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a b s t r a c t

In this paper we study the following singular perturbation problem for the
pε(x)-Laplacian:

∆pε(x)u
ε := div(|∇uε(x)|pε(x)−2∇uε) = βε(uε) + fε,

uε ≥ 0, (Pε(fε, pε))

where ε > 0, βε(s) = 1
ε
β( s
ε

), with β a Lipschitz function satisfying β > 0 in (0, 1),
β ≡ 0 outside (0, 1) and


β(s) ds =M . The functions uε, fε and pε are uniformly

bounded. We prove uniform Lipschitz regularity, we pass to the limit (ε → 0) and
we show that, under suitable assumptions, limit functions are weak solutions to the
free boundary problem: u ≥ 0 and

∆p(x)u = f in {u > 0}
u = 0, |∇u| = λ∗(x) on ∂{u > 0}

(P (f, p, λ∗))

with λ∗(x) =

p(x)
p(x)−1 M

1/p(x)
, p = lim pε and f = lim fε.

In Lederman and Wolanski (submitted) we prove that the free boundary of a
weak solution is a C1,α surface near flat free boundary points. This result applies,
in particular, to the limit functions studied in this paper.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Singular perturbation problems of the form

Luε = βε(uε) (1.1)
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with βε(s) = 1
εβ( sε ), β nonnegative, smooth and supported on [0, 1] and L an elliptic or parabolic second

order differential operator have been widely studied due to their appearance in different contexts. One of its
main application being to flame propagation. See [3,4,7,29] and also the excellent survey by J.L. Vázquez [26].

A natural generalization is the consideration of inhomogeneous problems

Luε = βε(uε) + fε (1.2)

with fε uniformly bounded independently of ε. The inhomogeneous terms may represent sources as well as
nonlocal effects, when the family uε is uniformly bounded (see [18]).

Problem (1.1) was first studied for a linear uniformly elliptic operator L by Berestycki, Caffarelli and
Nirenberg in [3] and then for the heat equation by Caffarelli and Vázquez in [7]. The two phase case for the
heat equation was studied by Caffarelli and the authors in [5,6]. A natural question is the identification of
the limiting problem as ε → 0. To this end, estimates uniform in ε are needed. These two questions were
the object of the above mentioned articles [3,7,5,6].

For the inhomogeneous problem (1.2) and L = ∆ or L = ∆− ∂t these questions were settled in [18,17].
The homogeneous problem (1.1) in the case of the p-Laplacian was considered in [10] and then, for more

general operators with power like growth in [21]. Uniform estimates for the inhomogeneous problem (1.2)
and the p-Laplacian were obtained in [22]. Additional results for these type of problems were obtained in
[2,15,16,22,23,27].

In this paper we study the case where the operator L is the pε(x)-Laplacian, defined as

∆pε(x)u := div(|∇u(x)|pε(x)−2∇u),

that extends the Laplacian, where pε(x) ≡ 2, and the p-Laplacian, where pε(x) ≡ p with 1 < p < ∞. The
p(x)-Laplacian has been used in the modeling of electrorheological fluids [24] and in image processing [1,9].

We consider the inhomogeneous problem (1.2) but we remark that this singular perturbation problem for
the pε(x)-Laplacian had not been studied even in the homogeneous case (1.1). Moreover, the identification
of the limiting problem in the inhomogeneous case had not been done even for pε(x) ≡ p.

As stated above, this singular perturbation problem may model flame propagation in a fluid with
electromagnetic sensitivity. Hence its interest from a modeling point of view. On the other hand, the presence
of a variable exponent pε(x) and a right hand side fε(x) brings new mathematical difficulties, that can be
found scattered all along this paper, that were not present in the constant case pε(x) ≡ p. An important
tool we use is the Harnack Inequality for the inhomogeneous p(x)-Laplacian that we recently proved in [28].

More precisely, in this paper we study the following singular perturbation problem for the pε(x)-Laplacian:

∆pε(x)u
ε = βε(uε) + fε, uε ≥ 0 (Pε(fε, pε))

in a domain Ω ⊂ RN . Here ε > 0, βε(s) = 1
εβ( sε ), with β a Lipschitz function satisfying β > 0 in (0, 1),

β ≡ 0 outside (0, 1) and

β(s) ds = M .

We assume that uε, fε are uniformly bounded and that pε are uniformly bounded in Lipschitz norm.
We prove uniform Lipschitz regularity, we pass to the limit (ε → 0) and we show that, under suitable
assumptions, limit functions are weak solutions to the following free boundary problem: u ≥ 0 and

∆p(x)u = f in {u > 0}
u = 0, |∇u| = λ∗(x) on ∂{u > 0}

(P (f, p, λ∗))

with λ∗(x) =

p(x)
p(x)−1 M

1/p(x)
, p = lim pε and f = lim fε.

We remark that, in the inhomogeneous case, there are examples of limit functions that are not solutions
to the free boundary problem (P (f, p, λ∗)). These examples were produced with pε(x) ≡ 2 in [18]. Hence,
some extra assumptions on the limit functions are needed.
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In a companion paper [19] we study the regularity of the free boundary for weak solutions of P (f, p, λ∗)
with p(x) Lipschitz and λ∗(x) a Hölder continuous function. In [19] we show that the free boundary is a C1,α

surface near flat free boundary points. This regularity result applies in particular to limits of this singular
perturbation problem, under the above mentioned assumptions. These additional assumptions are verified if,
for instance, the functions uε are local minimizers of an energy functional. We prove this last result in [20].
Moreover, in this special case, we show in [20] that the set of singular points has zero HN−1 measure.

In conclusion, in this first paper of a series on the singular perturbation problem (Pε(fε, pε)) we study
the fundamental uniform properties of the solutions and we determine the limiting free boundary problem.

An outline of the paper is as follows: In Section 2 we obtain uniform bounds of the gradients of solutions to
the singular perturbation problem (Pε(fε, pε)) (Theorem 2.1). In Section 3 we pass to the limit, in Section 4
we analyze some basic limits and in Section 5 we study the asymptotic behavior of limit functions. Finally,
in Section 6 we define the notion of weak solution to the free boundary problem (P (f, p, λ∗)) and we show
that, under suitable assumptions, limit functions to the singular perturbation (Pε(fε, pε)) are weak solutions

to the free boundary problem (P (f, p, λ∗)) with λ∗(x) =

p(x)
p(x)−1 M

1/p(x)
(Theorem 6.1). We also state the

result from [19] on the regularity of the interface for weak solutions (Theorem 6.2). We finish the paper
with an Appendix where we collect some results on variable exponent Sobolev spaces as well as some other
results that are used in the paper.

1.1. Assumptions

Throughout the paper we let Ω ⊂ RN a domain.

Assumptions on pε(x) and p(x). We will assume that the functions pε(x) verify

1 < pmin ≤ pε(x) ≤ pmax <∞, x ∈ Ω . (1.3)

When we are restricted to a ball Br we use prε− and prε+ to denote the infimum and the supremum of pε(x)
over Br.

We also assume that pε(x) are continuous up to the boundary and that they have a uniform modulus of
continuity ω : R→ R, i.e. |pε(x)− pε(y)| ≤ ω(|x− y|) if |x− y| is small.

For our main results we need to assume further that pε(x) are uniformly Lipschitz continuous in Ω . In
that case, we denote by L the Lipschitz constant of pε(x), namely, ∥∇pε∥L∞(Ω) ≤ L.

The same assumptions above will be made on the function p(x).

Assumptions on βε. We will assume that the functions βε are defined by scaling of a single function
β : R→ R satisfying:

(i) β is a Lipschitz continuous function,
(ii) β > 0 in (0, 1) and β ≡ 0 otherwise,
(iii)
 1

0 β(s) ds = M .

And then βε(s) := 1
εβ( sε ).

1.2. Definition of solution to p(x)-Laplacian

Let p(x) be as above and let g ∈ L∞(Ω × R). We say that u is a solution to

∆p(x)u = g(x, u) in Ω
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if u ∈W 1,p(·)(Ω) and, for every ϕ ∈W 1,p(·)
0 (Ω), there holds that

Ω

|∇u(x)|p(x)−2∇u · ∇ϕdx = −

Ω

ϕg(x, u) dx.

By the results in [28], it follows that u ∈ L∞loc(Ω).

1.3. Notation

• N spatial dimension
• Ω ∩ ∂{u > 0} free boundary
• |S| N -dimensional Lebesgue measure of the set S
• HN−1 (N − 1)-dimensional Hausdorff measure
• Br(x0) open ball of radius r and center x0

• Br open ball of radius r and center 0
• B′r(x0) open ball of radius r and center x0 in RN−1

• B′r open ball of radius r and center 0 in RN−1

• −

Br(x0) u = 1

|Br(x0)|

Br(x0) u dx

• −

∂Br(x0) u = 1

HN−1(∂Br(x0))

∂Br(x0) u dH

N−1

• χ
S

characteristic function of the set S
• u+ = max(u, 0), u− = max(−u, 0)
• ⟨ · , · ⟩ scalar product in RN

• Bε(s) =
 s

0 βε(τ) dτ

2. Uniform bound of the gradient

In this section we consider a family of uniformly bounded solutions to the singular perturbation problem
(Pε(fε, pε)) and prove that their gradients are locally uniformly bounded. Our main result in the section is
the following theorem

Theorem 2.1. Assume that 1 < pmin ≤ pε(x) ≤ pmax <∞ with pε(x) Lipschitz continuous and ∥∇pε∥L∞ ≤
L, for some L > 0. Let uε be a solution of

∆pε(x)u
ε = βε(uε) + fε, uε ≥ 0 in Ω , (Pε(fε, pε))

with ∥uε∥L∞(Ω) ≤ L1, ∥fε∥L∞(Ω) ≤ L2. Then, for Ω ′ ⊂⊂ Ω , we have

|∇uε(x)| ≤ C in Ω ′,

with C = C(N,L1, L2, ∥β∥L∞ , pmin, pmax, L, dist(Ω ′, ∂Ω)), if ε ≤ ε0(Ω ,Ω ′).

