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a b s t r a c t

In this work, we formulate a dynamic first principle-based eutrophication model for a reservoir and
perform global sensitivity analysis to determine most influential parameters. Both first-order and total
sensitivity indices profiles have been calculated throughout a time horizon of one year on main differ-
ential state variables, which include cyanobacteria, diatoms and chlorophyta concentration, as well as
main nutrient concentration. Numerical results have shown a marked seasonality in sensitivity indices
and have allowed ranking of parameters, which in turn have been estimated with observed data from the
study case, Paso de las Piedras reservoir (Bahía Blanca, Argentina).

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Most water bodies in the world are becoming increasingly
eutrophic due to anthropogenic activities. To address restoration,
significant progress has been made, during the last decade, in the
development of mechanistic water quality models (Hamilton and
Schladow, 1997; Schladow and Hamilton, 1997; Omlin et al., 2001a;
Zhang et al., 2004; Arhonditsis and Brett, 2005a,b). Once calibrated
and validated, these models provide a useful tool to study ecosystem
performance, to forecast biological communities response to changes
in the driving conditions (climate change, alterations in nutrient
loads) and to evaluate optimal restorationpolicies that can be applied
to the water body (Anh et al., 2006; Saloranta and Andersen, 2007;
Cossarini and Solidoro, 2008; Estrada et al., 2009b).

Mechanistic eutrophication models represent ecological
processes through a set of complex nonlinear differential algebraic
equations, with rate coefficients that require calibration to suit site-
specific conditions (Hamilton and Schladow, 1997). Therefore,
a dynamic parameter estimation problem is critical in the develop-
ment of a eutrophication model. However, as in most cases it is not

possible to estimate all parameters due to their large number in
relation to data availability, a ranking of the most influential param-
eters onmodel outputs must bemade prior to parameter estimation.

In order to identify main parameters, that is, the parameters
whose uncertainty gives larger variations in model outputs, sensi-
tivity analysis is performed as an initial step inmodel development.
Several sensitivity analysismethods have been applied in ecological
modeling and they can be classified into two main categories: local
and global. In local sensitivity analysis, the effect of infinitesimal
variations one-at-a-time of the parameters on a particular model
output is studied. These methods are based on a Taylor series linear
expansion around the nominal trajectories and are model depen-
dent (Omlin et al., 2001b; Pastres et al., 2003; Cariboni et al., 2007;
Norton, 2008). Therefore, the local sensitivity approach can fail
when the model under study is nonlinear, as it is the case in most
ecological systems, with important interactions among input
parameters (Pastres and Ciavatta, 2005; Cariboni et al., 2007).

Omlin et al. (2001b) applied a local sensitivity analysis described
byBrunet al. (2002) to anecologicalmodel developed for LakeZürich.
This approach involves a pre-selection of parameters that could be
reasonably estimated from the available data andwhich are classified
into three uncertainty categories based on previous knowledge
(accurately, intermediate and poorly knownparameters). The control
parameter selection is based on diagnostic measures: the sensitivity
and collinearity indices, which allow selection of parameter sets to
use in calibration. This method has been applied to a few models

* Corresponding author at: PLAPIQUI, Planta Piloto de Ingeniería Química (UNS e

CONICET), Camino La Carrindanga Km 7, Bahía Blanca, Argentina. Tel.: þ54
2914861700; fax: þ54 2914861600.

E-mail address: sdiaz@plapiqui.edu.ar (M.S. Diaz).

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft

1364-8152/$ e see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.envsoft.2010.06.009

Environmental Modelling & Software 25 (2010) 1539e1551



developed for aquatic ecosystems (e. g. Lindenschmidt, 2006; Anh
et al., 2006; Mieleitner and Reichert, 2006).

