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We give a multivariate version of Descartes’ rule of signs to bound the number of positive

real roots of a system of polynomial equations in n variables with n+ 2 monomials, in

terms of the sign variation of a sequence associated both to the exponent vectors and

the given coefficients. We show that our bound is sharp and is related to the signature

of the circuit.

1 Introduction

The following well-known rule of signs for univariate polynomials was proposed by

René Descartes in 1637 in “La Géometrie,” an appendix to his “Discours de la Méthode,”

see [14, pp. 96–99]:

Descartes’ rule of signs. Given a univariate real polynomial f (x) = c0 +c1x+· · ·+crxr ,

the number of positive real roots of f (counted with multiplicity) is bounded by the

number of sign variations

sgnvar(c0, . . . , cr)
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2 F. Bihan and A. Dickenstein

in the ordered sequence of the coefficients of f . Moreover, the difference between these

integer numbers is even. �

The integer sgnvar(c0, . . . , cr) ∈ {0, . . . , r} is equal to the number of sign changes

between two consecutive elements, after removing all zero elements. In other words,

sgnvar(c0, . . . , cr) is the number of distinct pairs (i, j) of integers, 0 ≤ i < j ≤ r, which

satisfy ci · cj < 0 and c� = 0 for any integer � with i < � < j.

No general multivariate generalization is known for this simple rule. Itenberg

and Roy gave in 1996 [8] a lower bound for any upper bound on the number of positive

solutions of a sparse system of polynomial equations. They used a construction based

on the associated mixed subdivisions of the Minkowski sum of the Newton polytopes of

the input polynomials, and the signs of the coefficients of the individual polynomials at

the vertices of mixed cells. Recently, the first multivariate generalization of Descartes’

rule in case of at most one positive real root, was stated in Theorem 1.5 of [10]. The

main change of viewpoint in that article is that the number of positive roots of a square

polynomial system (ofn polynomials inn variables) is related to the signs of the maximal

minors of the matrix of exponents and the matrix of coefficients of the system, that is,

to the associated oriented matroids. We take this approach to get a multivariate version

of Descartes’ rule of signs for systems supported on circuits (see Theorem 2.9 below).

We fix an exponent set A = {w0,w1, . . . ,wn+1} ⊂ Zn of cardinality n + 2 and for

any given real matrix C = (ci,j) ∈ Rn×(n+2) we consider the associated sparse multivariate

polynomial system in n variables x = (x1, . . . ,xn) with support A:

fi(x) =
n+1∑
j=0

ci,jx
wj = 0 , i = 1, . . . ,n. (1.1)

We denote by nA(C) the number of real positive solutions of (1.1) counted with

multiplicity.

We solve the following question:

Problem. When nA(C) is finite, find a sharp upper bound in terms of the number of

sign variations of an associated sequence of real numbers. �

Note that nA(C) is a linear invariant of C, since after multiplying C on the left

by an invertible n× n real matrix, the resulting coefficient matrix defines a system with

the same solutions. On the other side, nA(C) is an affine invariant of the configuration

A, since the number of positive solutions is unaltered if we multiply each equation by
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Descartes’ Rule of Signs for Circuits 3

a fixed monomial (so, after translation of A) or if we perform a monomial substitution

of variables by a matrix with non-zero determinant. It is useful to consider the integer

matrix A ∈ Z(n+1)×(n+2):

A =
(

1 . . . 1

w0 . . . wn+1

)
. (1.2)

Thus, nA(C) is also a linear invariant of A.

We make throughout the paper the following natural assumptions. When the

convex hull of A is of dimension smaller than n (or equivalently, when the rank rk(A)

of A is smaller than n + 1), system (1.1) corresponds to an overdetermined system of n

equations in less than n variables, so there are no solutions in general. When the matrix

C does not have rank n, we have a system of at most n − 1 equations in n variables.

Thus, we will then assume that

rk(A) = n+ 1, rk(C) = n. (1.3)

There is a basic necessary condition for the existence of at least one positive

solution of a system of n sparse polynomial equations in n variables with any number

of fixed monomials, in particular for our system (1.1). Let C0, . . . ,Cn+1 ∈ Rn denote the

column vectors of the coefficient matrix C and call

C◦ = R>0C0 + · · · + R>0Cn+1 (1.4)

the positive cone generated by these vectors. Given a solution x ∈ Rn
>0, the vector

(xw0 , . . . ,xwn+1) is positive and so the origin 0 ∈ Rn belongs to C◦. So, necessarily

0 ∈ C◦. (1.5)

Condition (1.5), together with the hypothesis that rk(C) = n in (1.3) is equivalent to

C◦ = Rn. We furthermore give in Proposition 2.13 a necessary and sufficient condition

to have nA(C) < ∞.

Our main result is Theorem 2.9, where we give a bound for nA(C) in case (1.5)

is satisfied and nA(C) is finite. We also prove a congruence modulo 2 as in the classical

Descartes’ rule of signs, see Proposition 2.12. We define an ordering on the column

vectors of the matrix C (Definition 2.5), which is determined, up to total reversal, by the

signs of the maximal minors of C and it is unique up to reversal in the generic case

of a uniform matrix C (i.e., with all non-zero minors). It induces an ordering on the
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4 F. Bihan and A. Dickenstein

configuration A, and the bound for nA(C) provided by Theorem 2.9 is the number of sign

variations of the corresponding ordered sequence of coefficients in any affine relation

of the given exponents A. The main ingredients of our proof are a generalization of

Descartes’ rule of signs for vectors spaces of analytic real-valued functions and the

classical Gale duality in linear algebra. Gale duality allows us to reduce the problem of

boundingnA(C) to the problem of bounding the number of roots of a particular univariate

rational function determined by the system.

We show in Theorem 3.3 that the signature of A (Definition 2.1) gives a bound

for nA(C). For instance, if A consists of the vertices of a simplex plus one interior

point, then our results imply that nA(C) ≤ 2, that is, the number of positive real roots

of system (1.1) cannot exceed 2, in any dimension (see Example 3.4). We also recover

the known upper bound nA(C) ≤ n + 1 obtained in [3, 11], but we show that nA(C) =
n + 1 could only be attained for a particular value of the signature of A and uniform

matrices C.

An important consequence of classical Descartes’ rule of signs is that the number

of real roots of a real univariate polynomial can be bounded in terms of the number of

monomials (with non-zero coefficient), independently of its degree. In the multivariate

case, Khovanskiı̆ [9, Corollary 7] proved the remarkable result that the number of nonde-

generate solutions in Rn of a system of n real polynomial equations can also be bounded

solely in terms of the number of distinct monomials appearing in these equations. In

contrast to Descartes’ rule, Khovanskiı̆’s bound is far from sharp and the known refine-

ments do not depend on the signs of the coefficients or the particular configuration of

the exponents but only on their number (see [13, Chapters 5–6]). Khovanskiı̆’s result, as

well as ours, is also valid for real configurations A.

The paper is organized as follows. We give all the necessary definitions and

state precisely our main results in the next section. In Section 3 we present some

interesting corollaries of these results. Section 4 contains the proofs of Theorems 2.9

and Proposition 2.13. Finally, we show the optimality of our bounds for nA(C) in

Section 5.

2 Orderings and statement of our main result

Let A = {w0,w1, . . . ,wn+1} ⊂ Zn, A ∈ Z(n+1)×(n+2) and C ∈ Rn×(n+2) as in the Introduction.