An essential tool in the proof will be the following Harnack’s Inequality for the inhomogeneous
p(x)-Laplacian equation, proven in [28, Theorem 2.1]

Theorem 2.2. Assume that p(x) is locally log-Hölder continuous in Ω . This is, p(x) has locally a modulus of
continuity ω(r) = C(log 1

r )
−1. Let x0 ∈ Ω and 0 < R ≤ 1 such that B4R(x0) ⊂ Ω . There exists C such that,

if u ∈W 1,p(·)(Ω) ∩ L∞(Ω) is a nonnegative solution of the problem

∆p(x)u = f in Ω , (2.1)
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with f ∈ Lq0(Ω) for some max{1, N
p4R
−
} < q0 ≤ ∞, then

sup
BR(x0)

u ≤ C[ inf
BR(x0)

u+R+Rµ]

where

µ =

R1− Nq0 ∥f∥Lq0 (B4R(x0))

 1
p4R
− −1

.

The constant C depends only on N , p4R
− := infB4R(x0) p, p4R

+ := supB4R(x0) p, s, q0, ω4R, µp
4R
+ −p

4R
− ,

∥u∥p
4R
+ −p

4R
−

Lsq′ (B4R(x0)) and ∥u∥p
4R
+ −p

4R
−

Lsr0 (B4R(x0)) (for certain q′ = q
q−1 with r0, q ∈ (1,∞) and 1

q0
+ 1
q + 1

r0
= 1 depending

on N, q0 and p4R
− ). Here s > p4R

+ − p4R
− is arbitrary and ω4R is the modulus of log-Hölder continuity of p(x)

in B4R(x0).

We will also use the following result proven in [12, Theorem 1.1],

Theorem 2.3. Assume that 1 < pmin ≤ p(x) ≤ pmax < ∞, and that p(x) has a modulus of continuity
ω(r) = C0r

α0 for some 0 < α0 < 1. Let f ∈ L∞(Ω) and let u ∈W 1,p(·)(Ω) ∩ L∞(Ω) be a solution of

∆p(x)u = f in Ω . (2.2)

Then, u ∈ C1,α
loc (Ω), where the Hölder exponent α depends on N , pmin, pmax, ∥f∥L∞(Ω), ∥u∥L∞(Ω), ω(r) and,

for any Ω ′ ⊂⊂ Ω ,

∥u∥C1,α(Ω̄ ′) ≤ C,

the constant C depending on N , pmin, pmax, ∥f∥L∞(Ω), ∥u∥L∞(Ω), ω(r) and dist(Ω ′, ∂Ω).

In order to prove Theorem 2.1, we need to prove first some auxiliary results.

Lemma 2.1. Assume that 1 < pmin ≤ pε(x) ≤ pmax <∞ with pε(x) Lipschitz continuous and ∥∇pε∥L∞ ≤ L,
for some L > 0. Let uε be a solution of (Pε(fε, pε)) in Br0(x0) with ∥uε∥L∞(Br0 (x0)) ≤ L1, ∥fε∥L∞(Br0 (x0)) ≤
L2, such that uε(x0) ≤ 2ε. Then, there exists C > 0 such that, if ε ≤ 1,

|∇uε(x0)| ≤ C,

with C = C(N,L1, L2, ∥β∥L∞ , pmin, pmax, L, r0).

Proof. Let vε(x) = 1
εu
ε(x0 + εx). Then, denoting p̄ε(x) = pε(εx + x0) and f̄ε(x) = εfε(εx + x0), we have,

if ε ≤ 1,

∆p̄ε(x)v
ε = β(vε) + f̄ε in Br0 . (2.3)

We will apply Harnack’s Inequality (Theorem 2.2). Let r̄0 = min{r0, 4}. We first observe that

γ := (p̄ε)r̄0+ − (p̄ε)r̄0− = sup
Br̄0

p̄ε − inf
Br̄0

p̄ε ≤ Lε2r̄0,

so that

∥vε∥γL∞(Br̄0 ) ≤ (L1/ε)Lε2r̄0 ≤ C0(L,L1, r0).

It follows that

sup
Br̄0/4

vε ≤ C1[vε(0) + r̄0/4 + µr̄0/4],

for µ =

r̄0
4 ∥β(vε) + f̄ε∥L∞(Br̄0 (x0))

 1
(p̄ε)r̄0

− −1 ≤ C2(L2, ∥β∥L∞ , pmin, r0) and a constant C1 with C1 =
C1(N,L1, L2, ∥β∥L∞ , pmin, pmax, L, r0).
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Now, observing that vε(0) ≤ 2, and using the estimates of Theorem 2.3, we have that

|∇uε(x0)| = |∇vε(0)| ≤ C,

with C = C(N,L1, L2, ∥β∥L∞ , pmin, pmax, L, r0). �

Lemma 2.2. Assume that 1 < pmin ≤ p(x) ≤ pmax < ∞ with p(x) Lipschitz continuous and ∥∇p∥L∞ ≤ L,
for some L > 0. For x0 ∈ RN , µ > 0, δ > 0, A > 0, consider

ψ(x) = A

e−µ |x−x0|2

δ2 − e−µ

e−µ/16 − e−µ

 .
Assume moreover that δ ≤ A ≤ A0. Then, given D > 0, there exist µ̃ = µ̃(N, pmin, pmax) and
r̃ = r̃(pmin, pmax, L,D,A0, µ) such that, if µ ≥ µ̃ and δ ≤ r̃, there holds that

∆p(x)ψ(x) ≥ D in Bδ(x0) \Bδ/4(x0).

Proof. For M > 0 and µ > 0 let

w(x) = M(e−µ|x|
2
− e−µ). (2.4)

The calculations in the proof of Lemma B.4 in [13] show that if q(x) is a Lipschitz continuous function, with
1 < pmin ≤ q(x) ≤ pmax <∞, there exist µ0 = µ0(pmax, pmin, N) and ε0 = ε0(pmin) such that, if µ ≥ µ0 and
∥∇q∥L∞ ≤ ε0, then

eµ|x|
2
(2Mµ)−1|∇w|2−q(x)∆q(x)w ≥ C1µ− C2∥∇q∥L∞(| logM |+ 1) in B1 \B1/4,

with C1, C2 depending only on pmin. If, in addition, µ ≥ µ1(pmin), we get

eµ|x|
2
(2Mµ)−1|∇w|2−q(x)∆q(x)w ≥

C1

2 µ− C2∥∇q∥L∞ | logM | in B1 \B1/4,

and therefore,

∆q(x)w ≥ e−µ|x|
2
|∇w|q(x)−22Mµ


C1

2 µ− C2∥∇q∥L∞ | logM |


in B1 \B1/4.

So that we have

∆q(x)w ≥ e−µ(pmax−1)Mq(x)−1µpmin−1 C̃1µ− C̃2∥∇q∥L∞ | logM |


in B1 \B1/4,

with C̃1, C̃2 depending on pmin and pmax if, in addition, µ ≥ 1.

We now observe that, letting in (2.4)

M = A

δ(e−µ/16 − e−µ)
,

we have

ψ(x) = A

e−µ |x−x0|2

δ2 − e−µ

e−µ/16 − e−µ

 = δM

e−µ|

x−x0
δ |2 − e−µ


= δw


x− x0

δ


.

We want to show that the constants µ̃, r̃ in the statement can be chosen in such a way that

∆p(x)ψ(x) ≥ D in Bδ(x0) \Bδ/4(x0). (2.5)

We notice that showing (2.5) is equivalent to showing that

∆p̄(x)w(x) ≥ δD in B1 \B1/4, (2.6)

for p̄(x) = p(x0 + δx).
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Since ∥∇p̄∥L∞ = δ∥∇p∥L∞ ≤ δL, the previous calculations give, if µ is as above and δ ≤ r1 = ε0
L ,

∆p̄(x)w ≥ e−µ(pmax−1)M p̄(x)−1µpmin−1 C̃1µ− C̃2δL| logM |


in B1 \B1/4.

Using that A ≥ δ, we have M ≥ eµ/16 ≥ 1, implying that

∆p̄(x)w ≥ e−µ(pmax−1) 1
(e−µ/16 − e−µ)pmin−1µ

pmin−1 C̃1µ− C̃2δL logM


= C3(µ)(C̃1µ− C̃2δL logM) in B1 \B1/4

(here C3(µ) is a constant depending on µ, pmin, pmax). Now using that

−δL logM ≥ −1− δLµ,

if δ ≤ r2 = r2(A0, L) and µ ≥ µ2, we conclude that

∆p̄(x)w ≥ C3(µ) C̃1

4 µ in B1 \B1/4,

if µ ≥ µ3 = µ3(pmin, pmax) and δ ≤ r3 = r3(pmin, pmax, L). This is,

∆p̄(x)w ≥ C5, in B1 \B1/4

with C5 = C5(µ, pmin, pmax). If we now let µ̃ = max{µ0, µ1, µ2, µ3, 1}, fix µ ≥ µ̃ and take δ ≤ r̃ =
min{r1, r2, r3,

C5
D }, we conclude that (2.6) holds, thus implying (2.5). �

Lemma 2.3. Assume that 1 < pmin ≤ pε(x) ≤ pmax <∞ with pε(x) Lipschitz continuous and ∥∇pε∥L∞ ≤ L,
for some L > 0. Let uε be a solution of (Pε(fε, pε)) in B1 with ∥uε∥L∞(B1) ≤ L1, ∥fε∥L∞(B1) ≤ L2 and
0 ∈ ∂{uε > ε}. Then, there exists 0 < r0 < 1 such that, for x ∈ Br0 ∩ {uε > ε} and ε ≤ 1,

uε(x) ≤ ε+ Cdist(x, {uε ≤ ε} ∩B1),

with r0 = r0(N,L1, L2, pmin, pmax, L) and C = C(N,L1, L2, ∥β∥L∞ , pmin, pmax, L).

