn) denote the Prokhorov
distance and the distribution of Tn under the distribution F , respectively. The proof that our
proposal satisfies this property is the same as that for the linear case studied in Cao et al. (1995).
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3 Outlier Detection

One of the first steps towards obtaining a coherent data analysis is the detection of outlying obser-
vations. Outliers are often considered as an error or noise and may adversely lead to the parameter
estimation introducing biased and incorrect results. The estimators defined in the previous section
allow us to introduce a tool to detect when an observation can be considered an atypical point.

A high percentage of the methods to detect outliers rely on the assumption that the data
follow an underlying known distribution. We will consider a central assumption that a small
number of observations follow a different distribution instead of the target distribution. In the
Euclidean case, the target distribution is often taken as a normal distribution. However, when
dealing with directional data, we must consider other symmetric and unimodal distributions. The
outlier detection problem consists in identifying those observations that lie outside the center of
the distribution. The most popular and used distribution on the d-dimensional sphere is the von
Mises distribution, and we are going to consider this distribution as the target distribution. Notice
that the method can be easily extended to any unimodal symmetric distribution.

We denote the von Mises distribution with parameters µ and κ by VM(µ, κ). Its density f is
defined as follows:

f(x) =
(κ

2

) d−1
2 1

Γ((d+ 1)/2)I(d−1)/2(κ)
eκµ

tx

where the function Γ represents the Gamma function and Ip is the modified Bessel function of order
p, i.e.,

Ip(z) =
(z

2

)p 1

π1/2Γ
(
p+ 1

2

) ∫ 1

−1
(1− t2)p−

1
2 ezt dt.

We wish to explore the distribution of ‖x − µ‖2. For that purpose, we consider the change of
variables given by

x = tµ+ (1− t2)1/2Bdξ,
ωd(dx) = (1− t2)d/2−1dt ωd−1(dξ) (5)

where ξ belongs to Sd−1 and Bd is a (d+ 1)× d semi-orthonormal matrix whose columns join µ to
form an orthonormal basis. It is easy to see that the density function of U = µtx is given by

fU (u) =

(
κ
2

) d−1
2

√
πΓ(d/2)I d−1

2
(κ)

eκu(1− u2)d/2−1.

Therefore, the density of W = ‖x− µ‖2 = 2(1− U) is fW (w) = fU ((2− w)/2) /2.

As in Davies and Gather (1993), we can define the α−outlier region as follows. For any confi-
dence coefficient α, 0 ≤ α ≤ 1, the α-outlier region with respect to the von Mises distribution is
defined by:

out(µ, α) = {x : ‖x− µ‖2 > v1−α}, (6)

where vq is the q−quantile corresponding to the density of W . Hence, we consider that an obser-
vation x is an α-outlier with respect to the von Mises distribution if x ∈ out(µ, α).
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In order to apply the outlier detection procedure, note that the α-outlier region depends on µ and
therefore, we will need to estimate it. It is well known that when we use classical estimators to detect
outlier, their effects may interact in such a way that some or all of them remain unnoticed. This
is called in the literature masking effect. Therefore, we consider the minimum distance estimator
defined in the previous section as a robust estimate in order to provide reliable measures for the
recognition of outliers. It is important to observe that the exact distribution of ‖x − µ̂‖2 differs
from the distribution of ‖x − µ‖2 and it can be difficult to compute. However, we note that

‖x − µ̂‖2 = ‖x − µ‖2 + Rn where Rn
p−→ 0. Therefore, the asymptotic distribution of ‖x − µ̂‖2

converges to the distribution of ‖x− µ‖2. Thus, the tails of both distributions can be compared.