In particular, we assume that Condition (1.3) are satisfied. For any natural number k,

denote [k] = {0, . . . ,k − 1}. In particular [n+ 2] = {0, . . . ,n+ 1}.
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Descartes’ Rule of Signs for Circuits 5

2.1 The configuration A and the matrix A

The kernel of the matrix A has dimension 1 and can be generated by the following vector

λ ∈ Zn+2. For any � ∈ {0, . . . ,n+ 1}, consider the matrix A(�) ∈ Z(n+1)×(n+1) obtained from

the matrix A in (1.2) by removing the column � and set λ� = (−1)�+1 det(A(�)). The vector

λ gives an affine relation among the elements in A:

n+1∑
�=0

λ� w� = 0 ,
n+1∑
�=0

λ� = 0. (2.1)

Let I ∈ Z>0 be the greatest common divisor of λ0, . . . , λn+1 and set

λ̃i = λi/I , i = 0, . . . ,n+ 1. (2.2)

So, this (non-zero) vector λ̃ gives the unique (up to sign) affine relation among the ele-

ments of A with coprime coefficients. The integer I is the index of the subgroup ZA
generated by the configuration A in Zn. The normalized volume volZ(A) of the config-

uration A with respect to the lattice Zn, is the Euclidean volume of the convex hull of

A multiplied by n! (so that the unit simplex has volume 1). It is well-known that this

normalized volume volZ(A) bounds the number of isolated complex solutions of sys-

tem (1.1). Moreover, we have volZ(A) = ∑
λi>0 λi = −∑λi<0 λi. The number of isolated

(real) positive solutions of system (1.1) is the same if we consider A as a configuration

in ZA or in Zn. Indeed, we may choose a basis (v1, . . . ,vn) for ZA, and see the equa-

tions (1.1) as a system depending on new variables yi = xvi . The normalized volume of

our configuration with respect to ZA is defined as

volZA(A) = volZ(A)/I . (2.3)

So when nA(C) is finite, we have the bound

nA(C) ≤ volZA(A) =
∑
λi>0

λ̃i = −
∑
λi<0

λ̃i. (2.4)

The configuration A is said to be a circuit if λj �= 0 for all j in {0, 1, . . . ,n+ 1}, or

equivalently, if any subset of n + 1 points in A is affinely independent (i.e., its convex

hull has dimension n). In fact, we can always reduce our problem to this case, as we

now explain. In general, A is an (n − m)-pyramid over a circuit of affine dimension m

(with 1 ≤ m ≤ n) given by the subconfiguration A′ of A of m + 2 vectors with indices

corresponding to non-zero λj. Without loss of generality, assume A′ = {w0, . . . ,wm+1}, so
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6 F. Bihan and A. Dickenstein

that λj �= 0 for j = 0, . . . ,m + 1 and λj = 0 for any j > m + 1. Then, either we can find a

system equivalent to (1.1) of the form:

fi(x) =
m+1∑
j=0

c′
i,jx

wj = 0, i = 1, . . . ,m,

fi(x) =
m+1∑
j=0

c′
i,jx

wj + xwi+1 = 0, i = m+ 1, . . . ,n,

or system (1.1) has either 0 or an infinite number of solutions. In case we can find an

equivalent system as above, the firstm equations define essentially a square system ofm

equations inm variables. A positive solution of this smaller system does not necessarily

extend to a positive solution x ∈ Rn
>0, but if such extension exists, it is unique. So, in

this case nA(C) is bounded by nA′(C ′), where C ′ ∈ Rm×(m+2) is the coefficient matrix of the

first m equations. Therefore, to simplify the notation, we will assume in what follows

that m = n, that is, that A is a circuit. If A is not a circuit, n has to be replaced by m in

general in the statements.

We will need the following definition.

Definition 2.1. Given a circuit A = {w0, . . . ,wn+1} ⊂ Zn, and a non-zero affine relation

λ ∈ Zn+2 among the wj. We call ℵ+ = {j ∈ [n + 2] : λj > 0}, ℵ− = {j ∈ [n + 2] : λj < 0},
and we denote by a+ (respectively, a−) the cardinality of ℵ+ (respectively, ℵ−). The pair

{a+,a−} is usually called the signature of A. It is unordered but it may consist of a

repeated value. For notational convenience, we will denote by

σ(A) = min{a+,a−}. (2.5)

�

As
∑

j λj = 0, both a+,a− ≥ 1.

2.2 The matrix C

Given i, j ∈ [n + 2], i �= j, we call C(i) the submatrix of C with columns indexed by

the indices in [n + 2] \ {i}, and by C(i, j) the submatrix of C with columns indexed by

[n+ 2] \ {i, j} (in the same order). We are not assuming that i < j, but only that they are

different.

Our first lemma points out some easy consequences of Condition (1.5). This

condition means that there is a positive vector in the kernel of the coefficient matrix.
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Descartes’ Rule of Signs for Circuits 7

Lemma 2.2. Let C ∈ Rn×(n+2) be a matrix of rank n which satisfies (1.5). Then, the

following assertions hold

(i) C is not a pyramid, that is, rk(C(i)) = n for any i ∈ [n+ 2].
(ii) For any index j1 ∈ [n + 2], there exists another index j2 such that

rk(C( j1, j2)) =n.

(iii) Assume j1 �= j2 and rk(C( j1, j2)) = n. Then, for any other index i, either

rk(C( j1, i)) = n or rk(C( j2, i)) = n. �

Proof. Assume rk(C(i)) < n for some index i. This means that the column vectors Cj, j �=
i lie in a proper subspace. Therefore, we can multiply C by an invertible matrix on the

left, to get a matrix C ′ with ith column equal to the ith canonical vector ei while the

ith coordinate of all other columns is equal to 0. So, any vector in Ker(C ′) has its ith

coordinate equal to 0. But Ker(C) = Ker(C ′) and this contradicts (1.5), proving (i).

Given an index j1, as the rank of C( j1) is n by (i), it has a square submatrix of

rank n. Any such submatrix is of the form C( j1, j2) for an index j1 �= j2. This proves (ii).

Assume now that the matrix C( j1, j2) has rank n. We can multiply C on the left

by C( j1, j2)−1 and the resulting matrix C ′ will have an identity matrix in the columns

different from j1, j2. For each i = 1, . . . ,n, the ith entry of the column C ′
j1

(respectively, C ′
j2

)

equals ± det(C ′( j2, i)) (respectively, ± det(C ′( j1, i)). If both det(C ′( j1, i)) = det(C ′( j2, i)) =
0, we deduce that C ′ is a pyramid, which contradicts item (i). �

We now translate condition (1.5) to theGale dual setting. Given a full rank matrix

C ∈ Rn×(n+c+1), let B ∈ R(n+c+1)×(c+1) be a matrix whose columns generate Ker(C) and denote

by P0, . . . ,Pn+c ∈ Rc+1 its row vectors. The configurations of column vectors of C and row

vectors of B are said to be Gale dual. The following lemma is well-known.

Lemma 2.3. Let C0, . . . ,Cn+c and P0, . . . ,Pn+c be Gale dual configurations. Then, 0 lies in

the open positive cone C◦ generated by C0, . . . ,Cn+c if and only if the vectors P0, . . . ,Pn+c
lie in an open halfspace through the origin. �

Proof. Any vector u in the kernel of C is of the form Bμ, with μ in Rc+1. Thus,

ui = 〈Pi, μ〉, i = 0, . . . ,n+ c.