Proof. Let 0 < r0 < 1/4 be a constant to be chosen later. For x0 ∈ Br0 ∩ {uε > ε}, take m0 = uε(x0) − ε
and δ0 = dist(x0, {uε ≤ ε}∩B1). Since 0 ∈ ∂{uε > ε}∩B1, δ0 ≤ r0. We want to prove that m0 ≤ Cδ0, with
C = C(N,L1, L2, ∥β∥L∞ , pmin, pmax, L).

Since Bδ0(x0) ⊂ {uε > ε}∩B1, we have that uε−ε > 0 in Bδ0(x0) and ∆pε(x)(uε−ε) = fε. By Harnack’s
Inequality (Theorem 2.2)

sup
Bδ0/4(x0)

(uε − ε) ≤ C1


inf

Bδ0/4(x0)
(uε − ε) + δ0/4 + µ̂δ0/4


,

for µ̂ =

δ0
4 ∥f

ε∥L∞(Bδ0(x0))

 1
(pε)δ0

− −1 ≤ C0(L2, pmin), with C1 = C1(N,L1, L2, pmin, pmax, L). It follows that

m0 ≤ C1 inf
Bδ0/4(x0)

(uε − ε) + C2δ0,

with C2 = C2(N,L1, L2, pmin, pmax, L).

If there holds that m0 ≤ 2C2δ0, the conclusion follows.

So let us assume that m0 > 2C2δ0. Then, there exists c1 = c1(N,L1, L2, pmin, pmax, L) such that

c1m0 ≤ inf
Bδ0/4(x0)

(uε − ε).

If c1m0 ≤ δ0 there is nothing to prove. So now assume that c1m0 > δ0.
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Let us consider

ψ(x) = c1m0

e−µ |x−x0|2

δ02 − e−µ

e−µ/16 − e−µ

 ,
with µ = µ̃(N, pmin, pmax), the constant in Lemma 2.2.

Then, observing that c1m0 ≤ c1L1, we can apply Lemma 2.2 with δ = δ0, A = c1m0, A0 = c1L1 and
D = L2, if there holds that δ0 ≤ r̃, where r̃ = r̃(pmin, pmax, L,D,A0, µ) is the constant in Lemma 2.2.

If we choose r0 = min{r̃, 1/8} above, we have r0 = r0(N,L1, L2, pmin, pmax, L) and Lemma 2.2 applies,
so we get 

∆pε(x)ψ(x) ≥ L2 ≥ fε in Bδ0(x0) \Bδ0/4(x0)
ψ = 0 on ∂Bδ0(x0)
ψ = c1m0 on ∂Bδ0/4(x0).

By the comparison principle (see Appendix), we have

ψ(x) ≤ uε(x)− ε in Bδ0(x0) \Bδ0/4(x0). (2.7)

Take y0 ∈ ∂Bδ0(x0) ∩ ∂{uε > ε}. Then, y0 ∈ B1/2 and

ψ(y0) = uε(y0)− ε = 0. (2.8)

Let vε(x) = 1
εu
ε(εx+y0), p̄ε(x) = pε(εx+y0) and f̄ε(x) = εfε(εx+y0). Then if ε ≤ 1 we have that ∆p̄ε(x)v

ε =
β(vε)+ f̄ε in B1/2 and vε(0) = 1. Therefore, by Harnack’s Inequality (Theorem 2.2), using similar arguments
as those employed in the proof of Lemma 2.1, we obtain maxB1/8

vε ≤ c = c(N,L1, L2, ∥β∥L∞ , pmin, pmax, L).

Now, by Theorem 2.3, we get

|∇uε(y0)| = |∇vε(0)| ≤ c3, (2.9)

with c3 = c3(N,L1, L2, ∥β∥L∞ , pmin, pmax, L). Finally, by (2.7)–(2.9), we have that |∇ψ(y0)| ≤ |∇uε(y0)| ≤
c3. Since |∇ψ(y0)| = c1m0

c(µ)
δ0

, we obtain

m0 ≤
c3

c1c(µ)δ0

and the result follows. �

Now, we can prove the following important result.

Proposition 2.1. Assume that 1 < pmin ≤ pε(x) ≤ pmax < ∞ with pε(x) Lipschitz continuous and
∥∇pε∥L∞ ≤ L, for some L > 0. Let uε be a solution of (Pε(fε, pε)) in B1 with ∥uε∥L∞(B1) ≤ L1 and
∥fε∥L∞(B1) ≤ L2. Assume that 0 ∈ ∂{uε > ε}. Then, there exists 0 < r1 < 1 such that, for x ∈ Br1 and
ε ≤ 1,

|∇uε(x)| ≤ C

with r1 = r1(N,L1, L2, pmin, pmax, L) and C = C(N,L1, L2, ∥β∥L∞ , pmin, pmax, L).

Proof. By Lemma 2.1 we know that if x0 ∈ {uε ≤ 2ε} ∩B3/4 then,

|∇uε(x0)| ≤ C0

with C0 = C0(N,L1, L2, ∥β∥L∞ , pmin, pmax, L).
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Let r0 = r0(N,L1, L2, pmin, pmax, L) be as in Lemma 2.3.

Let x0 ∈ Br0/2 ∩ {uε > ε} and δ0 = dist(x0, {uε ≤ ε}).

As 0 ∈ ∂{uε > ε} we have that δ0 ≤ r0/2. Therefore, Bδ0(x0) ⊂ {uε > ε} ∩ Br0 and then ∆pε(x)u
ε = fε

in Bδ0(x0) and, by Lemma 2.3,

uε(x) ≤ ε+ C1dist(x, {uε ≤ ε}) in Bδ0(x0), (2.10)

with C1 = C1(N,L1, L2, ∥β∥L∞ , pmin, pmax, L).

(1) Suppose that ε < c̄δ0 with c̄ to be determined. Then, (2.10) gives

sup
Bδ0 (x0)

uε ≤ ε+ C12δ0 ≤ (c̄+ 2C1)δ0.

Now let vε(x) = 1
δ0
uε(x0 + δ0x) and pδ0ε (x) = pε(x0 + δ0x). Then, we have ∆

p
δ0
ε (x)v

ε = δ0f
ε(x0 + δ0x)

in B1, with

sup
B1

vε = 1
δ0

sup
Bδ0 (x0)

uε ≤ (c̄+ 2C1).

Therefore, by Theorem 2.3

|∇uε(x0)| = |∇vε(0)| ≤ C,
with C = C(N,L1, L2, ∥β∥L∞ , pmin, pmax, L, c̄).

(2) Suppose that ε ≥ c̄δ0. By (2.10) we have

uε(x0) ≤ ε+ C1δ0 ≤


1 + C1

c̄


ε < 2ε,

if we choose c̄ big enough. By Lemma 2.1, we have |∇uε(x0)| ≤ C, with C = C(N,L1, L2,

∥β∥L∞ , pmin, pmax, L).

The result follows. �

As a consequence of the previous results we obtain Theorem 2.1. In fact,

Proof of Theorem 2.1. Let 0 < τ < 1 be such that ∀x ∈ Ω ′, B2τ (x) ⊂ Ω , and let ε ≤ τ . Let r1 be the constant
in Proposition 2.1, corresponding to N , L1

τ , L2, pmin, pmax, L (i.e., r1 = r1(N, L1
τ , L2, pmin, pmax, L)).

Let x0 ∈ Ω ′.

(1) If δ0 = dist(x0, ∂{uε > ε}) < τr1, let y0 ∈ ∂{uε > ε} such that |x0− y0| = δ0. Let vε(x) = 1
τ u
ε(y0 + τx),

p̄ε(x) = pε(y0 + τx), f̄ε(x) = τfε(y0 + τx) and x̄ = x0−y0
τ , then |x̄| < r1. There holds that

∥vε∥L∞(B1) ≤ L1
τ , ∥∇p̄ε∥L∞ ≤ L and ∥f̄ε∥L∞(B1) ≤ L2.

As 0 ∈ ∂{vε > ε/τ} and ∆p̄ε(x)v
ε = βε/τ (vε) + f̄ε in B1, we have by Proposition 2.1

|∇uε(x0)| = |∇vε(x̄)| ≤ C1(N,L1, L2, ∥β∥L∞ , pmin, pmax, L, τ).

(2) If δ0 = dist(x0, ∂{uε > ε}) ≥ τr1, there holds that
(a) Bτr1(x0) ⊂ {uε > ε}, or
(b) Bτr1(x0) ⊂ {uε ≤ ε}.
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In the first case, ∆pε(x)u
ε = fε in Bτr1(x0). Therefore, by Theorem 2.3

|∇uε(x0)| ≤ C2(N,L1, L2, pmin, pmax, L, τ).

In the second case, we can apply Lemma 2.1 and we have,

|∇uε(x0)| ≤ C3(N,L1, L2, ∥β∥L∞ , pmin, pmax, L, τ). �

The result is proved.

3. Passage to the limit

Since we have that |∇uε| is locally bounded by a constant independent of ε, we have that there exists a
function u ∈ Liploc(Ω) such that, for a subsequence εj → 0, uεj → u. In this section we will prove some
properties of the function u.

Lemma 3.1. Let uε be a family of solutions to

∆pε(x)u
ε = βε(uε) + fε, uε ≥ 0 (Pε(fε, pε))

in a domain Ω ⊂ RN . Let us assume that ∥uε∥L∞(Ω) ≤ L1 and ∥fε∥L∞(Ω) ≤ L2 for some L1 > 0,
L2 > 0. Assume moreover that 1 < pmin ≤ pε(x) ≤ pmax <∞ and that pε(x) are Lipschitz continuous with
∥∇pε∥L∞ ≤ L, for some L > 0.