As we mentioned before, the definition of an α-outlier can be easily extended to any unimodal
symmetric distribution, in particular, to the densities that are rotationally symmetric, i.e., their
contour lines are (d− 1)–spheres orthogonal to a fixed particular direction. This characteristic can
be exploited by means of the so called tangent–normal decomposition that leads to the change of
variables considered in (5). The rotationally symmetric densities can be parametrized as follows

f(x) =
1

ωd−1(1− (µtx)2)
d
2
−1
gν(µtx) (7)

where ωq is the area of the q-dimensional sphere and gν is a density in (−1, 1) with ν ∈ Rp. Also,
for this family of distributions we obtain that the density function of U reduces to fU (u) = gν(u).
In the case that the target distribution f is a rotationally symmetric density, we will say that x
is an outlier if x ∈ out(µ, α). Here, out(µ, α) is the same region defined in (6) but vq is now the
q−quantile computed with density gν ((2− w)/2) /2.

4 Simulation study

This section contains the results of a simulation study designed to evaluate the performance of the
estimator defined in Section 2. The simulation study was carried out in the R software package. The
code is available at the webpage of the second author. We considered three models in dimensions
2 and 3. For the circle (Models 2 and 3) and the sphere (Model 1), we performed N = 1000
replications of independent samples of sizes n = 100 and n = 200, respectively. We denote by C0

the uncontaminated case and we use C1, . . . C4 to denote different contaminated cases. The models
considered are:

Model 1 (on the sphere): We generated a random sample xi ∈ S2 for 1 ≤ i ≤ n following a
von Mises distribution VM(µ, κ) with mean µ = (0, 1, 0) and concentration parameter κ = 1
and we denoted it by C0. This model had many important applications (see Jammalamadaka
and SenGupta (2001) and Mardia and Jupp (2000)). We also considered a contamination
setting taking 10% of the data following a VM((0,−1, 1), 15). More precisely, under C1 the
variables x1 . . .xn have density function given by 0.9f(0,1,0),1(x) + 0.1f(0,−1,1),15(x).

Model 2 (on the circle): We simulated a random sample according to a von Mises distri-
bution VM((0, 1), 5) for the non contaminated case (C0). For the first contaminated setting
(C1), we considered a 10% of contamination from a VM((−1, 0), 20). Also, we studied the
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behavior of our proposal even when the underlying distribution was wrong. For this purpose,
we considered the contaminations C2, C3 and C4 where the data are generated according to
the wrapped Cauchy distribution with µ = (0, 1) and ρ = 0.6, 0.7 and 0.9, respectively.

Model 3 (on the circle): We considered random variables xi for 1 ≤ i ≤ n with a rota-
tionally symmetric density function defined in (7) where gν(t) = ga,b(t) = 1

2 g̃a,b
(
t+1
2

)
with

g̃a,b the density function of a Beta distribution with parameters a and b. More precisely,
g̃a,b(t) = Γ(a+ b)/(Γ(a)Γ(b))ta−1(1− t)b−1. We denoted by fa,b,µ the rotationally symmetric
density obtained. The uncontaminated case (C0) was generated from f0.5,3,(0,1). For the con-
taminated case, we considered two schemes of contamination. In this case, C1 corresponds to
a 10% of contamination from a f0.5,3,(0,−1) and C2 is generated with a 10% of contamination
from a VM((0, 1), 5).

For the three models, we focused on the parameter µ. For Models 1 and 3, we considered the
other parameters κ,as a and b are fixed and known. In Model 2 for the case of the minimum
distance estimators, we imputed an estimator of the concentration parameter defined in Ko (1992)
for the von Mises distribution, while the competitor estimators were computed simultaneously for
the concentration parameter κ and position parameter µ.

In all the cases, for the smoothing procedure, the kernel was taken as the positive part of the
Epanechnikov kernel, i.e., K(t) = 1.5(1− t2)I(0 < t < 1) and we considered an equidistant grid of
10 values of hn on the interval [0.2, 1.4]. Note that (1− xtµ) is bounded by 2 and therefore, only
the bandwidths between 0 and

√
2 are considered. In Models 2 and 3, we also applied the estimator

proposed in (4), hence computing automatic bandwidths.