As we remarked, the condition on the columns of C means that there is a positive vector

u in the kernel of the matrix C, and this is clearly equivalent to the fact that the row

vectors Pi lie in the positive halfspace defined by μ, which proves the lemma. �
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8 F. Bihan and A. Dickenstein

Remark 2.4. Given a full rank matrix C ∈ Rn×(n+c+1) which satisfies (1.5) and P0, . . . ,Pn+c
a Gale dual of C. Lemma 2.3 asserts that the cone CP = R>0P0 + · · · + R>0Pn+c is strictly

convex. Therefore its cone Cν
P (consisting of those vectors μ ∈ Rc+1 with 〈Pi, μ〉 > 0 for

any i ∈ [n+ c]) is a nonempty full dimensional open convex cone.

When c = 1, Cν
P ⊂ R2 is a nonempty two-dimensional open convex cone. Then,

{y ∈ R : (1,y) ∈ Cν
P} and {y ∈ R : (−1,y) ∈ Cν

P} are open intervals in R (possibly empty

or infinite) and at least one of them is nonempty. Up to replacing the first column of the

matrix B by its opposite, we will assume that

�P = {y ∈ R : (1,y) ∈ Cν
P} �= ∅. (2.6)

�

Definition 2.5. Let C ∈ Rn×(n+2) be a full rank matrix. An ordering of C is a bijection

α : [n+2] → [n+2] which verifies that for any choice of Gale dual vectors P0, . . . ,Pn+1 ∈ R2,

there exists ε ∈ {1, −1} such that

ε det(Pαi
,Pαj

) ≥ 0, for any i < j. �

We then have:

Proposition 2.6. Let C ∈ Rn×(n+2) be a full rank matrix satisfying (1.5). Then, there exists

an ordering α of C. �

Proof. Let P ′
0, . . . ,P ′

n+1 be any choice of Gale dual of C. We know by Lemma 2.3 that the

planar vectors P ′
0, . . . ,P ′

n+1 lie in an open halfspace through the origin. We can thus order

them according to their arguments, that is, we can find a bijection α : [n+ 2] → [n+ 2]
which verifies that

det(P ′
αi

,P ′
αj

) ≥ 0, for any i < j. (2.7)

It remains to prove that one of the two sign conditions in Definition 2.5 holds for any

other choice of Gale dual configuration P0, . . . ,Pn+1. But if B (respectively, B′) denotes the

(n+ 2) × 2 matrix with rows pi (respectively, p′
i), the columns of B (respectively, B′) give

a basis of Ker(C). Then, there is an invertible matrix M ∈ R2×2 such that B′ ·M = B. Then,

Bt = MtB′t, and thus each vector Pi equals the image of the vector P ′
i by the invertible

linear map with matrix Mt in the canonical bases. Then, if det(Mt) > 0,

det(Pαi
,Pαj

) ≥ 0, for any i < j,
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Descartes’ Rule of Signs for Circuits 9

and if det(Mt) < 0, we have that

det(Pαi
,Pαj

) ≤ 0, for any i < j,

as wanted. �

We can translate an ordering α on the Gale dual vectors of C to sign conditions

on the maximal minors of C. We first recall the following well-known result (stated as

Lemma 2.10 in [10], together with several references). Let C ∈ Rn×(n+2),B ∈ R(n+2)×2 be

full-rank matrices with im(B) = ker(C), so that the column vectors of C and the row

vectors P0, . . .Pn+1 of B are Gale dual configurations. Then, there exists a non-zero real

number δ such that

δ det(C( j1, j2)) = (−1)j1+j2 det(Pj1 ,Pj2), (2.8)

for all subsets J = {j1, j2} ⊆ [n + 2] of cardinality 2 such that j1 < j2. We immediately

deduce:

Proposition 2.7. Let C ∈ Rn×(n+2) be a full rank matrix satisfying (1.5). A bijection α :

[n+ 2] → [n+ 2] is an ordering for C if and only if there exists ε ∈ {1, −1} such that

ε (−1)αi+αj · det(C(αi, αj)) · αj − αi

j − i
≥ 0,

for any distinct i, j ∈ [n+ 2]. �

2.3 The main result

Let A and C be matrices as in the Introduction which satisfy (1.3) and (1.5). We choose

a subset K ⊂ [n + 2] maximal (under containment) such that det(C(i, j)) �= 0 for any

distinct i, j ∈ K. Denote by k ≥ 2 the cardinality of K. Let α be an ordering for C. Denote

by ᾱ the bijection [k] → K which is deduced from α. Thus, det(Pᾱi
,Pᾱj

) > 0 for any i < j

in [k], or det(Pᾱi
,Pᾱj

) < 0 for any i < j in [k].
We furthermore denote for any j ∈ [k]

Kj = {� ∈ [n+ 2] : � = ᾱj or det(C(ᾱj, �)) = 0}. (2.9)

Thus, we get a partition �j∈[k]Kj = [n+ 2] by the maximality of K and Lemma 2.2.
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10 F. Bihan and A. Dickenstein

We define now the following linear forms in the signed minors λj of the

matrix A:

λ̄j =
∑
�∈Kj

λ� =
∑
�∈Kj

(−1)�+1 det(A(�)), j ∈ [k]. (2.10)

This set of k linear forms is independent of the choice of subset K. Observe also that

k = n + 2 (i.e., K = [n + 2]) if and only if all maximal minors of C are non-zero, that is,

if C is uniform. The definition of λ̄j, j = 0, . . . ,k − 1, will be clear in display (4.5).

Moreover, we define the (ordered) sequence:

sα = (λ̄0, . . . , λ̄k−1). (2.11)

Remark 2.8. The partition K1, . . . ,Kk of [n+ 2] does not depend on the choice of α nor

the choice ofK. In fact, the subsetsKj are in bijection with the equivalence classes of the

following relation on the Gale dual vectors: Pj and P� are equivalent if they are linearly

dependent (and they lie in the same ray through the origin). The ordering α is unique up

to reordering the elements in each Kj (and up to complete reversal); in particular, it is

unique up to reversal when C is uniform. Thus, K gives a choice of one representative

in each class, picked up by the restricted map ᾱ, which moreover gives an ordering on

the rays containing some Pj according to their angle. So, up to complete reversal, sα only

depends on the matrix C. �

Recall that volZA(A) denotes the normalized volume defined in (2.3). We are ready

to state our main result:

Theorem 2.9. Let A = {w0,w1, . . . ,wn+1} ⊂ Zn, A ∈ Z(n+1)×(n+2) and C ∈ Rn×(n+2) satisfy-

ing (1.3) and (1.5). Let α be an ordering for C, and let K, |K| = k ≤ n + 2, and the linear

forms λ̄j, j ∈ [k], be as above.

Then, if nA(C) is finite,

nA(C) ≤ sgnvar(sα), (2.12)

where sα is the ordered sequence of linear forms in the maximal minors of A defined

in (2.11). Moreover,

nA(C) ≤ min{sgnvar(sα), volZA(A)}. (2.13)

�
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Descartes’ Rule of Signs for Circuits 11

At a first glance, one might think that the right member of (2.12) depends only on

the exponent vectors A, but this is not the case since the bijection α is determined by the

coefficient matrix C. This is in a sense dual to the statement of the classical Descartes’

rule of signs for univariate polynomials with respect to a monomial basis, where the

exponents determine the ordering, while the sign variation is about the coefficients.

Interestingly enough, we also get a congruence modulo 2 as in the classical Descartes’

rule of signs.