On the other hand, global sensitivity analysis provides informa-
tion on model outputs when the entire range of variation of
parameters is explored simultaneously (Sobol’, 1990, 2001; Sobol’
and Levitan, 1999; Saltelli and Sobol’, 1995; Homma and Saltelli,
1996; Saltelli et al., 1999, 2004; Saltelli and Tarantola, 2002).
Although the disadvantage of these methods is its higher compu-
tational cost, the increasing computational power of computers
allows the application of approaches based on sampling techniques
such as Monte Carlo Simulations (MCS) or Latin Hypercube (LHS),
even in complexmodels. They are very powerful, robust and flexible
compared to the remaining methods (Manache and Melching,
2008). Furthermore, they provide more realistic results, since
parameter interactions can be identified and are model-indepen-
dent because the assumptionof linearity or additivityof themodel is
not required (Saltelli et al., 2004). Håkanson (2000) has applied
Monte Carlo Sampling to lake eutrophication models, as well as the
characteristic coefficients of variation (CV) to study the uncertainty
and sensibility in a set of lake variables. Manache and Melching
(2008) have studied sensitivity for a model representing Denver
River (Belgium) through Latin Hypercube Sampling technique and
quantified the effects on model output with statistical measures
based on regression and correlation analysis. The screening tech-
nique proposed by Morris (Morris, 1991; Campolongo et al., 2007;
Nguyen and Kok, 2007) has been applied by Cossarini and Solidoro
(2008) to a trophodynamic model of Gulf Trieste. Regarding the
application of global sensitivity analysis to water quality models,
Pastres et al. (1999) have studied the sensitivity of six factors in
a model developed for the central part of Venice Lagoon. Chu et al.
(2007) performed sensitivity analysis on a simple model of Black
Sea consisting of three components (nutrients, phytoplankton and
zooplankton), with twelve uncertain parameters. Another global
sensitivity approach carried out on water quality models is Fourier
Amplitude Sensitivity Test (FAST, Cukier et al.,1973,1978; Koda et al.,
1979a,b; McRae et al., 1982; Liepmann and Stephanopoulos, 1985;
Sobol’, 1990), which has been applied to MyLake model (Multi-
year Lake Simulation, Saloranta andAndersen, 2007). In thismethod
values formodel parameters are sampled in awave-like form, so that
the amplitude of the particular wave is equal to the parameters
predefined variation range.

In this work, we perform global sensitivity analysis to a first
principle-based eutrophication model we have developed for Paso
de las Piedras reservoir, which provides drinking water for two
cities in Argentina (Bahia Blanca and Punta Alta) with a population
of over 450,000. The model comprises twenty one differential
equations and sixty algebraic ones, with sixty five parameters, from
which we have considered twenty three as uncertain parameters.
We have implemented a variance-based global sensitivity analysis,
Sobol’ method, to identify most influential model parameters on
the water quality model as well as non-influential ones. Main
parameters are estimated in another study, based on collected data
from the reservoir (Estrada et al., 2009a) and the calibrated model
is formulated within a dynamic optimization framework as an
optimal control problem to determine biorestoration policies
(Estrada et al., 2009b). The determination of dynamic
Sobol’eSaltelli sensitivity indices (Saltelli et al., 1999; Sobol’, 2001)
has allowed ranking of the parameters according to their effect on
main differential state variables variance.

2. Methods

2.1. First principle-based water quality model for Paso de las Piedras Reservoir

The case study is Paso de las Piedras Reservoir, which is located in Buenos Aires
Province (Argentina) at 38� 220 S and 61� 120 W, within a protected area, Provincial

Park Paso de la Piedras. It is an artificial water body that was built by damming the
Sauce Grande River to supply drinking water to more than 450,000 inhabitants of
two cities in Argentina (Bahía Blanca and Punta Alta) and for industrial purposes at
a petrochemical complex nearby. Main features of the reservoir are shown in Table 1.
Another distinctive feature of this water body is that there is no stratification
(Intartaglia and Sala, 1989), probably due to the fact that the reservoir is wind-
exposed throughout the entire year. The reservoir has two tributaries, Sauce Grande
River and El Divisorio Stream, which run through an important agricultural area in
the country. The high discharge of plant nutrients (mainly phosphorus, nitrogen and
silica) into the reservoir along with the high retention time (four years) has made
this water body eutrophic. Therefore, there are recurrent cyanobacteria blooms that
produce several problems to humans and the natural ecosystem (Intartaglia and
Sala, 1989; Parodi et al., 2004).