To study the performance of the estimators, we have considered the mean squared error (MSE)
and the proportion of outlier classification (PC), i.e.,

MSE(µ̂) =
1

N

N∑
i=1

‖µ− µ̂i‖2 and PC(µ̂) =
1

N

N∑
i=1

n∑
j=1

I{‖xj−µ̂i‖2>v1−α}

where µ̂i for 1 ≤ i ≤ N corresponds to the estimator computed in replication i. For all the cases,
we consider α = 0.05. For Model 1, vq has a closed expression vq = −2 ln

(
1− q(ek − e−k)/ek

)
/κ.

In the case of the circle (d = 1), we performed a numerical integration to obtain the quantiles vq
for each model. In all the Models, we computed the estimator induced by the L2 distance, denoted
in the tables by minimum distance (MD), and the maximum likelihood estimators denoted by
ML. In the cases of Model 2 and Model 3, we considered our estimator with distance L2 (MD),
L1 (MDl1), and the Hellinger distance (MDhe) and we compared our procedure to the maximum
likelihood estimator (ML). Moreover, under Model 2, we considered Agostinelli’s estimator, which
we denoted with MDag.

The maximum likelihood estimators were computed using the libraries circular and movMF of
R package. The library circular for dimension two and the library movMF in the case of dimension
three, see [3] and [21] for more details. Agostinelli’s estimator was calculated using the weighted
likelihood estimation (WLE) library, see ([1]).
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MD ML

bandwidth
0.200 0.333 0.467 0.600 0.733 0.867 1.000 1.133 1.267 1.400

MSE(µ̂) C0 0.046 0.039 0.035 0.033 0.031 0.029 0.027 0.025 0.022 0.018 0.031
C1 0.052 0.045 0.042 0.040 0.039 0.039 0.041 0.042 0.042 0.038 0.155

PC(µ̂) C0 0.050 0.050 0.050 0.050 0.049 0.049 0.049 0.049 0.049 0.048 0.052
C1 0.141 0.141 0.141 0.141 0.141 0.140 0.140 0.140 0.139 0.140 0.061

Table 4.1: The mean squared error and percentage of outlier classification for the estimators of the mean

direction in Model 1. MD corresponds to the results for the minimum distance estimator with L2 distance

using different values of bandwidth andML corresponds to the results for the maximum likelihood estimators.

ML MD MDl1 MDhe MDag

MSE(µ̂) C0 0.0024 0.0033 0.0034 0.0024 0.0024
C1 0.0193 0.0039 0.0041 0.0108 0.0097
C2 0.0082 0.0057 0.0094 0.0072 0.0053
C3 0.0053 0.0027 0.0058 0.0036 0.0053
C4 0.0011 0.0002 0.0006 0.0003 0.0014

PC(µ̂) C0 0.0489 0.0616 0.0618 0.0600 0.0656
C1 0.0009 0.1232 0.1227 0.1198 0.1188
C2 0.0785 0.1460 0.1446 0.1448 0.1158
C3 0.0874 0.1857 0.1839 0.1849 0.1354
C4 0.0694 0.1857 0.184 0.1849 0.1582

ĥn C0 - 0.2427 0.2368 0.2745 -
C1 - 0.3209 0.3050 0.3765 -
C2 - 0.4494 0.426 0.4731 -
C3 - 0.3229 0.2943 0.3485 -
C4 - 0.2789 0.2667 0.2871 -

Table 4.2: The mean squared error and percentage of outlier classification for the estimators of the mean

direction in Model 2. MD, MDl1 and MDhe correspond to the results for the minimum distance estima-

tor using an automatic bandwidth with respect to L2, L1 and the Hellinger distance, respectively. ML

corresponds to the results for the maximum likelihood estimators and MDag for Agostinelli’s estimator.
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MD

bandwidth
0.200 0.333 0.467 0.600 0.733 0.867 1.000 1.133 1.267 1.400

MSE(µ̂MD) C0 0.0034 0.0032 0.0029 0.0026 0.0024 0.0024 0.0024 0.0025 0.0026 0.0026
C1 0.0039 0.0039 0.0040 0.0045 0.0060 0.0100 0.0185 0.0304 0.0404 0.0446