Then, for any sequence εj → 0 there exist a subsequence ε′j → 0 and functions u ∈ Liploc(Ω), f ∈ L∞(Ω)
and p ∈ Lip(Ω), with 1 < pmin ≤ p(x) ≤ pmax <∞ and ∥∇p∥L∞ ≤ L, such that

(1) uε
′
j → u uniformly on compact subsets of Ω ,

(2) fε
′
j ⇀ f∗-weakly in L∞(Ω),

(3) pε′
j
→ p uniformly on compact subsets of Ω ,

(4) ∆p(x)u ≥ f in the distributional sense in Ω ,
(5) ∆p(x)u = f in {u > 0}.
(6) There exists a nonnegative Radon measure µ such that βε′

j
(uε

′
j ) ⇀ µ as measures in Ω ′, for every

Ω ′ ⊂⊂ Ω .
(7) There holds

−

Ω

|∇u|p(x)−2∇u · ∇ϕdx =

Ω

ϕdµ+

Ω

fϕ dx

for every ϕ ∈ C∞0 (Ω).
(8) ∇uε

′
j ⇀ ∇u weakly in L

p(·)
loc (Ω).

(9) If p(x) ≡ p0, with p0 a constant, then ∇uε
′
j → ∇u in Lp0

loc(Ω).

Proof. (1) and (8) follow by Theorem 2.1. (2) and (3) are immediate.

In order to prove (5), take E ⊂⊂ E′ ⊂⊂ {u > 0}. Then, u ≥ c > 0 in E′. Therefore, uε
′
j > c/2 in E′ for

ε′j small. If we take ε′j < c/2 – as ∆pε′
j

(x)u
ε′j = fε

′
j in {uε

′
j > ε′j} – we have that ∆pε′

j
(x)u

ε′j = fε
′
j in E′.

Therefore, by Theorem 2.3, ∥uε
′
j∥C1,α(Ē) ≤ C.
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Thus, for a subsequence, we have

∇uε
′
j → ∇u uniformly in E.

Therefore, ∆p(x)u = f in E.

In order to prove (6), let us take Ω ′ ⊂⊂ Ω , and ϕ ∈ C∞0 (Ω), ϕ ≥ 0, with ϕ = 1 in Ω ′ as a test function
in Pεj (fεj , pεj ). Since ∥∇uε

′
j∥ ≤ C in Ω ′, there holds that

C(ϕ) ≥

Ω

βε′
j
(uε

′
j )ϕdx ≥


Ω ′
βε′
j
(uε

′
j ) dx. (3.1)

Therefore, βε′
j
(uε

′
j ) is bounded in L1

loc(Ω), so that, there exists a locally finite measure µ such that

βε′
j
(uε

′
j ) ⇀ µ as measures.

That is, for every ϕ ∈ C0(Ω), 
Ω

βε′
j
(uε

′
j )ϕdx→


Ω

ϕdµ.

We will divide the reminder of the proof into several steps.

Let Ω ′ ⊂⊂ Ω . We will show that for every v ∈ C∞0 (Ω ′) there holds that
Ω ′
|∇uε

′
j |
pε′
j

(x)−2
∇uε

′
j · ∇v dx→


Ω ′
|∇u|p(x)−2∇u · ∇v dx. (3.2)

Let us denote, for η ∈ RN , Aεj (x, η) = |η|pεj (x)−2η and A(x, η) = |η|p(x)−2η.

By Theorem 2.1, we have |∇uεj | ≤ C in Ω ′. Therefore for a subsequence ε′j we have that there exists
ξ ∈ (L∞(Ω ′))N such that,

∇uε
′
j ⇀ ∇u ∗-weakly in (L∞(Ω ′))N

Aεj
′
(x,∇uε

′
j ) ⇀ ξ ∗-weakly in (L∞(Ω ′))N

uε
′
j → u uniformly in Ω ′.

(3.3)

For simplicity we call ε′j = ε, Aεj (x, η) = Aε(η) and A(x, η) = A(η).

Step 1. Let us prove that for any v ∈ C(Ω ′) ∩W 1,∞(Ω ′) there holds that
Ω ′

(ξ −A(∇u))∇v dx = 0. (3.4)

In fact, as Aε is monotone (i.e.

Aε(η) − Aε(ζ)


· (η − ζ) ≥ 0 ∀η, ζ ∈ RN ) we have that, for any

w ∈W 1,∞(Ω ′),

I =

Ω ′


Aε(∇uε)−Aε(∇w)


(∇uε −∇w) dx ≥ 0. (3.5)

Therefore, if ψ ∈ C∞0 (Ω ′),

−

Ω ′
βε(uε)uε dx−


Ω ′
Aε(∇uε)∇w dx−


Ω ′
Aε(∇w)(∇uε −∇w) dx

= −

Ω ′
βε(uε)uε dx−


Ω ′
Aε(∇uε)∇uε dx+ I

= −

Ω ′
βε(uε)u dx−


Ω ′
βε(uε)(uε − u)ψ dx−


Ω ′
βε(uε)(uε − u)(1− ψ) dx
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−

Ω ′
Aε(∇uε)∇uε dx+ I

≥ −

Ω ′
βε(uε)u dx+


Ω ′
Aε(∇uε)∇(uε − u)ψ dx+


Ω ′
Aε(∇uε)(uε − u)∇ψ dx

−

Ω ′
βε(uε)(uε − u)(1− ψ) dx−


Ω ′
Aε(∇uε)∇uε dx+


Ω ′
fε(uε − u)ψ dx, (3.6)

where in the last inequality we are using (3.5) and equation (Pε(fε, pε)).

Now, take ψ = ψj → χΩ ′ a.e., with 0 ≤ ψj ≤ 1. If Ω ′ is smooth we can choose the functions so that
|∇ψj | dx ≤ CPer Ω ′. Therefore,

Ω ′
Aε(∇uε)(uε − u)∇ψj dx

 ≤ C∥uε − u∥L∞(Ω ′)


Ω ′
|∇ψj | dx ≤ C∥uε − u∥L∞(Ω ′).

Also 
Ω ′
fε(uε − u)ψj dx

 ≤ C∥uε − u∥L∞(Ω ′),

and 
Ω ′
βε(uε)(uε − u) dx

 ≤ C∥uε − u∥L∞(Ω ′).

So that, with this choice of ψ = ψj in (3.6), we obtain

−

Ω ′
βε(uε)uε dx−


Ω ′
Aε(∇uε)∇w dx−


Ω ′
Aε(∇w)(∇uε −∇w) dx

≥ −

Ω ′
βε(uε)u dx+


Ω ′
Aε(∇uε)∇(uε − u) dx− C∥uε − u∥L∞(Ω ′) −


Ω ′
Aε(∇uε)∇uε dx

= −

Ω ′
βε(uε)u dx−


Ω ′
Aε(∇uε)∇u dx− C∥uε − u∥L∞(Ω ′)

≥ −

Ω ′
βε(uε)uε dx−


Ω ′
Aε(∇uε)∇u dx− C∥uε − u∥L∞(Ω ′).

Therefore, canceling

Ω ′
βε(uε)uε dx first, and then, letting ε→ 0 we get by using (3.3) and (3) that

−

Ω ′
ξ∇w dx−


Ω ′
A(∇w)(∇u−∇w) dx ≥ −


Ω ′
ξ∇u dx

and then, 
Ω ′

(ξ −A(∇w))(∇u−∇w) dx ≥ 0. (3.7)

Take now w = u−λv with v ∈ C(Ω ′)∩W 1,∞(Ω ′) and λ > 0. Dividing by λ and taking λ→ 0+ in (3.7), we
obtain 

Ω ′
(ξ −A(∇u))∇v dx ≥ 0.

Replacing v by −v we obtain (3.4). Then, (3.2) holds which implies (7) and (4).

In order to prove (9) let us now assume that p(x) ≡ p0, with p0 a constant. Then we now have
A(x, η) = A(η) = |η|p0−2η.

Step 2. Let us prove that 
Ω ′
Aε(∇uε)∇uε →


Ω ′
A(∇u)∇u. (3.8)
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By passing to the limit in the equation

0 =

Ω ′
Aε(∇uε)∇φ+


Ω ′
βε(uε)φ+


Ω ′
fεφdx, (3.9)

we have, by Step 1, that for every φ ∈ C0(Ω ′) ∩W 1,∞(Ω ′),

0 =

Ω ′
A(∇u)∇φ+


Ω ′
φdµ+


Ω ′
fφ dx. (3.10)

On the other hand, taking φ = uεψ in (3.9) with ψ ∈ C∞0 (Ω ′) we have that

0 =

Ω ′
Aε(∇uε)∇uεψ dx+


Ω ′
Aε(∇uε)uε∇ψ dx+


Ω ′
βε(uε)uεψ dx+


Ω ′
fεuεψ dx.

Using that Aε(∇uε)uε∇ψ → A(∇u)u∇ψ a.e. in Ω ′, with |Aε(∇uε)uε∇ψ| ≤ C in Ω ′, we get
Ω ′
Aε(∇uε)uε∇ψ dx→


Ω ′
A(∇u)u∇ψ dx

Ω ′
βε(uε)uεψ dx→


Ω ′
uψdµ.

Then we obtain

0 = lim
ε→0


Ω ′
Aε(∇uε)∇uεψ dx


+

Ω ′
A(∇u)u∇ψ dx+


Ω ′
uψdµ+


Ω ′
fuψ dx.

Now taking, φ = uψ in (3.10) we have

0 =

Ω ′
A(∇u)∇uψ dx+


Ω ′
A(∇u)u∇ψ dx+


Ω ′
uψ dµ+


Ω ′
fuψ dx.

Therefore,

lim
ε→0


Ω ′
Aε(∇uε)∇uεψ dx =


Ω ′
A(∇u)∇uψ dx.