To develop a first principle-based ecological water quality model of Paso de las
Piedras Reservoir, we have formulated dynamic mass balances for the three main
phytoplankton groups (Cyanobacteria, Diatoms and Chlorophyta), nutrients (nitrate,
ammonium, organic nitrogen, phosphate and organic phosphate), dissolved oxygen
and oxygen biochemical demand. We have included a correlation for zooplankton
concentration profile, based on collected data from the reservoir, to take into
account zooplankton grazing on phytoplankton. Main simplifying assumptions in
the model are: horizontally averaged compositions, phosphorous as limiting
nutrient and constant liquid density and reservoir transversal area. To consider
horizontally averaged compositions, we analyzed collected data at four existing
sampling stations. Two of them are coastal and the remaining ones are in central
parts of the reservoir. The analysis of the data collected during a bloom period, gave
up to 8, 9 and 12% average relative differences in nitrate, phosphate and total
phytoplankton concentrations, respectively, as related to the first sampling station.
These small differences can be explained with the fact that the reservoir is located in
a windy area and it is wind-exposed throughout the entire year due to the low
topology and support the simplifying assumption. A global mass balance takes into
account not only inflows from tributaries and outflows to the potabilization plant
and the downstream river, but inputs from rain (Qrain) and outputs (Qevap) due to
evaporation (Eq. (1)). Composition gradients have been considered along the water
column height, rendering a partial differential algebraic equations (PDAE) system. To
transform the resulting PDAE into a set of ordinary differential equations, the
column height is discretized into two layers, according to available observed data
from the lake that can be used for parameter estimation Eqs. (2a) and (2b). Mass
balances in each spatial layer include component inputs from tributaries (QIN),
outputs for both potabilization and industrial purposes (QOUT) and the river itself,
generation and consumption, and transference between layers, also accounting for
lake volume variability (through upper layer height variability). Algebraic equations
stand for the generation/consumption terms, as well as for seasonal climatological
forcing functions. Forcing functions (temperature, solar radiation, rain, evaporation
and river inflows and corresponding concentrations) are represented by sinusoidal
functions, based on data from Paso de las Piedras Reservoir. Kinetic and physico-
chemical parameters are included within the generation/consumption terms.

Total mass balance

dhT
dt

¼ 1
rA

"XNIN

k¼1

QINk
�
XNOUT

m¼1

QOUTm
þ Qrain � Qevap

#
; (1)

where k stands for Sauce Grande River and El Divisorio Stream;m stands for outputs
to potabilization and industrial purposes and the downstream Sauce Grande River.

Upper layer

dCUj
dt

¼
XNIN

k¼1

QINU;k

VU
CINUj;k

� QOUTU

VU
CU;j þ rU;j �

kdA
DhUhU

�
CU;j � CL;j

�� CUj
hU

dhU
dt

(2a)

Lower layer

dCLj
dt

¼ QOUTL

VL
CL;j þ rL;j þ

kdA
DhUhU

�
CU;j � CL;j

�� CLj
hL

dhL
dt

; (2b)

where U and L stand for the upper and lower layers, respectively; j, for cyanobac-
teria, diatoms, chlorophytes, ammonium, nitrate, phosphate, organic nitrogen,
organic phosphorus, dissolved oxygen and carbonaceous biochemical demand of
oxygen. QOUT,U and QOUT,L are the outputs to Sauce Grande River and potabilization
plant and industrial purposes, respectively. Finally, hU and VU are lake upper layer

Table 1
Paso de las Piedras Reservoir data (Schefer, 2004).

Area of drainage basin (km2) 1620
Perimeter of coastline (km) 60
Surface (km2) 36
Mean depth (m) 8.2 m
Maximum depth (m) 28 m
Maximum volume (hm3) 328 Hm3

Retention time (years) 4
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Table 2
Rate equations for Paso de las Piedras eutrophication model, Eqs. (2a) and (2b); i¼ upper (U) and lower layer (L); j¼ cyanobacteria, diatoms and chlorophytes.