PC(µ̂MD) C0 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602
C1 0.1220 0.1220 0.1220 0.1220 0.1220 0.1220 0.1220 0.1220 0.1220 0.1220

MSE(µ̂MDl1
) C0 0.0033 0.0035 0.0032 0.0027 0.0025 0.0025 0.0025 0.0027 0.0027 0.0027

C1 0.0041 0.0040 0.0040 0.0039 0.0053 0.0104 0.0217 0.0397 0.0525 0.0525
PC(µ̂MDl1

) C0 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602

C1 0.1219 0.1219 0.1219 0.1219 0.1219 0.1219 0.1219 0.1219 0.1219 0.1219

MSE(µ̂MDhe) C0 0.0025 0.0025 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0025
C1 0.0104 0.0107 0.0110 0.0114 0.0122 0.0138 0.0166 0.0207 0.0254 0.0291

PC(µ̂MDhe) C0 0.0598 0.0598 0.0598 0.0598 0.0598 0.0598 0.0598 0.0598 0.0598 0.0598
C1 0.1202 0.1202 0.1202 0.1202 0.1202 0.1202 0.1202 0.1202 0.1202 0.1202

Table 4.3: The mean squared error and percentage of outlier classification for the estimators of the mean

direction in Model 2. MD, MDl1 and MDhe correspond to the results for the minimum distance estimator

using different values of bandwidth with respect to L2, L1 and the Hellinger distance, respectively.

ML MD MDl1 MDhe

MSE(µ̂) C0 0.0066 0.0097 0.0103 0.0066
C1 0.0874 0.0123 0.0128 0.0122
C2 0.3882 0.0119 0.0110 0.0085

PC(µ̂) C0 0.0500 0.0512 0.0505 0.0503
C1 0.0426 0.1458 0.1445 0.1447
C2 0.0353 0.1456 0.1450 0.1449

ĥn C0 - 0.5146 0.5004 0.4571
C1 - 0.4562 0.4157 0.4130
C2 - 0.4396 0.4032 0.3654

Table 4.4: The mean squared error and percentage of the outlier classification for the estimators of the

mean direction in Model 3. MD, MDl1 and MDhe correspond to the results for the minimum distance

estimator using an automatic bandwidth with respect to L2, L1 and the Hellinger distance, respectively.

ML corresponds to the results for the maximum likelihood estimators.
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MD

bandwidth
0.200 0.333 0.467 0.600 0.733 0.867 1.000 1.133 1.267 1.400

MSE(µ̂) C0 0.0103 0.0101 0.0098 0.0095 0.0091 0.0086 0.0082 0.0077 0.0073 0.0071
C1 0.0127 0.0125 0.0123 0.0120 0.0117 0.0114 0.0113 0.0113 0.0117 0.0126
C2 0.0117 0.0118 0.0119 0.0121 0.0125 0.0134 0.0151 0.0184 0.0248 0.0394

PC(µ̂) C0 0.0507 0.0507 0.0507 0.0507 0.0507 0.0507 0.0507 0.0507 0.0507 0.0507
C1 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454
C2 0.1459 0.1459 0.1459 0.1459 0.1459 0.1459 0.1459 0.1459 0.1459 0.1459

MSE(µ̂l1) C0 0.0093 0.0096 0.0100 0.0108 0.0112 0.0099 0.0087 0.0078 0.0073 0.0070
C1 0.0130 0.0132 0.0124 0.0120 0.0122 0.0126 0.0116 0.0113 0.0122 0.0141
C2 0.0108 0.0111 0.0117 0.0143 0.0200 0.0248 0.0267 0.0303 0.0389 0.0585