Example 2.10. In case n = 1, Theorem 2.9 is of course equivalent to the classical

Descartes’ rule of signs applied to trinomials in one variable. Given f (x) = c0xw0+c1xw1+
c2xw2 ∈ R[x] a trinomial in one variable, where w0 < w1 < w2, nA(C) is the number of

positive roots of f (counted with multiplicity). In any affine relation λ0 w0+λ1 w1+λ2 w2 =
0, the coefficients λ0 and λ2 have the same sign, which is opposite to that of λ1. Always

volZA(A) ≥ 2 = n+1. Assume c0, c1, c2 �= 0. A Gale dual of the coefficient matrix C is given

by the vectors P0 = (c1, c2),P1 = (−c0, 0),P2 = (0, −c0). Considering the possible signs of

the coefficients and the corresponding ordering α : [3] → [3], it is straightforward to

check that sgnvar(sα) = sgnvar(c0, c1, c2), which is the classical Descartes’ bound. The

comparison is immediate if some ci = 0. �

Example 2.11. Given any n, we may translate A and assume that w0 = (0, . . . , 0). In

case A has cardinality n + 2,Theorem 1.5 in [10] asserts the following: if det (A( j)) ·
det (C(0, j)) ≥ 0 for j = 1, . . . ,n + 1 and at least one of the inequalities det (A( j)) ·
det (C(0, j)) �= 0 holds, then nA(C) ≤ 1.

We can assume that C has maximal rank and satisfies condition (1.5), since other-

wise nA(C) = 0, and that A is a circuit, that is, λj = (−1)j det(A( j)) �= 0 for all j. Consider

the vector

B0 = (0, − det(C(0, 1)), det(C(0, 2)), . . . , (−1)n+1 det(C(0,n+ 1))t

in ker(C). Take a choice of Gale dual P0, . . . ,Pn+1 of C for which the coefficients of B0 give

the second coordinates of the Pj and let α be an ordering of C. As the vectors Pj lie in an

open halfspace, α will indicate first all indices j with B0
j < 0, then j = 0 and then those

with B0
j > 0, if any (or just the opposite). Assume first that all pairs Pi,Pj are linearly

independent. It follows that for each j ≥ 1, B0
j is non-zero and has the same sign as the

coefficient λj. When we consider the sign variation sgnvar(sα) we will be then taking

the sign variation of those coefficients λj which are negative, and then those which are

positive, if any. It follows that sgnvar(sα) ≤ 1 and we get nA(C) ≤ 1 via Theorem 2.9.
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12 F. Bihan and A. Dickenstein

When Pj,P� are linearly dependent, as the Gale configuration lies in an open halfspace,

we deduce that B0
j has the same sign as B0

� . So, when we compute the linear forms λ̄j we

add numbers with this same sign and therefore we also get that our bound (2.13) reads

nA(C) ≤ 1. �

In order to state a sufficient condition for the sign variation of the sequence

sα and nA(C) to have the same parity, we introduce the following property on the con-

figuration A. We say that A has a Cayley structure if A is contained in two parallel

hyperplanes. This is equivalent to the fact that there exists a non-zero vector with

0, 1 entries other than the all-one vector (1, . . . , 1) which lies in the Q-row span of the

matrix A.

Proposition 2.12. With our previous assumptions about A and C and our previous

notations, assume moreover that both λ̄0, λ̄k−1 are different from 0. Then, the difference

sgnvar(sα) − nA(C) in (2.12) is an even integer number. Thus, nA(C) > 0 if sgnvar(sα)

is odd.

In particular, the difference is even for any C when A does not have a Cayley

structure, and it is even for any A when C is uniform. �

We now state the following general result, which gives a necessary and sufficient

condition for nA(C) to be finite as required in the statement of Theorem 2.9.

Proposition 2.13. LetA,C of maximal rank. Assume nA(C) > 0 and let d = (d0, . . . ,dn+1)

be a non-zero vector in ker(C). Let α be an ordering of C. Then nA(C) is finite if and only

if there exists r ∈ [k] such that dᾱr · λ̄r �= 0. �

The proofs of Theorem 2.9, Propositions 2.12 and 2.13 will be given in Section 4.

3 Bounds and signature of the circuit

Along this section, we keep the previous notations. In particular, we have a configuration

A ⊂ Zn, A ∈ Z(n+1)×(n+2) and C ∈ Rn×(n+2) as in the Introduction. We assume that A,C

satisfy (1.3) and the necessary condition (1.5). Let α be an ordering for C.

The first consequence of Theorem 2.9 is the following.
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Descartes’ Rule of Signs for Circuits 13

Corollary 3.1. Let k be the cardinality of a maximal subsetK ⊂ [n+2] with det(C(i, j)) �=
0 for any distinct i, j ∈ K. Then

nA(C) ≤ k − 1. (3.1)

�

This follows immediately from (2.12), since sα is a sequence of length k and so

its sign variation can be at most equal to k − 1.

Remark 3.2. In case that one of the columns of C is identically zero, we have in fact a

system with support on a simplex. If, for instance, C0 = 0, then the vector (1, 0, . . . , 0) lies

in Ker(C), and so any Gale dual configuration satisfies that P0 is linearly independent of

the other Pi, which all have first coordinate equal to 0 and are thus linearly dependent.

It follows that k = 2 and we deduce from Corollary 3.1 that if nA(C) is finite, there is

at most a single positive solution. As we are assuming that rk(C) = n and it is not a

pyramid, there cannot be two zero columns. �

We will now give upper bounds for nA(C) for any C for which it is finite, only

in terms of the combinatorics of the points in the configuration A. Interestingly, we can

also deduce from Theorem 2.9 necessary conditions to achieve the bound nA(C) = n+ 1.

Theorem 3.3. Let A and C as in the statement of Theorem 2.9 with nA(C) < ∞. If A has

signature {a+,a−} ,

nA(C) ≤
{

2σ(A) if a+ �= a−
2σ(A) − 1 if a+ = a−.

(3.2)

Moreover, if nA(C) = n+1, then C is uniform and the support A is a circuit with maximal

signature

{⌊
n+ 2

2

⌋
,n+ 2 −

⌊
n+ 2

2

⌋}
, (3.3)

that is, there are essentially the same number of positive and negative coefficients λj. �

Proof. Let α be a bijection certifying the ordering property for C and letK be a maximal

subset as before, with cardinal k ≤ n+2. By Theorem 2.9, we have that nA(C) is bounded

by sgnvar(λ̄0, . . . , λ̄k−1).
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14 F. Bihan and A. Dickenstein

For any j ∈ [k], if the value of λ̄j is non-negative (respectively, nonpositive) then

Kj ∩ ℵ+ �= ∅ (respectively, Kj ∩ ℵ− �= ∅). Therefore, the number n+ of positive (respec-

tively, n− of negative) terms in the sequence (λ̄0, . . . , λ̄k−1) is at most a+ (respectively,

a−). So its sign variation is at most 2 min{n+,n−} ≤ 2σ(A). In case a+ = a− = σ(A)

and min{n+,n−} < σ(A), clearly 2 min{n+,n−} < 2σ(A) − 1. If min{n+,n−} = σ(A), then

n+ = n− = σ(A) and then sgnvar(λ̄0, . . . , λ̄k−1) ≤ 2σ(A) − 1, which concludes the proof of

the inequalities.