Phytoplankton growth
rij ¼ Rij;growth � Rij;resp � Rij;death � Rij;settling � Rij;graz
Phytoplankton growth rate Rij;growth ¼ ki;growth f ðTÞij f ðIÞij f ðNÞijCij

Temperature limitation f ðTÞij ¼ �ðTj � Topti Þ2
T2opti

þ 1

Nutrient limitation

f ðNÞij ¼

8><
>:

Ci;PO4

Ci;PO4
þ KPi

;
CSii

CSii þ KSj
i ¼ D

CPO4j

CPO4j
þKPi

i ¼ C;G

Light limitation f ðIÞij ¼ Ioi
Ioptj

exp

 
1� Ioi

Ioptj

!

Respiration Rij;resp ¼ kj;respq
ðT�20Þ
r Cij

Death Rij;death ¼ kj;deathq
ðT�20Þ
m Cij

Settling Rij;settling ¼ kj;settling
Cij

hi

Grazing Rij;graz ¼ kj;graz
Cij

Cij þ Kgraz
CZooi

Rate of change of nitrogen cycle compounds concentration
rU;NH4

¼ �RU;NH4 ;uptake � RiU;nit þ RU;NH4 ;death þ RU;NH4 ;miner
rL;NH4

¼ �RL;NH4 ;uptake � RL;i;nit þ RL;NH4 ;death þ RL;miner þ RL;NH4 ;sediment
ri;NO3

¼ �Ri;NO3 ;uptake þ Ri;NO3 ;nit � Ri;NO3 ;denit
ri;ON ¼ Ri;ON;death � Ri;miner � Ri;ON;settling
Phytoplankton NH4 uptake Ri;NH4 ;uptake ¼ P

j
ðancRj;growthPNH4

Þ

NH4 preference factor PNH4
¼ 1� expðjjCi;NH4

Þ

NH4 release by phytoplankton death Ri;NH4 ;death ¼ P
j
ðCijkj;deathancð1� fONÞÞ

Nitrification rate Ri;NH4 ;nit ¼ knitq
ðT�20Þ
nit

Ci;DO
Knit þ Ci;DO

Ci;NH4

ON mineralization rate Ri;miner ¼ kmnq
ðT�20Þ
mn

P
j
Cij

Kmpc þ
P
j
Cij

Ci;ON

NH4 release from sediments RL;NH4 ;sediment ¼ SNð1� CL;DO
KDOS þ CL;DO

ÞA

Phytoplankton NO3 uptake Ri;NO3 ;uptake ¼ P
j
ðancRj;growthð1� PNH4

ÞÞ

Denitrification rate Ri;NO3 ;denit ¼ kdenitq
ðT�20Þ
denit

Kdenit
Kdenit þ Ci;DO

Ci;NO3

ON release by phytoplankton death Ri;ON;death ¼ P
j
ðCijkj;deathancfONÞ

ON settling rate Ri;ON;settling ¼ kON;settlingð1� fDONÞ
Di

Ci;ON

Rate of change of phosphorus cycle compounds concentration
rU;PO4

¼ �RU;PO4 ;uptake þ RU;PO4 ;death þ RU;miner
rL;PO4

¼ �RL;PO4 ;uptake þ RL;PO4 ;death þ RL;miner þ RL;PO4 sediment
riOP ¼ Ri;OP;death � Rij;miner � Ri;OP;settling
Phytoplankton PO4 uptake Ri;PO4 ;uptake ¼ P

j
ðapcRj;growthÞ

PO4 release by phytoplankton death Ri;PO4 ;death ¼ P
j
ðCijkj;deathapcð1� fOPÞÞ

PO4 release from sediments RL;PO4 ;sediment ¼ SP

 
1� CL;DO

KDOS þ CL;DO

!
A

OP release by phytoplankton death Ri;OP;death ¼ P
j
ðCijkj;deathapcfOPÞ

OP mineralization rate Ri;miner ¼ kmpq
ðT�20Þ
mp

P
j
Cij

Kmpc þ
P
j
Cij

Ci;OP

OP settling rate Ri;OP;settling ¼ kOP;settlingð1� fDOPÞ
Di

Ci;OP
Rate of change of dissolved oxygen concentration
rU;DO ¼ RU;DO;reair � RU;DO;nitr þ RU;DO;resp=fot � RU;DO;bod
rL;DO ¼ �RL;DO;nitr � RL;DO;resp=fot � RL;DO;bod þ RL;DO;sediment
Re-aeration rate RU;DO;reair ¼ kaq