PC(µ̂l1) C0 0.0504 0.0504 0.0504 0.0504 0.0504 0.0504 0.0504 0.0504 0.0504 0.0504
C1 0.1450 0.1450 0.1450 0.1450 0.1450 0.1450 0.1450 0.1450 0.1450 0.1450
C2 0.1457 0.1457 0.1457 0.1457 0.1457 0.1457 0.1457 0.1457 0.1457 0.1457

MSE(µ̂he) C0 0.0067 0.0066 0.0066 0.0068 0.0069 0.0071 0.0073 0.0074 0.0075 0.0075
C1 0.0132 0.0125 0.0121 0.0120 0.0118 0.0117 0.0116 0.0115 0.0115 0.0115
C2 0.0080 0.0084 0.0089 0.0095 0.0103 0.0113 0.0127 0.0145 0.0172 0.0230

PC(µ̂he) C0 0.0501 0.0501 0.0501 0.0501 0.0501 0.0501 0.0501 0.0501 0.0501 0.0501
C1 0.1450 0.1450 0.1450 0.1450 0.1450 0.1450 0.1450 0.1450 0.1450 0.1450
C2 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454

Table 4.5: The mean squared error and percentage of outlier classification for the estimators of the mean

direction in Model 3. MD, MDl1 and MDhe correspond to the results for the minimum distance estimator

using different values of bandwidth with respect to L2, L1 and the Hellinger distance, respectively.

In all the considered models, we can observe that under noncontamination, the minimum dis-
tance estimators have a good behavior, similar to that of the maximum likelihood estimator. With
the Hellinger distance, the minimum distance estimator has the same behavior as the maximum
likelihood estimator. This shows that efficiency is achieved with the Hellinger distance. Note that
in Model 1 for the noncontaminated case and large bandwidths, the minimum distance estimators
performed better than the maximum likelihood estimators. As we mentioned above, the ML esti-
mators were computed using the R library movMV. This library uses the expectation maximization
algorithm to compute the ML estimators and this algorithm does not guarantee that the global
maximum will be found. We do not consider that the proposed estimators are more efficient than
the ML estimators. We believe that these results are only due to computational limitations.

In the contaminated cases, the performance of the minimum distance estimators is slightly
affected; however, the ML estimator increases its MSE considerably. The same behavior can
be observed for the classification proportion. For the noncontaminated cases, all the estimators
considered around 5% of outliers that correspond to the cut-off point α = 0.05. However, under
contamination, the MD estimators increase the percentage of outlier classification around 14%.
This is attributed to the percentage of contamination introduced in C1 with ε = 10%. However,
the ML estimator detects fewer outliers than the 15% expected.

Finally, note that for the case of contaminations C2, C3 and C4 in Model 2, the proposed
estimators have an acceptable behavior even when all the data are generated from a different

11



distribution coming from the central model.

5 Real Examples

In this Section, we discuss two examples based on real data sets. In both examples, we consider
the Epanechnikov kernel as in the simulation study, an automatic bandwidth computation and the
estimators as in (4).

5.1 Frogs’ dataset

The first example was studied by Collett (1980) and corresponds to frogs’ directions. Ferguson
(1967) conducted an experiment to investigate the homing ability of a species of frogs. A total
of 14 frogs were collected from the mud flats of an abandoned stream meandering near Indianola,
Mississippi, in the United States. After 30 hours, the frogs were released and the directions taken
by the frogs were recorded. The results are expressed in radians, where the point 0 corresponds to
the north and the circle is oriented clockwise. We analyzed this data set with the von Mises model.

Table 5.1 reports the results for the estimation of the mean direction µ = (cos(θ), sin(θ)) and
the bandwidth obtained in (4). In order to simplify the notation, we summarized the estimators
of µ with the corresponding angle θ. We denoted with OCα the set of the number of observations
classified as outliers using an α−outlier region. In order to compute the estimators of µ, we
fixed several values of concentration parameters. These results are given in Table 5.1. We also
computed the estimator of the concentration parameter defined in Ko (1992). When we estimated
the concentration parameter with the proposal by Ko, we obtained κ̂ = 2.399 and with this value
we computed the estimator of θ. The result with this procedure was θ̂ = 2.474752 and the 14th
observation was detected as atypical considering levels α = 0.01, 0.05, i.e., OC0.01 = OC0.05 = {14}.