Then, 
Ω ′

(Aε(∇uε)∇uε −A(∇u)∇u) dx


≤


Ω ′
(Aε(∇uε)∇uε −A(∇u)∇u)ψ dx

+ 
Ω ′

(Aε(∇uε)∇uε)(1− ψ) dx


+


Ω ′
A(∇u)∇u(1− ψ) dx


≤


Ω ′
(Aε(∇uε)∇uε −A(∇u)∇u)ψ dx

+ C


Ω ′
|1− ψ| dx

so that taking ε→ 0 and then ψ → 1 a.e. with 0 ≤ ψ ≤ 1 we obtain (3.8). This is,
Ω ′
|∇uε|pε(x)dx→


Ω ′
|∇u|p0dx. (3.11)

Step 3. Let us prove that 
Ω ′
|∇uε|p0 dx→


Ω ′
|∇u|p0 dx. (3.12)
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We first observe that
Ω ′
|∇uε|pε(x) dx−


Ω ′
|∇uε|p0 dx

 ≤ 
Ω ′

 |∇uε|pε(x) − |∇uε|p0
 dx→ 0. (3.13)

Here we have used that
 |∇uε|pε(x) − |∇uε|p0

→ 0 a.e. in Ω ′ with
 |∇uε|pε(x) − |∇uε|p0

 ≤ C in Ω ′.

Thus, (3.12) follows from (3.11) and (3.13).

Step 4. End of the proof of (9).

Since uε ⇀ u weakly in W 1,p0
loc (Ω) and ∥uε∥W 1,p0 (Ω ′) → ∥u∥W 1,p0 (Ω ′), for every Ω ′ ⊂⊂ Ω , it follows that

uε → u in W 1,p0
loc (Ω). In particular, ∇uε → ∇u in Lp0

loc(Ω). This completes the proof of the lemma. �

Lemma 3.2. Let v be a continuous nonnegative function in a domain Ω ⊂ RN , v ∈ W 1,p(·)(Ω), such that
∆p(x)v = g in {v > 0} with g ∈ L∞(Ω). Then λv := ∆p(x)v− gχ{v>0} is a nonnegative Radon measure with
support on Ω ∩ ∂{v > 0}.

Proof. The proof follows as in the case p(x) ≡ 2, that was done in [17, Lemma 2.1]. �

Corollary 3.1. Let uεj be a family of solutions to Pεj (fεj , pεj ) in a domain Ω ⊂ RN with 1 < pmin ≤ pεj (x) ≤
pmax < ∞ and pεj (x) Lipschitz continuous with ∥∇pεj∥L∞ ≤ L, for some L > 0. Assume that uεj → u

uniformly on compact subsets of Ω , fεj ⇀ f ∗-weakly in L∞(Ω), pεj → p uniformly on compact subsets of
Ω and εj → 0. Then,

∆p(x)u− fχ{u>0} = λu inΩ ,

with λu a nonnegative Radon measure supported on the free boundary Γ = Ω ∩ ∂{u > 0}.

Proof. It is an immediate consequence of Lemmas 3.1 and 3.2. �

Lemma 3.3. Let uεj be a family of solutions to Pεj (fεj , pεj ) in a domain Ω ⊂ RN with 1 < pmin ≤ pεj (x) ≤
pmax < ∞ and pεj (x) Lipschitz continuous with ∥∇pεj∥L∞ ≤ L, for some L > 0. Assume that uεj → u

uniformly on compact subsets of Ω , fεj ⇀ f ∗-weakly in L∞(Ω), pεj → p uniformly on compact subsets of
Ω and εj → 0.

Let x0 ∈ Ω and xn ∈ Ω be such that u(x0) = 0, u(xn) = 0 and xn → x0 as n → ∞. Let λn → 0,
uλn(x) = 1

λn
u(xn+λnx) and (uεj )λn(x) = 1

λn
uεj (xn+λnx). Assume that uλn → U as n→∞ uniformly on

compact sets of RN . Then, there exists j(n)→ +∞ such that for every jn ≥ j(n) there holds that εjnλn → 0
and

(1) (uεjn )λn → U uniformly on compact sets of RN ,
(2) ∇(uεjn )λn → ∇U in Lp0

loc(RN ) with p0 = p(x0).

Proof. The result follows from Lemma 3.1 exactly as Lemma 3.2 in [5]. �

4. Basic limits

In this section we analyze some limits that are crucial in the understanding of general limits.
We start with the following lemma
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Lemma 4.1. Let uεj , fεj , pεj , εj, u, f and p be as in Lemma 3.3.

Then there exists χ ∈ L1
loc(Ω) such that, for a subsequence, Bεj (uεj ) → χ in L1

loc(Ω), with χ ≡ M in
{u > 0} and χ(x) ∈ {0,M} a.e. in Ω . If, in addition, fεj ⇀ 0 in {u ≡ 0}◦, there holds that χ ≡ M or
χ ≡ 0 on every connected component of {u ≡ 0}◦.

Proof. We first observe that, for every K ⊂⊂ Ω , there holds
K

|∇Bεj (uεj )| =

K

βεj (uεj )|∇uεj | ≤ CK

K

βεj (uεj ), (4.1)

where the last term is bounded by a constant C ′K due to estimate (3.1).

Since 0 ≤ Bεj (uεj ) ≤ M , then, there exists χ ∈ L1
loc(Ω) such that, for a subsequence, Bεj (uεj ) → χ in

L1
loc(Ω).

Proceeding as in the case p(x) ≡ 2 (see [17, Lemma 3.1]) we deduce that χ ≡ M in {u > 0} and
χ(x) ∈ {0,M} a.e. in Ω .

Finally, if fεj ⇀ 0 in {u ≡ 0}◦, we take K ⊂⊂ {u ≡ 0}◦ in (4.1) and we observe that the last term there
goes to zero since, by (6) and (7) in Lemma 3.1, βεj (uεj ) ⇀ µ locally as measures, with µ = 0 in K. Thus
the result follows. �

Proposition 4.1. Let uεj be solutions to Pεj (fεj , pεj ) in a domain Ω ⊂ RN with 1 < pmin ≤ pεj (x) ≤
pmax < ∞ and pεj (x) Lipschitz continuous with ∥∇pεj∥L∞ → 0. Let x0 ∈ Ω and suppose uεj converge to
u0 = α(x − x0)+

1 uniformly on compact subsets of Ω , with α ∈ R, fεj ⇀ 0 ∗-weakly in L∞(Ω), pεj → p0
uniformly on compact subsets of Ω , with p0 ∈ R, and εj → 0. Then

α = 0 or α =
 p0

p0 − 1 M
1/p0

,

with

β(s) ds = M .

Proof. Assume, for simplicity, that x0 = 0. Since uεj ≥ 0, we have that α ≥ 0. If α = 0 there is nothing to
prove. So let us assume that α > 0.

Let ψ ∈ C∞0 (Ω). We claim that there holds that

−

Ω

|∇uεj |pεj
pεj

ψx1 dx+

Ω

|∇uεj |pεj−2∇uεj · ∇ψ uεjx1
dx+


Ω

fεjuεjx1
ψ dx

=

Ω

|∇uεj |pεj
pεj

log |∇uεj |(pεj )x1ψ dx−

Ω

|∇uεj |pεj
p2
εj

(pεj )x1ψ dx+

Ω

Bεj (uεj )ψx1 dx. (4.2)

In fact, let Ω ′ ⊂⊂ Ω be smooth and let vn be such that
div

 1
n

+ |∇vn|2
 pε(x)−2

2

∇vn

 = βε(uε) + fε = gε in Ω ′

vn = uε on ∂Ω ′,

(4.3)

were for simplicity we have denoted εj = ε. By the results in [12,8], vn ∈ C1,α(Ω ′) ∩ W 2,2
loc (Ω ′), with

∥vn∥C1,α(Ω ′) ≤ C, with C independent of n, and therefore, there exists v0 such that, for a subsequence,

vn → v0 uniformly in Ω ′

∇vn → ∇v0 uniformly in Ω ′.

We get ∆pε(x)v0 = ∆pε(x)u
ε = gε in Ω ′, with v0 = uε in ∂Ω ′ and therefore, v0 = uε.
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In order to get (4.2) we take as test function in the weak formulation of (4.3) the function ψvnx1 , with
ψ ∈ C∞0 (Ω ′). It follows that

−

Ω

 1
n

+ |∇vn|2
 pε−2

2 ∇vn · ∇vnx1 ψ dx

=

Ω

 1
n

+ |∇vn|2
 pε−2

2 ∇vn · ∇ψ vnx1 dx+

Ω

gεvnx1ψ dx. (4.4)

On the other hand,

−

Ω

 1
n + |∇vn|2

 pε
2

pε
ψx1 dx =


Ω

 1
n + |∇vn|2

 pε
2

pε

1
2 log
 1
n

+ |∇vn|2


(pε)x1ψ dx

−

Ω

 1
n + |∇vn|2

 pε
2

p2
ε

(pε)x1ψ dx+

Ω

 1
n

+ |∇vn|2
 pε−2

2 ∇vn · ∇vnx1 ψ, dx. (4.5)

Then, recalling that gε = βε(uε) + fε, we obtain from (4.4) and (4.5)

−

Ω

 1
n + |∇vn|2

 pε
2

pε
ψx1 dx+


Ω

 1
n

+ |∇vn|2
 pε−2

2 ∇vn · ∇ψ vnx1 dx+

Ω

fεvnx1ψ dx

=

Ω

 1
n + |∇vn|2

 pε
2

pε
log
 1
n

+ |∇vn|2
 1

2
pεx1ψ dx−


Ω

 1
n + |∇vn|2

 pε
2

p2
ε

pεx1ψ dx−

Ω

βε(uε)vnx1ψ dx.

Passing to the limit as n→∞ and integrating by parts in the last term, we get (4.2).

Now, by Lemma 4.1, we have that there exists χ ∈ L1
loc(Ω) such that, for a subsequence, Bεj (uεj )→ χ in

L1
loc(Ω). This, together with the strong convergence result in Lemma 3.1 and the fact that ∥∇pεj∥L∞ → 0

gives, when passing to the limit in (4.2),

−

Ω

|∇u0|p0

p0
ψx1 dx+


Ω

|∇u0|p0−2∇u0 · ∇ψ (u0)x1 dx =

Ω

χψx1 dx. (4.6)

Now let Bs(0) ⊂ Ω . Using that, by Lemma 4.1, χ ≡M in Bs(0)∩{x1 > 0} and χ ≡M in Bs(0)∩{x1 < 0},
for a constant M , with M = 0 or M = M , and the fact that∇u0 = αχ{x1>0}e1, we obtain for ψ ∈ C∞0 (Bs(0))

−

{x1>0}

αp0

p0
ψx1 dx+


{x1>0}

αp0ψx1 dx = M


{x1>0}

ψx1 +M


{x1<0}

ψx1 .