ðT�20Þ
a
DU

ðC* � CSÞ

Saturated dissolved oxygen C* ¼ 16:5� 8
22

T

DO consumed in nitrification process Ri;DO;nitr ¼ knitq
ðT�20Þ
nit

Ci;DO
Knit þ Ci;DO

Ci;NH4
aon

Net production of oxygen by respiration/photosynthesis process Ri;DO;resp=fot ¼ ðP
j
Rij;growth � Rij;respÞaoc

DO for organic matter oxidation Ri;DO;bod ¼ kbodq
ðT�20Þ
bod

Ci;DO
Kbod þ Ci;DO

CBDOi

Sediment oxygen demand RL;DO;sediment ¼ ksodq
ðT�20Þ
sod
DL

CL;DO
Ksod þ CL;DO

Zooplankton concentration correlation CZOOi ¼ 6:79� 10�4t6 � 2:65� 10�2t5 þ 3:93� 10�1t4 � 2:74t3 þ 8:80t2 � 10:26t þ 1:12



height and volume, respectively, while A is the reservoir transversal area and kd is
the vertical eddy diffusivity rate. Table 2 shows main rate equations, rU,j and rL,j, in
Eqs. (2a) and (2b) (Estrada et al., 2009a) . Table 3 summarizes the entire set of model
parameters and their nominal value.

2.2. Global sensitivity analysis on eutrophication models

Sensitivity analysis approaches can be broadly classified into local and global
ones. Local techniques compute sensitivity indices as the first partial derivative of
model output variables with respect to the parameter of interest. They are based on
a Taylor series expansion around the parameter nominal value. However, the
assumption of linearity is valid only within a narrow range of variation of the
parameter. Therefore, results from local sensitivity analysis may not be represen-
tative when the entire range of variation of parameters must be considered and
when dealing with nonlinear models, such as complex eutrophication mechanistic
ones. On the other hand, global sensitivity analysis is based on exploring the total
range of variation of model parameters, sampling from the distribution function
associated to each input parameter and on performing repeated model simulations.
These methods have a higher computational cost than local techniques, but they
provide more realistic results, since parameter interactions can be identified (Saltelli
et al., 2004; Pastres and Ciavatta, 2005). Furthermore, global methods do not require
the assumption of model linearity and/or additivity. State of the art techniques for
global sensitivity analysis include Morris method (Morris, 1991), Fourier Amplitude
Sensitivity Test (FAST) (Cukier et al., 1973) and Sobol’ method.

Sobol’ method is based on the same decomposition of variance as FAST, but
through the application of Monte Carlo methods in place of spectral analysis (Sobol’,
1990; Saltelli and Sobol’, 1995; Sobol’, 2001; Saltelli and Tarantola, 2002). The basic
idea is that given a function y¼ f(x,t), where y is a state differential or algebraic
variable (e.g. phytoplankton or nutrient concentration in the eutrophication model)
and x is a vector of k model input parameters (e.g. any model parameter from Table
2) and t is time, this function may be decomposed into terms of increasing
dimensionality (Sobol’, 1990). For the sake of clarity, in the following discussion we
drop the index t, assuming f and its expected value and variance are calculated at
each time instant:

f ¼ f0 þ
X
i

fiðxiÞ þ
X
i

X
j>1

fij
�
xi; xj

�þ/þ f12.k
�
xi; xj;.; xk

�
(3)

Eq. (3) is an ANOVA representation of the function y¼ f(x) if

Z
fi1.is

�
xi1.is

�
dxn ¼ 0 (4)

From (4), the summands in Eq. (3) are orthogonal and can be expressed as
integrals of f(x). By squaring Eq. (3) and integrating:

Z
f 2ðxÞdx� f0 ¼

Xk
s¼ 1

Xk
i1<.<is

f 2i1.is dxi1.dxis (5)

where

VðyÞ ¼
Z

f 2ðxÞdx� f 20 ; Vi1.is ¼
Z

f 2i1.isdxi1.dxis (6)

V(y) and correspond to the unconditional and conditional variance of the state
variable, respectively. The unconditional variance can be written within the vari-
ance-decomposition scheme (Sobol’, 1990), as:

VðyÞ ¼
X
i

Vi þ
X
i

X
j>i

Vij þ/þ V12.k (7)

Eqs. (3) and (6) are unique if input parameters are orthogonal and the summands in
Eq. (3) are square integrable in the domain of existence.

Despite that input factors are orthogonal or not, the unconditional variance can
be decomposed into the sum of the variance of a conditional expected value and the
expected value of a conditional variance:

VðyÞ ¼ VðEðyjxiÞÞ þ EðVðyjxiÞÞ (8)

VðyÞ ¼ VðEðyjx�iÞÞ þ EðVðyjx�iÞÞ (9)

where V and E correspond to variance and expected value operators, respectively. In
Eq. (8), VðEðyjxiÞÞ ¼ Vi computes the variance (overall possible realizations of
parameter xi) of the conditional expected value of the state variable y under all
parameters variation, except xi. It represents the expected reduction in the state
variable variance could be obtained if xi could be known or fixed. It is the first-order
effect associated to parameter xi. The second term, EðVðyjxiÞÞ, is the expected value
(overall realizations of parameter xi.) of the conditional variance of the state variable
y under all parameters variation, except xi. It represents the average state variable
variance that would be left if xi could be known or could be fixed.

The same can be stated for Eq. (9), by replacing xi for “all parameters except xi”
(x�i). In this way, the term EðVðyjx�iÞÞ ¼ VTOT

i computes the average state variable

variance that would be left if all parameters except xi could be known or could be
fixed; i.e., it takes into account all the terms in Eq. (3) that include xi, for the case of
orthogonal input factors.

If Eqs. (8) and (9) are divided by the unconditional variance, the following
expressions are obtained:

1 ¼ VðEðyjxiÞÞ
VðyÞ þ EðVðyjxiÞÞ

VðyÞ (10)

1 ¼ VðEðyjx�iÞÞ
VðyÞ þ EðVðyjx�iÞÞ

VðyÞ (11)

The first-order sensitivity index, Si and the total sensitivity index Si
TOT are

defined as:

Si ¼ VðEðyjxiÞÞ
VðyÞ ¼ Vi

VðyÞ (12)

STOTi ¼ EðVðyjx�iÞÞ
VðyÞ ¼ VTOT

i
VðyÞ (13)

Both Si and Si
TOT are goodmeasures for the effect of variation in parameters onmodel

outputs. Si gives the reduction on the unconditional variance of the state variable
that can be obtained if xi is fixed at its true value. On the other hand, SiTOT takes into
account the interactions among parameters, so it gives information on the non-
additive part of the model.

Usually,
Pk

i¼1 Si < 1 and Si < STOTi . However for a purely additive model and

orthogonal inputs,
Pk

i¼1 Si ¼ 1, which can be observed if Eq. (7) is divided by V(y)
and the interaction terms are canceled.

An additional index, Siint takes into account the effects of interactions among
model parameters and it can be calculated as:

Sinti ¼ STOTi � Si (14)

In summary, when Si is high, xi is an influential parameter; when Si and Si
TOT are very

different, there are important interactions between xi and other parameters (Siint is
important); when Si and Si

TOT are nearly equal (Siint nearly zero), there is little or no
interaction between xi and other parameters; when both Si and Si

TOT are small, xi is
not an influential parameter (neither alone nor in interactions with other
parameters).