In Table 5.1, we observe that for all values of the concentration parameter, the 14th observation
was classified as an outlier. This observation corresponds to the point located in the anti–modal di-
rection. Besides, when we increase the concentration parameter, other observations located around
the south direction were classified as atypical values. This relation is reasonable and expected, be-
cause large values of the concentration parameters imply a distribution with less variability around
the mean. The same conclusion regarding the 14th observation was obtained in Collett (1980) and
Agostinelli (2007).

Furthermore in the example, we can appreciate the relationship between the concentration
parameter and the bandwidth selector. Large values of concentration parameters produce small
bandwidths and large bandwidths are related to small values of κ. This trade-off between the con-
centration parameter and the bandwidth does not allow estimating the parameter κ simultaneously
with the position parameter µ.
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Figure 5.1: Frogs’ data set and the nonparametric kernel density estimation using two different smoothing

parameters.

κ 1.00 1.74 2.47 3.21 3.95 4.68 5.42 6.16 6.89 7.63

θ̂ 2.544 2.514 2.471 2.439 2.408 2.374 2.338 2.304 2.278 2.258

ĥn 1.113 0.809 0.588 0.522 0.484 0.447 0.409 0.370 0.339 0.313
1% obs. n◦ 14 14 14 14 14 14 13-14 12-14 12-14
5% obs. n◦ 14 14 14 14 14 14 12-14 12-14 11-14 10-14

κ 8.37 9.11 9.84 10.58 11.32 12.05 12.79 13.53 14.26 15.00

θ̂ 2.244 2.234 2.223 2.218 2.212 2.20 2.205 2.203 2.201 2.196

ĥn 0.292 0.274 0.252 0.239 0.226 0.217 0.208 0.204 0.199 0.182
OC0.01 11-14 11-14 10-14 10-14 10-14 10-14 10-14 10-14 10-14 10-14
OC0.05 10-14 10-14 10-14 10-14 10-14 10-14 10-14 10-14 10-14 10-14

Table 5.1: The results for the mean direction and the bandwidth obtained using the minimum distance

estimator based on the L2 distance for different values of the concentration parameters κ. OC0.01 and

OC0.05 denote the set of the number of observations classified as outliers considering confidence coefficients

α = 0.01 and 0.05, respectively. The notation l −m corresponds to numbers from l to m.

5.2 Paleozoic data

The second example corresponds to a data set of 17 measurements of magnetic remanence from
specimens collected from the lower Paleozoic Tumblagooda Sandstone, Western Australia. These
data had been analyzed by Embleton and Giddings (1974) and Ko and Chang (1993). The aim of
the study was to determine the origin of natural remanent magnetization in red beds. Fisher et al.
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(1993) considered a von Mises distribution and detected two observations that can be considered
as atypical values.

If we apply our procedure using a previous estimator of the concentration parameter computed
as in Ko (1992), we obtain the following results µ̂ = (0.3580, 0.7875,−0.5015), κ̂ = 34.6574 and
OC0.01 = OC0.05 = {5, 6, 7}. More precisely, the method applied with confidence coefficients
α = 0.01, 0.05 detects three potential outliers: observations 5, 6 and 7.

Table 5.2 shows the results obtained with estimators that were also computed considering the
von Mises distribution. It is important to note that while a unimodal distribution is a reasonable
assumption, Fisher et al. (1993) concluded that the Fisher distribution may not be an appropriate
model for the remaining 15 observations. However, under the same assumption, we obtained
analogous results to those obtained in Fisher et al. (1993). We also detected another point that
could be an atypical observation. This may reinforce the idea that the von Mises model was
not appropriate. Figure 5.2 shows the data set and the observations classified as atypical points.
Observation numbers 6 and 7 correspond to those also detected also in Fisher et al. (1993).