In case nA(C) = n+ 1, we deduce that n+ 1 ≤ 2σ(A) or moreover that n+ 1 ≤ 2σ

(A) − 1 in case a+ = a−. As a+ + a− = n+ 2, it is easy to see that the signature of A is as

in (3.3). In this case, we get for n even that a+ = a− = n+2
2 and so n + 1 = 2n+2

2 − 1, and

for n odd we get that the signature of A equals {n+1
2 , n+3

2 } and so n+ 1 = 2n+1
2 . Thus, we

get equality in (3.2), and so nA(C) = n+ 1 = sgnvar(λ̄0, . . . , λ̄k−1), from which we deduce

that k = n+ 2 and therefore C is uniform. �

In the case of two variables, Theorem 3.3 asserts in particular that when nA(C) is

finite, it is at most 3 when the four points in A are vertices of a quadrilateral and it is at

most 2 if one lies in the convex hull of the others. This result was independently proven

by Forsgård in [7], as a consequence of his study of coamoebas of fewnomials. As we

stated in the Introduction, we have the following corollary for any number of variables.

Corollary 3.4. Let A and C as in the statement of Theorem 2.9 with nA(C) < ∞. If A
consists of the vertices of a simplex plus one interior point then nA(C) ≤ 2. �

Indeed, if a configuration A consists of the vertices of a simplex plus one interior

point (in any dimension n), its signature equals {1,n+ 1} and so σ(A) = 1. Theorem 3.3

ensures that nA(C) ≤ 2.

4 Proof of Theorem 2.9

We first need to recall a generalization of Descartes’ rule of signs in the univariate case

and apply it in our case via the notion of ordering in Section 4.1. Then, we complete the

proof of our main Theorem 2.9 in Section 4.2, which expands some basic facts in [1–3].

4.1 A univariate generalization of Descartes’ rule of signs and orderings

Descartes’ rule of signs concerns polynomials, that is, analytic functions of a single

variable that can be written as real linear combinations of monomials with integer
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Descartes’ Rule of Signs for Circuits 15

exponents. In fact, the same result holds for monomials with real exponents, which can

be evaluated on R>0. We recall the generalization of univariate Descartes’ rule for vector

spaces generated by different choices of analytic functions in [12] and we then use it for

our system in a Gale dual formulation.

Definition 4.1. A sequence (h1,h2, . . . ,hs) of real valued analytic functions defined on

an open interval � ⊂ R satisfies Descartes’ rule of signs on � if for any sequence a =
(a1,a2 . . . ,as) of real numbers, the number of roots of a1h1 +a2h2 +· · ·+ashs in � counted

with multiplicity never exceeds sgnvar(a). �

The classical Descartes’ rule of signs asserts that monomial bases (1,y, . . . ,ys−1)

satisfy Descartes’ rule of signs on the open interval (0, +∞). We note that if (h1,h2 . . . ,hs)

satisfies Descartes’ rule of signs on �, then the same holds true for the sequence

(hs,hs−1, . . . ,h1).

Recall that the Wronskian of h1, . . . ,hs is the following determinant

W(h1, . . . ,hs) = det

⎛
⎜⎜⎜⎜⎜⎝

h1 h2 . . . hs

h′
1 h′

2 . . . h′
s

...
... . . .

...

h(s−1)

1 h(s−1)

2 . . . h(s−1)
s

⎞
⎟⎟⎟⎟⎟⎠ .

(The (i, j) coefficient is the (i − 1)-th derivative of hj.) A well-known result asserts that

h1, . . . ,hs are linearly dependent if and only if their Wronskian is identically zero.

The following result is proven in [12], part 5, items 87 and 90:

Proposition 4.2 ([12]). A sequence of functions h1, . . . ,hs satisfies Descartes’ rule of

signs on � ⊂ R if and only if for any collection of integers 1 ≤ j1 < j2 · · · < j� ≤ s we have

W(hj1 , . . . ,hj� ) �= 0, (1)

and for any collections of integers 1 ≤ j1 < j2 · · · < j� ≤ k and 1 ≤ j′1 < j′2 · · · < j′� ≤ k of

the same size, we have

W(hj1 , . . . ,hj� ) ·W(hj′1 , . . . ,hj′
�
) > 0. (2) �

In particular, if a sequence of analytic functions h1, . . . ,hs satisfies Descartes’

rule of signs on � ⊂ R, then h1, . . . ,hs do not vanish, have the same sign on 
 and no two

of them are proportional.
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16 F. Bihan and A. Dickenstein

We now apply Proposition 4.2 to the Gale dual of a coefficient matrix C ∈ Rn×(n+2)

of rank n satisfying the necessary condition (1.5). We keep the notations and definitions

of Section 2. Let C ∈ Rn×(n+2) be a full rank matrix satisfying (1.5) and α : [n+2] → [n+2]
an ordering of C; moreover, let K be as in Section 2.3 and let ᾱ : [k] → K be the restricted

ordering. Given a Gale dual configuration P0, . . . ,Pn+1 of C, let �P the nonempty open set

defined in Remark 2.4. Consider the associated linear functions

pj(y) = 〈Pj, (1,y)〉. (4.1)

Then, pj are positive functions on �P for any j ∈ [n+ 2].

Proposition 4.3. With the previous hypotheses and notations, the collection of non-zero

rational functions (1/pᾱ0 , 1/pᾱ1 , . . . , 1/pᾱk−1
) satisfies Descartes’ rule of signs on �P . �

Proof. We need to check the hypotheses of Proposition 4.2. For simplicity, we only

compute the Wronskian of 1/p1, 1/p2, . . . , 1/p�. Recall that pj(y) = Pj,1 + Pj,2y and denote

by γ� the product

γ� =
�∏

i=1

(−1)i−1(i− 1)!.

We have

(1/pj)
(i−1) = (−1)i−1(i− 1)! · P

i−1
j,2

pij
,

and thus by the computation of a Vandermonde determinant we get

W
(

1
p1

, 1
p2

, . . . , 1
p�

)
= γ� · 1

p1···p�
· det

((
Pj,2
pj

)i−1
)

1≤i,j≤�

= γ� · 1
p1···p�

·∏1≤r1<r2≤�

(
Pr2,2

pr2
− Pr1,2

pr1

)
.

Moreover, for any i, j ∈ [k], j < i

Pᾱi,2

pᾱi

− Pᾱj ,2

pᾱj

= 1

pᾱi
pᾱj

· det(Pᾱj
,Pᾱi

) > 0 on �P

(or
Pᾱi ,2

pᾱi
− Pᾱj ,2

pᾱj
< 0 on �P for any i, j ∈ [k], j < i). Therefore, we verify condition (1) in

Proposition 4.2 that no Wronskian of distinct functions taken among 1/pᾱi
for i ∈ [k]
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Descartes’ Rule of Signs for Circuits 17

vanishes, and moreover, the sign of the Wronskian only depends on the number � of

functions we are considering. This implies condition (2) in Proposition 4.2. �

4.2 The proof of Theorem 2.9

We start with a basic result we will need about sign variations.