Then, integrating by parts, we get
−α
p0

p0
+ αp0


{x1=0}

ψ dx′ = M


{x1=0}

ψ dx′ −M

{x1=0}

ψ dx′.

Thus, (−α
p0

p0
+ αp0) = M −M . Since we have assumed that α > 0, it follows that M = 0 and therefore,

α =

p0
p0−1 M

1/p0
. �

5. Asymptotic behavior of limit functions

In this section we analyze the behavior of limit functions near the free boundary.
For the next result we will need the following definition

Definition 5.1. Let u be a continuous nonnegative function in a domain Ω ⊂ RN . Let x0 ∈ Ω ∩ ∂{u > 0}.
We say that x0 is a regular point from the positive side if there is a ball B ⊂ {u > 0} with x0 ∈ ∂B.
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Theorem 5.1. Let uεj , fεj , pεj , εj, u, f and p be as in Lemma 3.3.

Let x0 ∈ Ω ∩ ∂{u > 0}. Assume one of the following conditions holds:

(D) There exist γ > 0 and 0 < c < 1 such that, for every x ∈ Bγ(x0) ∩ ∂{u > 0} which is regular from the
positive side and r ≤ γ, there holds that |{u = 0} ∩Br(x)| ≥ c|Br(x)|.

(L) There exist γ > 0, θ > 0 and s0 > 0 such that for every point y ∈ Bγ(x0) ∩ ∂{u > 0} which is regular
from the positive side, and for every ball Br(z) ⊂ {u > 0} with y ∈ ∂Br(z) and r ≤ γ, there exists a
unit vector ẽy, with ⟨ẽy, z − y⟩ > θ∥z − y∥, such that u(y − sẽy) = 0 for 0 < s < s0.

Then,

lim sup
x→x0
u(x)>0

|∇u(x)| = 0 or lim sup
x→x0
u(x)>0

|∇u(x)| = λ∗(x0),

where λ∗(x) =

p(x)
p(x)−1 M

1/p(x)
and

β(s) ds = M .

Remark 5.1. In [20] we prove that if uεj , fεj , pεj , εj , u, f and p are as in Theorem 5.1, with uεj local
minimizers of an energy functional then, u satisfies condition (D) in Theorem 5.1 at every point in
Ω ∩ ∂{u > 0}.

Proof of Theorem 5.1. Let

α := lim sup
x→x0
u(x)>0

|∇u(x)|.

Since u ∈ Liploc(Ω), α < ∞. If, α = 0 there is nothing to prove. So, suppose that α > 0. By the definition
of α there exists a sequence zk → x0 such that

u(zk) > 0, |∇u(zk)| → α.

Let yk be the nearest point from zk to Ω ∩ ∂{u > 0} and let dk = |zk − yk|.

Consider the blow up sequence udk with respect to Bdk(yk). This is, udk(x) = 1
dk
u(yk + dkx). Since u

is locally Lipschitz, and udk(0) = 0 for every k, there exists u0 ∈ Lip(RN ), such that (for a subsequence)
udk → u0 uniformly on compact sets of RN .

Since ∆p(x)u = f in {u > 0}, by interior Hölder gradient estimates (see, for instance, [12]), we have that
∆p0u0 = 0 in {u0 > 0} with p0 = p(x0).

Now, set z̄k = (zk − yk)/dk ∈ ∂B1. We may assume that z̄k → z̄ ∈ ∂B1. Take

νk := ∇udk(z̄k)
|∇udk(z̄k)|

= ∇u(zk)
|∇u(zk)|

.

For a subsequence, and after a rotation, we can assume that νk → e1. Observe that B2/3(z̄) ⊂ B1(z̄k) for k
large, and therefore ∆p0u0 = 0 there. By interior Hölder gradient estimates, we have ∇udk → ∇u0 uniformly
in B1/3(z̄), and therefore ∇u(zk)→ ∇u0(z̄). Thus, ∇u0(z̄) = α e1 and, in particular, ∂x1u0(z̄) = α.

Next, we claim that |∇u0| ≤ α in RN . In fact, let R > 1 and δ > 0. Then, there exists τ0 > 0 such that
|∇u(x)| ≤ α+ δ for any x ∈ Bτ0R(x0). For |zk − x0| < τ0R/2 and dk < τ0/2 we have BdkR(zk) ⊂ Bτ0R(x0)
and therefore, |∇udk(x)| ≤ α + δ in BR for k large. Passing to the limit, we obtain |∇u0| ≤ α + δ in BR,
and since δ and R were arbitrary, the claim holds.
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Since ∇u0 is Hölder continuous in B1/3(z̄), there holds that ∇u0 ̸= 0 in a neighborhood of z̄. Thus,
u0 ∈W 2,2 in a ball Br(z̄) for some r > 0 (see, for instance, [25] or [8]) and, since

|∇u0|p0−2∇u0 · ∇ϕdx = 0 for every ϕ ∈ C∞0 (Br(z̄)),

taking ψ ∈ C∞0 (Br(z̄)) and ϕ = ψx1 , and integrating by parts we see that, for w = ∂u0
∂x1

and suitable
coefficients aij(∇u0),

N
i,j=1


Br(z̄)

aij

∇u0(x)


wxjψxi dx = 0.

This is, w is a solution to a uniformly elliptic equation

T w :=
N
i,j=1

∂

∂xi


aij

∇u0(x)


wxj


= 0.

Now, since w ≤ α in Br(z̄), w(z̄) = α and T w = 0 in Br(z̄), by the strong maximum principle we conclude
that w ≡ α in Br(z̄).

Now, since we can repeat this argument around any point where w = α, by a continuation argument, we
have that w = α in B1(z̄).

Therefore, ∇u0 = α e1 in B1(z̄) and we have, for some y ∈ RN , u0(x) = α(x1 − y1) in B1(z̄). Since
u0(0) = 0, there holds that y1 = 0 and u0(x) = αx1 in B1(z̄). Finally, since ∆p0u0 = 0 in {u0 > 0} by a
continuation argument we have that u0(x) = αx1 in {x1 ≥ 0}.

On the other hand, as u0 ≥ 0, ∆p0u0 = 0 in {u0 > 0} and u0 = 0 in {x1 = 0} we have, by Lemma A.1,
that

u0(x) = −ᾱx1 + o(|x|) in {x1 < 0}

for some ᾱ ≥ 0.

Now, define for λ > 0, (u0)λ(x) = 1
λu0(λx). There exist a sequence λn → 0 and u00 ∈ Lip(RN ) such that

(u0)λn → u00 uniformly on compact sets of RN . We have u00(x) = αx+
1 + ᾱx−1 .

We will show that ᾱ = 0.

In fact, first assume condition (D) holds. We observe that, for any R, there holds for large k, that

|{u = 0} ∩BdkR(yk)| ≥ c|BdkR(yk)|,

implying that

|{udk = 0} ∩BR(0)| ≥ c|BR(0)|,

and therefore

|{u0 = 0} ∩BR(0)| ≥ c|BR(0)|, and |{u00 = 0} ∩B1(0)| ≥ c|B1(0)|.

This shows that ᾱ = 0.

Now assume condition (L) holds. Then, for every k there exists a unit vector ẽk such that

⟨ẽk,
zk − yk
dk
⟩ > θ and u(yk − sdkẽk) = 0 for 0 < s < s0.

So that

udk(−sẽk) = 0 for 0 < s < s0.
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For a subsequence we have ẽk → ẽ, and zk−yk
dk
→ z̄, with ⟨ẽ, z̄⟩ ≥ θ, implying that u0(−sẽ) = 0 for

0 < s < s0 and thus, u00(−ẽ) = 0.

We now observe that, since we have seen that B1(z̄) ⊂ {u0(x) = αx1} = {x1 > 0} and 0 ∈ ∂B1(z̄), it
follows that z̄ = e1. Therefore 0 = u00(−ẽ) = ᾱ⟨ẽ, e1⟩ ≥ ᾱθ.

So that ᾱ = 0 under condition (L) as well.

Now, by Lemma 3.3 we see that there exists a sequence δn → 0 and solutions uδn to Pδn(fδn , pδn) such
that uδn → u0 uniformly on compact sets of RN , with fδn ⇀ 0 ∗-weakly in L∞ on compact sets of RN ,
pδn → p(x0) uniformly on compact sets of RN and ∥∇pδn∥L∞ → 0 on compact sets of RN .

Applying a second time Lemma 3.3 we find a sequence δ̃n → 0 and solutions uδ̃n to Pδ̃n(f δ̃n , pδ̃n) such
that uδ̃n → u00 uniformly on compact sets of RN , with f δ̃n ⇀ 0 ∗-weakly in L∞ on compact sets of RN ,
pδ̃n → p(x0) uniformly on compact sets of RN and ∥∇pδ̃n∥L∞ → 0 on compact sets of RN . Now we can
apply Proposition 4.1 and we conclude that α = λ∗(x0). �

Definition 5.2. Let v be a continuous nonnegative function in a domain Ω ⊂ RN . We say that v is
nondegenerate at a point x0 ∈ Ω ∩ {v = 0} if there exist c > 0, r0 > 0 such that one of the following
conditions holds:

−

Br(x0)

v dx ≥ cr for 0 < r ≤ r0, (5.1)

−

∂Br(x0)

v dx ≥ cr for 0 < r ≤ r0, (5.2)

sup
Br(x0)

v ≥ cr for 0 < r ≤ r0. (5.3)

We say that v is uniformly nondegenerate on a set Γ ⊂ Ω ∩ {v = 0} in the sense of (5.1) (resp. (5.2),
(5.3)) if the constants c and r0 in (5.1) (resp. (5.2), (5.3)) can be taken independent of the point x0 ∈ Γ .