Figure 5.2: The Paleozoic data (blue dots) and the potential outlier (red numbers).
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κ µ̂ 1% obs. n◦ 5%obs. n◦

11.0000 (0.3539, 0.7696,-0.5315 ) 6
12.7143 (0.3517, 0.7748, -0.5253) 6-7
14.4286 (0.3526, 0.7749, -0.5245) 6-7
16.1429 (0.3533, 0.7753, -0.5235) 6 6-7
17.8571 (0.3538, 0.7759, -0.5222) 6 6-7
19.5714 (0.3665, 0.7796, -0.5079) 6 6-7
21.2857 (0.3660, 0.7801, -0.5074) 6 6-7
23.0000 (0.3653, 0.7809, -0.5068) 6-7 5-7
24.7143 (0.3643, 0.7817, -0.5061) 6-7 5-7
26.4286 (0.3632, 0.7827, -0.5055) 6-7 5-7
28.1429 (0.3620, 0.7837, -0.5047) 6-7 5-7
29.8571 (0.3608, 0.7847, -0.5040) 6-7 5-7
31.5714 (0.3597, 0.7858, -0.5032) 6-7 5-7
33.2857 (0.3588, 0.7868, -0.5023) 6-7 5-7
35.0000 (0.3579, 0.7877, -0.5014) 5-7 5-7

Table 5.2: The results for the mean direction using the minimum distance estimator based on the L2 distance

for each value of the concentration parameter κ. OC0.01 and OC0.05 denote the set of the number of the

observations classified as outliers considering a confidence coefficient α = 0.01 and 0.05, respectively. The

notation l −m corresponds to numbers l to m.

Appendix

Proof of Theorem 1. Since θ̂ is the minimum of D(f̂hn , fθ̂), we have that

0 =
∂

∂θ
D(f̂hn , fθ)|θ̂ = 2

∫
(f̂hn(x)− fθ(x))

∂

∂θ
fθ(x)ωd(dx) (8)

= 2

∫
f̂hn(x)

∂

∂θ
fθ(x)ωd(dx)− 2Eθ(

∂

∂θ
fθ(x)) (9)

= 2
1

n

n∑
i=1

Ψh(xi, θ̂) (10)

(11)

where Ψh(t, θ) = c(hn)
∫
K
(
1−xtt
h2n

)
∂
∂θfθ(x)ωd(dx)− Eθ

(
∂
∂θfθ(x)

)
. On the other hand,∣∣∣∣∣ 1√

n

n∑
i=1

(
Ψh(xi, θ̂)−Ψ(xi, θ̂)

)∣∣∣∣∣ =

∣∣∣∣∣ 1√
n

n∑
i=1

(
c(hn)

∫
K

(
1− xtxi

h2n

)
∂

∂θ
fθ(x)ωd(dx)− ∂

∂θ
fθ(xi)

)∣∣∣∣∣
≤ 1√

n

n∑
i=1

∣∣∣∣c(hn)

∫
K

(
1− xtxi

h2n

)
∂

∂θ
fθ(x)ωd(dx)− ∂

∂θ
fθ(xi)

∣∣∣∣
≤

√
h4nn

1

n

n∑
i=1

∣∣∣∣bφ( ∂

∂θ
fθ,xi

)∣∣∣∣



the last inequality follows from Lemma 1 [30], where

b =

∫∞
0 K(r)rd/2dr∫∞

0 K(r)rd/2−1dr
and φ(g, x) = −xt 5 g(x) + d−1[52g(x)− xt(Hg(x))x]

with 5, 52 and H the gradient, Laplacian and Hessian, respectively are defined in A4. From A7
and (10), we obtain that 1√

n

∑n
i=1 Ψ(xi, θ̂)

a.s.−→ 0 and the proof follows as in Cao, et al. (1995).
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