Lemma 4.4. Let s = (c0, c1, . . . , ck−1) be a sequence of real numbers such that the sign

variation sgnvar(s) is non-zero. Then sgnvar(s) is the minimum of the quantities sq,q ∈
[k], defined by

s0 = 1 + sgnvar(c1, . . . , ck−1), sk−1 = 1 + sgnvar(−c0, . . . , −ck−2),

and sq = 1 + sgnvar(−c0, . . . , −cq−1, cq+1, . . . , ck−1) , q = 1, . . . ,k − 2. �

Proof. For any q ∈ [k], we easily have sgnvar(s) ≤ sq. Assume that the sign variation

sgnvar(s) is not the minimum of these quantities sq. Then sq − sgnvar(s) > 0 for any q ∈
[k]. But sq−sgnvar(s) is equal to 1−sgnvar(c0, c1) for q = 0, to 1−sgnvar(cq−1, cq, cq+1) for

1 ≤ q ≤ k−2 and to 1−sgnvar(ck−2, ck−1) for q = k−1. It follows that if sq−sgnvar(s) > 0

for all q ∈ [k], then sgnvar(s) = 0. �

Let C be a coefficient matrix of maximal rank satisfying condition (1.5). As we

saw in item (ii) of Lemma 2.2, for any given j1 ∈ [n+ 2] there exists j2 ∈ [n+ 2] \ {j1} such

that det(C( j1, j2)) �= 0. Indeed, for any pair of distinct indices i, j ∈ [k], det(C(ᾱi, ᾱj)) �= 0.

We will understand that det(C(ᾱi, ᾱi)) = 0. We define for each i ∈ [k] the column vector

Bi with �th coordinate equal to

Bi� =
{

(−1)� det(C(ᾱi, �)), � ∈ [n+ 2], ᾱi ≤ �

(−1)�+1 det(C(ᾱi, �)), � ∈ [n+ 2], ᾱi > �.
(4.2)

Then Bi ∈ ker(C) for any i ∈ [k], and for any pair of different indices i, j ∈ [k], the vectors

Bi,Bj span ker(C). Moreover, assume that ᾱi < ᾱj and consider the basis of ker(C) given

by the vectors:

Pi = (−1)ᾱj det(C(ᾱi, ᾱj))
−1Bi,Pj = (−1)1+ᾱi det(C(ᾱi, ᾱj))

−1Bj.

Then, Piᾱi = Pjᾱj = 0 and Piᾱj = Pjᾱi = 1. If ᾱi > ᾱj we consider the basis given by the

opposite vectors so that the same conclusions hold.

We are now ready to present the proof of our main result.
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18 F. Bihan and A. Dickenstein

Proof of Theorem 2.9. Let A = {w0, . . . ,wn+1}, A, C, K and an ordering α of C as in the

statement of Theorem 2.9. We can assume that nA(C) > 0, since otherwise the bound is

obvious.

Fix any i ∈ [k] and pick any other index j ∈ [k]. Let Bji ∈ R(n+2)×2 be the rank

2 matrix with columns Pj,Pi in this order. The Gale dual vectors P0, . . . ,Pn read in the

rows of Bji satisfy that Pᾱi
= (1, 0), Pᾱj

= (0, 1). Thus, x ∈ Rn
>0 is a solution of (1.1) if and

only if there exists μ ∈ Cν
P (defined in Remark 2.4) such that (xw0 , . . . ,xwn+1)t = Bjiμt, or

equivalently: μ1 = xwᾱi , μ2 = x
wᾱj , and

xw� = P�,1x
wᾱi + P�,2x

wᾱj , for all � ∈ [n+ 2]. (4.3)

In particular, both coordinates μ1, μ2 �= 0 and the open set �P ⊂ R (defined in equation

(2.6)) is a nonempty interval. Up to a translation of the configuration A, we can assume

without loss of generality that wᾱi
= 0. Then, μ1 = 1. Consider the function g : �P → R

defined by

g(y) =
∏

�∈[n+2]
p�(y)λ̃� , (4.4)

where λ̃� are the coefficients of the coprime affine relation among the w� defined in (2.2)

and the linear functions pj are as in (4.1). Then, x is a positive solution of (1.1) if and

only if y= x
wᾱj ∈ �P satisfies g(y) = 1. Moreover, this bijection x �→ y = x

wᾱj between

positive solutions of (1.1) and solutions of g(y) = 1 in �P preserves the multiplicities [5].

Thus, to bound nA(C) we then have to bound the number of solutions of g = 1 over the

interval �P counted with multiplicities. As we assume that nA(C) is finite, we get that

g �≡ 1.

The logarithmG = log(g) is well defined over �P and for any y ∈ �P , and g(y) = 1

if and only if G(y) = ∑
�∈[n+2] λ̃� log(p�(y)) = 0. Remark that g(y) = 1 if and only if y is a

root of the polynomial

∏
λ̃�>0

p�(y)λ̃� −
∏
λ̃�<0

p�(y)−λ̃� ,

which is non-zero because g �≡ 1 and has degree bounded by volZA(A). Recall the parti-

tion of [n+ 2] defined in (2.9). For any r ∈ [k], an index � ∈ Kr if and only if there exists

a positive constant γ�r such that P� = γ�rPᾱr . The derivative of G over �P equals

G′(y) =
∑

�∈[n+2]
λ̃�

P�,2

p�(y)
= 1

I

∑
r∈[k]

λ̄r
Pᾱr ,2

pᾱr (y)
. (4.5)
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Descartes’ Rule of Signs for Circuits 19

Thus,

G′(y) = 0 if and only if
∑
r∈[k]

λ̄rPᾱr ,2

pᾱr (y)
= 0.

Now, we can use Proposition 4.3 to deduce that the number of roots of G′ on �P counted

with multiplicities is at most

si = sgnvar(Pᾱ0,2 λ̄0, . . . ,Pᾱk−1,2 λ̄k−1).

Rolle’s theorem leads to the bound si + 1 for the number of roots of g contained in �P

counted with multiplicities, and thus to this bound for the number nA(C). For any r ∈ [k],

Pᾱr ,2 = (−1)ᾱr+ᾱjδi,j,r det(C(ᾱr , ᾱi)) det(C(ᾱj, ᾱi))
−1,

where δi,j,r = 1 if (ᾱj − ᾱi)(ᾱr − ᾱi) > 0 and δi,j,r = −1 otherwise. Thus, as suggested by

the notation, the number si does not depend on j. So we get in fact k Descartes’ rule of

signs given by the choice of i in [k]. Recall that Pᾱi
= (1, 0). Thus Pᾱr ,2 = det(Pᾱi

,Pᾱr ) for

any r ∈ [k]. Since α is an ordering, we get either Pᾱr ,2 < 0 for any r < ᾱi and Pᾱr ,2 > 0 for

any r > ᾱi, or Pᾱr ,2 > 0 for any r < ᾱi and Pᾱr ,2 < 0 for any r > ᾱi. Therefore,

si = sgnvar(−λ̄0, . . . , −λ̄i−1, λ̄i+1, . . . , λ̄k−1) i = 1, . . . ,k − 2,

s0 = sgnvar(λ̄1, . . . , λ̄k−1) and sk−1 = sgnvar(−λ̄0, . . . , −λ̄k−2). So we are in the hypotheses

of Lemma 4.4. Then, we can combine the k obtained bounds to get our bound (2.13). �

Proof of Proposition 2.12. We use the notations in the proof of Theorem 2.9. We may

rewrite the function g : �P → R considered in (4.4) as

g(y) = c ·
∏
r∈[k]

pᾱr (y)λ̄r ,

where c is some positive constant. We already saw that nA(C) is the number of solutions

of g = 1 over the interval �P counted with multiplicities.