Remark 5.2. Assume v ≥ 0 is locally Lipschitz continuous in a domain Ω ⊂ RN , v ∈ W 1,p(·)(Ω) with
∆p(x)v ≥ fχ{v>0}, where f ∈ L∞(Ω), 1 < pmin ≤ p(x) ≤ pmax <∞ and p(x) is Lipschitz continuous. Then
the three concepts of nondegeneracy in Definition 5.2 are equivalent (for the idea of the proof, see Remark
3.1 in [16], where the case p(x) ≡ 2 and f ≡ 0 is treated).

Remark 5.3. In [20] we prove that if uεj , fεj , pεj , εj , u, f and p are as in Lemma 3.3, with uεj local
minimizers of an energy functional then, u is locally uniformly nondegenerate on Ω ∩ ∂{u > 0}.

Theorem 5.2. Let uεj , fεj , pεj , εj, u, f and p be as in Lemma 3.3.

Let x0 ∈ Ω ∩∂{u > 0} and suppose that u is uniformly nondegenerate on Ω ∩∂{u > 0} in a neighborhood
of x0. Assume there is a ball B contained in {u = 0} touching x0, then

lim sup
x→x0
u(x)>0

u(x)
dist(x,B) = λ∗(x0), (5.4)

where λ∗(x) =

p(x)
p(x)−1 M

1/p(x)
and

β(s) ds = M .

Proof. Let ℓ be the finite limit on the left hand side of (5.4) and let yk → x0 with u(yk) > 0 be such that
u(yk)
dk
→ ℓ, dk = dist(yk, B).



20 C. Lederman, N. Wolanski / Nonlinear Analysis ( ) –

Consider the blow up sequence uk with respect to Bdk(xk), where xk ∈ ∂B are points with |xk − yk| = dk,
this is, uk(x) = u(xk+dkx)

dk
. Choose a subsequence with blow up limit u0, such that there exists

e := lim
k→∞

yk − xk
dk

.

As in Theorem 5.1, we see that ∆p0u0 = 0 in {u0 > 0} with p0 = p(x0).

By construction, u0(e) = ℓ = ℓ⟨e, e⟩, u0(x) ≤ ℓ⟨x, e⟩ for ⟨x, e⟩ ≥ 0, u0(x) = 0 for ⟨x, e⟩ ≤ 0.

Let us see that ℓ > 0. In fact, if ℓ = 0, then u0 ≡ 0. Since u(yk) > 0 and u(xk) = 0, there exists
zk ∈ ∂{u > 0} in the segment between yk and xk. By the nondegeneracy assumption,

sup
Br(zk)

u ≥ cr for 0 < r ≤ r0, c > 0

and, in particular,

sup
Bdk (zk)

u ≥ cdk for k ≥ k0.

Then, there exists ak such that |ak − zk| ≤ dk and u(ak) ≥ cdk. Then, letting x̄k = ak−xk
dk

, we get that
uk(x̄k) ≥ c, with |x̄k| ≤ 2. It follows that there exists x̄ with |x̄| ≤ 2 such that u0(x̄) ≥ c > 0, which is a
contradiction.

We now observe that ∇u0(e) = ℓ e, and thus, |∇u0(e)| = ℓ > 0. Using that ∇u0 is continuous in {u0 > 0}
we deduce, from the fact that ∆p0u0 = 0 in {u0 > 0}, that u0 ∈ W 2,2

loc in {u0 > 0} ∩ {|∇u0| > 0}. Then, u0
is a solution of Lv = 0 in {u0 > 0} ∩ {|∇u0| > 0} where

Lv :=
N
i,j=1

bij(∇u0)vxixj

is the uniformly elliptic operator given by

bij(z) = δij + (p0 − 2)
|z|2

zizj .

Since w(x) = ℓ⟨x, e⟩ also satisfies Lw = 0 we have, from the strong maximum principle, that u0 and w

must coincide in a neighborhood of the point e.

By continuation we have that u0(x) = ℓ⟨x, e⟩+. Thus, applying Lemma 3.3 as we did in Theorem 5.1 and
using Proposition 4.1, we get that ℓ = λ∗(x0). �

Definition 5.3. We say that ν is the inward unit normal to the free boundary ∂{u > 0} at a point
x0 ∈ ∂{u > 0} in the measure theoretic sense, if ν ∈ RN , |ν| = 1 and

lim
r→0

1
rN


Br(x0)

|χ{u>0} − χ{x / ⟨x−x0,ν⟩>0}| dx = 0. (5.5)

Theorem 5.3. Let uεj , fεj , pεj , εj, u, f and p be as in Lemma 3.3.

Let x0 ∈ Ω ∩ ∂{u > 0} be such that ∂{u > 0} has at x0 an inward unit normal ν in the measure
theoretic sense and suppose that u is nondegenerate at x0. Assume, in addition, that either condition (D) or
condition (L) in Theorem 5.1 holds at x0. Then,

u(x) = λ∗(x0)⟨x− x0, ν⟩+ + o(|x− x0|),

where λ∗(x) =

p(x)
p(x)−1 M

1/p(x)
and

β(s) ds = M .
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Proof. Assume that x0 = 0, and ν = e1. Take uλ(x) = 1
λu(λx). Let ρ > 0 such that Bρ ⊂⊂ Ω . Since

uλ ∈ Lip(Bρ/λ) uniformly in λ, uλ(0) = 0, there exist λj → 0 and U ∈ Lip(RN ) such that uλj → U

uniformly on compact sets of RN . From Lemma 3.1, ∆p(λx)uλ = λf(λx) in {uλ > 0}. Using the fact that e1
is the inward normal in the measure theoretic sense, we have, for fixed k,

|{uλ > 0} ∩ {x1 < 0} ∩Bk| → 0 as λ→ 0.

Hence, U = 0 in {x1 < 0}. Moreover, U is nonnegative in {x1 > 0}, ∆p0U = 0 in {U > 0} with p0 = p(x0)
and U vanishes in {x1 ≤ 0}. Then, by Lemma A.1 we have that there exists α ≥ 0 such that

U(x) = αx+
1 + o(|x|).

By Lemma 3.3 we see that there exist a sequence δn → 0 and solutions uδn to Pδn(fδn , pδn) such that
uδn → U uniformly on compact sets of RN , with fδn ⇀ 0 ∗-weakly in L∞ on compact sets of RN , pδn → p(x0)
uniformly on compact sets of RN and ∥∇pδn∥L∞ → 0 on compact sets of RN .

Define Uλ(x) = 1
λU(λx), then Uλ → αx+

1 uniformly on compact sets of RN . Applying a second time
Lemma 3.3 we find a sequence δ̃n → 0 and solutions uδ̃n to Pδ̃n(f δ̃n , pδ̃n) such that uδ̃n → αx+

1 uniformly
on compact sets of RN , with f δ̃n ⇀ 0 ∗-weakly in L∞ on compact sets of RN , pδ̃n → p(x0) uniformly on
compact sets of RN and ∥∇pδ̃n∥L∞ → 0 on compact sets of RN .

By the nondegeneracy assumption on u, we have
1
rN


Br

uλj dx ≥ cr

and then
1
rN


Br

Uλj dx ≥ cr.

Therefore α > 0. Now, by Proposition 4.1, α = λ∗(x0).

We have shown that

U(x) =

λ∗(x0)x1 + o(|x|) x1 > 0
0 x1 ≤ 0.

Then, using that ∆p(λx)uλ = λf(λx) in {uλ > 0}, by interior Hölder gradient estimates we have
∇uλj → ∇U uniformly on compact subsets of {U > 0}. Then, by Theorem 5.1, |∇U | ≤ λ∗(x0) in RN .
As U = 0 on {x1 = 0} we have, U ≤ λ∗(x0)x1 in {x1 > 0}.

We claim that either U ≡ λ∗(x0)x1 in {x1 > 0} or else U < λ∗(x0)x1 in {x1 > 0}.

In fact, if there exists x̄ with x̄1 > 0 such that the equality holds at x̄, then we proceed exactly as we
did in the proof of Theorem 5.2 and deduce, from the strong maximum principle, that equality holds in a
neighborhood of x̄. Then, by continuation, we get U ≡ λ∗(x0)x1 in {x1 > 0}.

So let us now assume that U < λ∗(x0)x1 in {x1 > 0}. Let δ > 0 be such that U(δe1) > 0. Let w be such
that 

∆p0w = 0 in B+
δ

w = 0 on {x1 = 0}
w = U on ∂Bδ ∩ {x1 > 0}.

Since ∆p0U ≥ 0 (this follows, for instance, from the application of Lemma 3.2 with g = 0 and p(x) = p0),
we have that w ≥ U in B+

δ . Therefore w ≥ λ∗(x0)x1 + o(|x|) in B+
δ .
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We also have w ≤ λ∗(x0)x1 in B+
δ . Moreover, w < λ∗(x0)x1 in B+

δ , because this holds on ∂Bδ ∩{x1 > 0},
and with the same argument employed above we can see that, if equality holds at a point in B+

δ , then it
must hold everywhere on B+

δ .

On the other hand, we know that w ∈ C1,α(B+
σ ) for any σ < δ, and since w ≥ λ∗(x0)x1 + o(|x|) in B+

δ ,
then |∇w(0)| > 0, implying that |∇w| > 0 in B+

γ for some γ > 0.

Since, in B+
γ , both w and λ∗(x0)x1 are solutions to Lv = 0, with L a linear uniformly elliptic

operator in nondivergence form, with w < λ∗(x0)x1 in B+
γ , from the Hopf’s boundary principle we get

that w ≤ (λ∗(x0) − ρ)x1 + o(|x|) for some ρ > 0 in B+
γ . This is in contradiction with the fact that

w ≥ λ∗(x0)x1 + o(|x|) in B+
δ .