Given the ordering α, the cone CP in Remark 2.4 equals

CP = R>0Pᾱ0 + R>0Pᾱk−1
. (4.6)

As (1, 0), (0, 1) belong to the chosen Gale dual of C, the dual cone Cν
P is contained in the

first quadrant. Then, the open interval �P is bounded unless Pᾱ0 = (1, 0), in which case
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20 F. Bihan and A. Dickenstein

pᾱ0 equals the constant function 1. The endpoints a and b of �P are the roots of pᾱ0 and

pᾱk−1
(where ∞ is considered as the root of the constant 1). We get that nA(C) is even or

odd according to whether the signs of g− 1 for y ∈ �P close to a and b, respectively, are

the same or are different. As we are assuming that both λ̄0, λ̄k−1 �= 0, it follows from (4.6)

that the signs of g−1 near a,b are minus those of λ̄k−1 and λ̄0, so that nA(C) and the sign

variation of the pair sgnvar(λ̄0, λ̄k−1) are congruent modulo 2. It remains to note that

sgnvar(λ̄0, λ̄k−1) and the sign variation of the whole sequence signvar(sα) are congruent

modulo 2.

In case A does not have a Cayley structure, no proper subsum of the entries λi

can be zero, in particular we have that λ̄0, λ̄k−1 �= 0. On the other side, if C is uniform,

then k = n+ 2 and each coefficient λ̄j is equal to one of the coefficients λi, which we are

assuming that are all nonvanishing. �

Remark 4.5. The proof of Proposition 2.12 makes clear why the hypotheses we made

are needed. In fact, the result is not true in general if one of λ̄0 or λ̄k−1 equals 0. Consider,

for example, any n ≥ 3 and λ = (λ0, . . . , λn−2, 1, −2, 1). Then λ0 + · · · + λn−2 = 0 (since the

sum of the coordinates of λ is equal to zero), so that A has a Cayley structure. Let C have

the following Gale dual: P0 = P1 = · · · = Pn−2 = (1, 0), Pn−1 = (3, 21/8), Pn = (1, 1), and

Pn+1 = (0, 1). Then, we get that k = 4, ᾱ(0) = 0, ᾱ(1) = n − 1, ᾱ(2) = n, ᾱ(3) = n + 1, and

λ̄0 = 0, λ̄1 = 1, λ̄2 = −2, λ̄3 = 1. Therefore the function g in (4.4) equals

g = 3y(1 + 7/8y)

(1 + y)2
.

In our case, the cone CP in (4.6) and its dual cone equal the first quadrant and so �P =
(0, ∞). For any y > 0, g(y) = 1 precisely when y(3+21/8y)−(1+y)2 = 13/8y2 +y−1 = 0,

which has only one positive root, while on the other side, signvar(λ̄0, . . . , λ̄3) = 2 is

even. �

We end this section with the proof of Proposition 2.13.

Proof of Proposition 2.13. Since nA(C) > 0, condition (1.5) is satisfied. We use the

notations of the proof of Theorem 2.9 above.

Assume that dᾱr · λ̄r �= 0 for some r ∈ [k]. Then, since Pi and Pj give a basis of

ker(C), either Pᾱr ,1 · λ̄r �= 0 or Pᾱr ,2 · λ̄r �= 0. We may assume Pᾱr ,2 · λ̄r �= 0. Then the derivative

of G over �P is not identically zero, thus g is not identically equal to 1 on �P and nA(C)

is finite. To show the other implication, assume on the contrary that dᾱr · λ̄r = 0 for all

r ∈ [k]. Then, the derivative of G over �P is identically zero, and thus g is constant on
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Descartes’ Rule of Signs for Circuits 21

�P . But since nA(C) > 0, there exists y ∈ �P such that g(y) = 1. Thus g is identically

equal to 1 on �P , and nA(C) is infinite. �

5 Optimality of the bounds

We prove the optimality of our bound (2.13) in Theorem 2.9 in general, by exhibiting

particular configurations A and associated coefficient matrices C for which the bound

is attained. We keep the notations in the previous sections.

In [3], polynomial systems supported on a circuit in Rn and having n+1 positive

solutions have been obtained with the help of real dessins d’enfants. In [11], the main tool

for constructing such systems is the generalization of the Viro’s patchworking theorem

obtained in [15]. We will recall the construction of [11] since we will only have to slightly

modify it in order to prove Theorem 5.1 for any value of the sign variation.

Theorem 5.1. Let r and n be any integer numbers such that 0 ≤ r ≤ n and n > 0.

(1) There exist matricesA,C ∈ Rn×(n+2) satisfying (1.3) and (1.5), and an ordering

ᾱ : [k] → K of C such that

sgnvar(λ̄0 , . . . , λ̄k−1) = 1 + r and nA(C) = 1 + r.

(2) For any positive integers a+,a− there exist matrices A,C ∈ Rn×(n+2) satisfy-

ing (1.3) and (1.5), such that the set A ⊂ Rn consisting of the column vectors

of A except the first row of 1’s, has signature {a+,a−} and

nA(C) =
{

2σ(A) if a+ �= a−
2σ(A) − 1 if a+ = a−.

�

Proof. We first note that (2) follows easily from (1). In order to prove (1), let n ≥ 2 be

any integer. The following system is considered in [11] :

x1x2 = ε + x2
1 ,

xixi+1 = 1 + ε2i−3x2
1 , i = 2, . . . ,n− 1,

xn = 1 + ε2n−3x2
1 ,

(5.1)

where ε is a positive real parameter that will be taken small enough. The support of this

system is the circuit A = {w0,w1, . . . ,wn,wn+1} with w0 = (0, . . . , 0), wi = ei + ei+1 for

i = 1, . . . ,n−1, wn = en and wn+1 = 2e1, where (e1, . . . , en) stands for the canonical basis

of Rn. Let C be the associated matrix. A choice of Gale dual of C is given by the vectors
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22 F. Bihan and A. Dickenstein

Fig. 1. A Gale dual for the matrix C in Theorem 5.1 (1)

P0 = (1, 0), P1 = (ε, 1) = ε(1, ε−1), Pi = (1, ε2i−3) for i = 2, . . . ,n, and Pn+1 = (0, 1). These

points are depicted in Figure 1. It follows that the bijection α : [n+ 2] → [n+ 2] defined

by α0 = 0, α1 = n, α2 = n − 1, . . . , αn = 1, and αn+1 = n + 1 defines an ordering of C. We

compute the affine relation

(−1)nw0 + 2w1 − 2w2 + 2w3 + · · · + (−1)n−1 · 2 ·wn −wn+1 = 0, (5.2)

which shows that sgnvar(sα) = vol(A) = n + 1. Therefore, the bound provided by

Theorem 2.9 for the system (5.1) is the maximal one n + 1. It is proved in [11] that

this system has precisely n + 1 positive solutions for ε small enough (moreover, they

prove that ε = 1/4 is sufficiently small). Let us recall how the proof goes on (see [11]

for more details). Denote by Ti the Newton polytope (a triangle) of the ith equation of

(5.1) : Ti = [0, ei+ei+1, 2e1] for i = 1, . . . ,n−1 and Tn = [0, en, 2e1] (see Figure 2). The expo-

nents of ε in the system (5.1) determine a convex mixed subdivision of the Minkowski

sum T1 +· · ·+Tn. The mixed cells in this mixed subdivision are n-dimensional zonotopes

Z0,Z1, . . . ,Zn. Each zonotope is a Minkowski sum of edges of T1, . . . ,Tn. For i = 1, . . . ,n−1,

consider the edges of Ti defined by Ei,0 = [0, ei + ei+1] and Ei,1 = [2e1, ei + ei+1]. Consider

also the edges of Tn defined by En,0 = [0, en] and En,1 = [2e1, en] (see Figure 2).

For j = 1, . . . ,n− 1 the zonotope Zj is the Minkowski sum

Zj = E1,1 + · · · + Ej,1 + Ej+1,0 + · · · + En,0.
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Descartes’ Rule of Signs for Circuits 23

Fig. 2. The edges Ei,0 and Ei,1

Moreover, Z0 = E1,0 + · · · +En,0 and Zn = E1,1 + · · · +En,1. To each zonotope Zj corresponds

a system of binomial equations obtained from (5.1) by keeping for the ith equation its

truncation to the ith summand of Zj, which is the edge Ei,0 or Ei,1 according as j < i or

not. For instance, for j = 1, . . . ,n− 1, the binomial system corresponding to Zj is

x1x2 = x2
1 , . . . , xjxj+1 = ε2j−3x2

1 , xj+1xj+2 = 1 , . . . , xn = 1. (5.3)

The generalization of Viro’s patchworking theorem obtained in [15] gives that the number

of positive solutions of the system (5.1) is the total number of positive solutions of the

binomial systems corresponding to Z0, . . . ,Zn. Moreover, the number of positive solutions

of such a binomial system is at most one, and it is equal to one when in each binomial

equation caxa = cbxb we have cacb > 0. Therefore, the total number of positive solutions

of (5.1) for ε > 0 small enough can be read off the signs of the coefficients of the binomial

systems corresponding to Z0, . . . ,Zn. It follows then that (5.1) has exactly n+ 1 positive

solutions for ε small enough, which proves the optimality of item (1) of Theorem 5.1

when r = n.

Assume now that 0 ≤ r ≤ n − 1. To get a system with 1 + r positive solutions

from (5.1), we may multiply the term ε2r−1x2
1 of the (r + 1)th equation by −1 and keep

unchanged the other equations. So, for r ≤ n− 2 this gives the system

x1x2 = ε + x2
1 ,

xixi+1 = 1 + ε2i−3x2
1 , i = 2, . . . ,n− 1, i �= r + 1,

xr+1xr+2 = 1−ε2r−1x2
1 ,

xn = 1 + ε2n−3x2
1 ,

(5.4)
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24 F. Bihan and A. Dickenstein

while for r = n− 1 it gives

x1x2 = ε + x2
1 ,

xixi+1 = 1 + ε2i−3x2
1 , i = 2, . . . ,n− 1,

xn = 1−ε2n−3x2
1 .

(5.5)

Then, for each zonotope Zj having the edge Er+1,1 as a summand, the corresponding

binomial system has no positive solution. Indeed, the (r+1)th equation of this binomial

system is xr+1xr+2 = −ε2r−1x2
1 if r ≤ n−2, or xn = −ε2n−3x2

1 if r = n−1. On the other hand,

binomial systems corresponding to zonotopes without the edge Er+1,1 as a summand are

unchanged, and thus have still one positive solution. The zonotopes having Er+1,1 as a

summand are all Zj with j ≥ r + 1. Therefore, by Viro patchworking Theorem, for ε > 0

small enough the system (5.4) has r + 1 positive solutions (where r < n − 1) while the

system (5.5) has n positive solutions. However, the bound sgnvar(sα) given by Theorem

2.9 for these systems will be bigger than 1 + r in general. To get a system with 1 + r

positive solutions and for which sgnvar(sα) = 1+r, we proceed as follows. First, we note

that if we multiply in (5.1) the term ε2i−3x2
1 of the ith equation by −1 for i = r+1 and any

other arbitrary values of i ≥ r+1, then we still get a system with r+1 positive solutions

for ε > 0 small enough (by the Viro patchworking Theorem). Indeed, for such a system,

we again find that binomial systems corresponding to zonotopes Zj with j < r + 1 have

each a positive solution while the other binomial systems have no positive solutions.

In order to get a system with r + 1 = sgnvar(sα) positive solutions, we multiply

in (5.1) the term ε2i−3x2
1 of the ith equation (for i = 1, this term is x2

1 ) by −1 for any i ≥ r+1

such that i and r + 1 have the same parity (and i ≤ n). If r ≥ 1, this gives the system

x1x2 = ε + x2
1 ,

xixi+1 = 1 + ε2i−3x2
1 , i = 2, . . . , r,

xixi+1 = 1 + (−1)i−rε2i−3x2
1 , i = r + 1, . . . ,n− 1,

xn = 1 + (−1)n−rε2n−3x2
1 .

(5.6)

while for r = 0 this gives

x1x2 = ε − x2
1 ,

xixi+1 = 1 + (−1)iε2i−3x2
1 , i = 2, . . . ,n− 1,

xn = 1 + (−1)nε2n−3x2
1 .

(5.7)
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Descartes’ Rule of Signs for Circuits 25

Fig. 3. A Gale dual for the modified matrix C in Theorem 5.1 (2)

Figure 3 depicts a choice of Gale dual P0, . . .Pn+1 for the resulting matrix of coef-

ficients C, from which we can read an associated ordering α : [n+ 2] → [n+ 2], and it is

straightforward to check that sgnvar(sα) = r + 1. �

For a univariate real polynomial f (x) = c0 + c1x + · · · + crxr with any number of

monomials, the sign variation sgnvar(c0, . . . , cr) is always bounded above by the degree

of the polynomial divided by the index of the subgroup of Z generated by the exponents.

This is no longer true in arbitrary dimensions, in particular in the case where the expo-

nent set A is a circuit. We present two examples of particular configurations. Recall

that the normalized volume volZ(A) is the multivariate generalization of the degree of a

univariate polynomial, as it is a bound for the number of isolated complex solutions.

Example 5.2. Assume that volZA(A) = volZ(A) ≥ n + 1. The bound we give in (2.12)

reduces to the sign variation of the ordered sequence of λj’s. But, for instance in the

case in which A is the configuration {(0, 0), (1, 0), (0, 1), (1, 1)} ⊂ Z2, the normalized

volume equals 2 (and I = 1), while we can get matrices C with k = 4 and with an

ordering such that the sign variation equals 3. The sign variation of the corresponding



J_ID: imrn Cust. A_ID: 00000.00 Cadmus Art: IMRNOT00000 CVO ID: OP-IMRN160220 — 2016/9/27 — page 26 — #26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26 F. Bihan and A. Dickenstein

ordered sequence of λj’s is an upper bound, which is not sharp in this case, but the min-

imum in (2.13) is indeed a sharp upper bound, since the two complex roots can be real

positive. �

Example 5.3. Let n = 4 and let A be a circuit with affine relation (1, −1, 3, −3, 1, −1).

Then, the maximum possible bound (2.13) in Theorem 2.9 for a coefficient matrix C and

support A is equal to 5 = volZ(A) = volZA(A) = n+1. However, Theorem 0.2 in [3] shows

that there cannot be volZ(A) positive real solutions to this system, so the bound in (2.13)

is not sharp in this case. �

We end by mentioning further work which was inspired by the present paper.

Theorem 3.3 gives a necessary condition on a circuit A ⊂ Zn for the existence of a

coefficient matrix C such that nA(C) reaches the maximal possible value n+1. Recently,

El Hilany [6] has obtained a necessary and sufficient condition on A for this to hold.

The first author of the present paper has obtained a partial generalization of Descartes’

rule of signs for any polynomial system. A new bound is obtained as a sum of two

terms: a sign variation of a sequence whose terms are products of maximal minors of

the coefficient and the exponent matrices of the system, and a quantity depending on

the number of variables and the total number of monomials of the system. This new

bound, which is a refinement of a result in [4], is not sharp in general.
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