This shows that U ≡ λ∗(x0)x1 in {x1 > 0}. The proof is complete. �

6. Weak solutions to the free boundary problem P (f, p, λ∗)

In this section we give a notion of weak solution to the free boundary problem (P (f, p, λ∗)) and we show
that, under suitable assumptions, limit functions to problems Pε(fε, pε) are weak solutions, in this sense, to

the free boundary problem with λ∗(x) =

p(x)
p(x)−1 M

1/p(x)
, p = lim pε and f = lim fε.

As a consequence, we are able to apply to limit functions the result on the regularity of the free boundary
we prove in [19] (see Theorem 6.2).

Definition 6.1. Let Ω ⊂ RN be a domain. Let p be a measurable function in Ω with 1 < pmin ≤ p(x) ≤
pmax < ∞, λ∗ continuous in Ω with 0 < λmin ≤ λ∗(x) ≤ λmax < ∞ and f ∈ L∞(Ω). We call u a weak
solution of (P (f, p, λ∗)) in Ω if

(1) u is continuous and nonnegative in Ω , u ∈W 1,p(·)(Ω) and ∆p(x)u = f in Ω ∩ {u > 0}.
(2) For D ⊂⊂ Ω there are constants 0 < cmin ≤ Cmax and r0 > 0 such that for balls Br(x) ⊂ D with

x ∈ ∂{u > 0} and 0 < r ≤ r0

cmin ≤
1
r

sup
Br(x)

u ≤ Cmax.

(3) For HN−1 a.e. x0 ∈ ∂red{u > 0} (this is, for HN−1-almost every point x0 such that ∂{u > 0} has an
exterior unit normal ν(x0) in the measure theoretic sense) u has the asymptotic development

u(x) = λ∗(x0)⟨x− x0, ν(x0)⟩− + o(|x− x0|). (6.1)

(4) For every x0 ∈ Ω ∩ ∂{u > 0},

lim sup
x→x0
u(x)>0

|∇u(x)| ≤ λ∗(x0).

If there is a ball B ⊂ {u = 0} touching Ω ∩ ∂{u > 0} at x0, then

lim sup
x→x0
u(x)>0

u(x)
dist(x,B) ≥ λ

∗(x0).
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From the definition of weak solution above, and the results in the previous sections we obtain:

Theorem 6.1. Let uεj , fεj , pεj , εj, u, f and p be as in Lemma 3.3.

Assume that u is locally uniformly nondegenerate on Ω ∩∂{u > 0} and that at every point x0 ∈ Ω ∩∂{u >
0} either condition (D) or condition (L) in Theorem 5.1 holds. Then, u is a weak solution to the free boundary
problem: u ≥ 0 and 

∆p(x)u = f in {u > 0}
u = 0, |∇u| = λ∗(x) on ∂{u > 0}

(P (f, p, λ∗))

with λ∗(x) =

p(x)
p(x)−1 M

1/p(x)
and M =


β(s) ds.

Proof. The result follows from Theorem 2.1, Lemma 3.1, Remark 5.2 and Theorems 5.1–5.3. �

Remark 6.1. In [20] we prove that if uεj , fεj , pεj , εj , u, f and p are as in Lemma 3.3, with uεj local
minimizers of an energy functional, u is under the assumptions of Theorem 6.1.

In [19] we prove the following result for weak solutions that applies, in particular, to limit functions u as
those in Theorem 6.1, at every point in Ω ∩ ∂red{u > 0}.

Theorem 6.2. Let p ∈ Lip(Ω) and λ∗ Hölder continuous in Ω . Let u be a weak solution of (P (f, p, λ∗)) in Ω .
Let x0 ∈ Ω ∩∂red{u > 0} be such that u has the asymptotic development (6.1). There exists r0 > 0 such that
Br0(x0)∩∂{u > 0} is a C1,α surface for some 0 < α < 1. It follows that, in Br0(x0), u is C1 up to ∂{u > 0}
and the free boundary condition is satisfied in the classical sense. In addition, there is a neighborhood U of
x0 such that ∇u ̸= 0 in U ∩ {u > 0}, u ∈ W 2,2

loc (U ∩ {u > 0}) and the equation is satisfied in a pointwise
sense in U ∩ {u > 0}. If moreover ∇p and f are Hölder continuous in Ω , then u ∈ C2(U ∩ {u > 0}) and
the equation is satisfied in the classical sense in U ∩ {u > 0}.
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Appendix

In this appendix we collect some result on Lebesgue and Sobolev spaces with variable exponent as well
as some other results that are used in the paper.

Let p : Ω → [1,∞) be a measurable bounded function, called a variable exponent on Ω and denote
pmax = esssup p(x) and pmin = essinf p(x). We define the variable exponent Lebesgue space Lp(·)(Ω) to
consist of all measurable functions u : Ω → R for which the modular ϱp(·)(u) =


Ω
|u(x)|p(x) dx is finite. We

define the Luxemburg norm on this space by

∥u∥Lp(·)(Ω) = ∥u∥p(·) = inf{λ > 0 : ϱp(·)(u/λ) ≤ 1}.

This norm makes Lp(·)(Ω) a Banach space.
One central property of these spaces (since p is bounded) is that ϱp(·)(ui)→ 0 if and only if ∥ui∥p(·) → 0,

so that the norm and modular topologies coincide. In fact, we have
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Proposition A.1. There holds

min


Ω

|u|p(x) dx
1/pmin

,


Ω

|u|p(x) dx
1/pmax

≤ ∥u∥Lp(·)(Ω)

≤ max


Ω

|u|p(x) dx
1/pmin

,


Ω

|u|p(x) dx
1/pmax

.

Let W 1,p(·)(Ω) denote the space of measurable functions u such that u and the distributional derivative
∇u are in Lp(·)(Ω). The norm

∥u∥1,p(·) := ∥u∥p(·) + ∥|∇u|∥p(·)

makes W 1,p(·) a Banach space.
The space W 1,p(·)

0 (Ω) is defined as the closure of the C∞0 (Ω) in W 1,p(·)(Ω).
In some occasions, it is necessary to assume extra hypotheses on the regularity of p(x). We say that p is

log-Hölder continuous if there exists a constant C such that

|p(x)− p(y)| ≤ Clog |x− y|


if |x− y| < 1/2.
If one assumes that p is log-Hölder continuous then, there holds that C∞(Ω) is dense in W 1,p(·)(Ω).
Some important results for these spaces are

Theorem A.1. Let p′(x) such that

1
p(x) + 1

p′(x) = 1.

Then Lp
′(·)(Ω) is the dual of Lp(·)(Ω). Moreover, if pmin > 1, Lp(·)(Ω) and W 1,p(·)(Ω) are reflexive.

Theorem A.2. Let q(x) ≤ p(x), then Lp(·)(Ω) ↩→ Lq(·)(Ω) continuously.

We also have the following Hölder’s inequality.

Theorem A.3. Let p′(x) be as in Theorem A.1. Then there holds
Ω

|f | |g| dx ≤ 2∥f∥p(·)∥g∥p′(·),

for all f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω).

The following version of Poincare’s inequality holds.

Theorem A.4. Let Ω be bounded. Assume that p(x) is log-Hölder continuous in Ω . For every u ∈W 1,p(·)
0 (Ω),

the inequality

∥u∥Lp(·)(Ω) ≤ C∥∇u∥Lp(·)(Ω),

holds with a constant C depending on N, diam(Ω) and the log-Hölder modulus of continuity of p(x).

For the proof of these results and more about these spaces, see [11,14] and the references therein.
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Remark A.1. For any x ∈ Ω , ξ, η ∈ RN fixed we have the following inequalities

|η − ξ|p(x) ≤ C(|η|p(x)−2η − |ξ|p(x)−2ξ)(η − ξ) if p(x) ≥ 2,

|η − ξ|2

|η|+ |ξ|

p(x)−2
≤ C(|η|p(x)−2η − |ξ|p(x)−2ξ)(η − ξ) if p(x) < 2.

These inequalities imply that the function A(x, ξ) = |ξ|p(x)−2ξ is strictly monotone. Then, the comparison
principle for the p(x)-Laplacian holds since it follows from the monotonicity of A(x, ξ).

We will also need

Lemma A.1. Let 1 < p0 < +∞. Let u be Lipschitz continuous in B+
1 , u ≥ 0 in B+

1 , ∆p0u = 0 in {u > 0}
and u = 0 on {xN = 0}. Then, in B+

1 u has the asymptotic development

u(x) = αxN + o(|x|),

with α ≥ 0.

Proof. See [5] for p0 = 2, [10] for 1 < p0 < +∞ and [21] for a more general operator. �
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Pitman, London, 1991, pp. 65–129.

[5] L.A. Caffarelli, C. Lederman, N. Wolanski, Uniform estimates and limits for a two phase parabolic singular perturbation
problem, Indiana Univ. Math. J. 46 (2) (1997) 453–490.

[6] L.A. Caffarelli, C. Lederman, N. Wolanski, Pointwise and viscosity solutions for the limit of a two phase parabolic singular
perturbation problem, Indiana Univ. Math. J. 46 (3) (1997) 719–740.

[7] L.A. Caffarelli, J.L. Vazquez, A free boundary problem for the heat equation arising in flame propagation, Trans. Amer.
Math. Soc. 347 (1995) 411–441.

[8] S. Challal, A. Lyaghfouri, Second order regularity for the p(x)-Laplace operator, Math. Nachr. 284 (10) (2011) 1270–1279.
[9] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66

(4) (2006) 1383–1406.
[10] D. Danielli, A. Petrosyan, H. Shahgholian, A singular perturbation problem for the p-Laplace operator, Indiana Univ.

Math. J. 52 (2) (2003) 457–476.
[11] L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesque and Sobolev Spaces with Variable Exponents, in: Lecture Notes

in Mathematics, vol. 2017, Springer, 2011.
[12] X. Fan, Global C1,α regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235

(2007) 397–417.
[13] J. Fernandez Bonder, S. Mart́ınez, N. Wolanski, A free boundary problem for the p(x)-Laplacian, Nonlinear Anal. 72 (2010)

1078–1103.
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