Sobol’ (2001) has proposed a methodology to compute sensitivity indices, based
on Monte Carlo simulations, with a minimum amount of function evaluations. Main
steps for the dynamic case are as follows:

1. Generation of two different random sets of model parameters: x¼ (h,z) and
x0 ¼ (h0 ,z0) at each time instant. Each matrix has dimension N� k, where N is the
sample size for theMonte Carlomethod and k is the number of parameters; h is
a vector of dimension N� 1, which contains N random values for parameter xi
whose sensitivity indices are to be calculated, and z is a submatrix of dimension
N� (k� 1) and contains random values for the k� 1 remaining input
parameters.

2. Generation of two newmatrices by combination of x and x0 , which are required
for the computation of the time dependent expected values for state variables,
compositions, (c0(t) stands for E(c(t)jxi)) and unconditional variances (V(t)),, at
each time instant t, as well as the conditional variances (V(t)i stands for
VðEðcðtÞjxiÞÞ and V(t)�I stands for VðEðcðtÞjx�iÞÞ):

c0ðtÞ ¼ 1
N

XN
i¼1

cðt; xiÞ (15)

VðtÞ ¼ 1
N

XN
i¼1

c2ðt; xiÞ � c20ðtÞ (16)

VðtÞi ¼
1
N

XN
i¼1

cðt; xiÞc
�
t; hi; z

0
i
�� cðt; xiÞc

�
t; x0i
�

(17)

VðtÞ�i ¼
1
N

XN
i¼ 1

cðt; xiÞc
�
t; h0i; zi

�� c20ðtÞ (18)

3. Sensitivity indices profiles are calculated by the corresponding definitions
given above throughout the time horizon.

2.3. Numerical experiments

In the present study we have applied Global Sensitivity Analysis (GSA), as
described in the previous section, to the ecological water quality model of Paso de las
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Piedras Reservoir, Eqs. (1) and (2) and equations from Table 2 (Estrada et al., 2009a).
Global sensitivity analysis on a large-scale differential algebraic system of equations
has required special computational effort. As a first step, we have associated normal
probability distributions to each parameter as these distributions have been
frequently associated to parameters from an ecological water model in the literature
(Baklouti et al., 2006; Pastres and Ciavatta, 2005; Manache and Melching, 2008).
Regarding probability distribution parameters, we have assigned 10% standard
deviation around the nominal value for each parameter throughout the entire time
horizon to run the global sensitivity analysis. We have also explored changing
standard deviations according to variability of parameter values in the literature,
with standard deviations shown in Table 4. However, numerical results have shown
low sensitivity to these changes and do not change the parameter ranking. As
a second step, Monte Carlo simulations have been performed for the three matrices
of random parameters, as described in Section 2.2. The required number of scenarios
N is function of model complexity (Baklouti et al., 2006). The number of scenarios
has been estimated by performing stochastic simulations for increasing number of
scenarios and comparing mean value profiles for main differential variables. As it
can be seen in Figs. 1 and 2 for cyanobacteria and phosphate concentrations, both
mean concentration profiles remain unchanged for 1700e2000 scenarios, suggest-
ing that considering 1700 scenarios is appropriate for this model. The set of twenty
three parameters (Table 4) has been previously selected by performing stochastic
simulations when parameters vary one-at-a time over their range of variation, and
calculating the unconditional variance of main state variables, so parameters that
were feasible for tuning under biological considerations and produce values for
variances greater than 0.5 were selected. We have studied parameter influence on
the key state variables for the water quality model of Paso de las Piedras Reservoir,
i.e., cyanobacteria, diatoms, chlorophytes, nitrate and phosphate concentrations.
Stochastic simulations have been carried out in gPROMS (Process Systems
Enterprise, 2009) and numerical results have been exported to calculate sensi-
tivity indices within a Fortran 90 environment, as they could not be carried out in
gPROMS due to model size. Finally, we have calculated Sobol’ first and total order
sensitivity indices profiles for the twenty three selected parameters, as Saltelli et al.
(1999) and Sobol’ (2001), Eqs. (15)e(18) and (12)e(14), on a daily basis, within
a time horizon of one year.

3. Results

Global Sensitivity Analysis numerical results are presented in
Figs. 3e12 and Tables 5e10. Figs. 3, 5, 7, 9 and 11 show the temporal
variation for first-order sensitivity indices (Si) for cyanobacteria,
diatoms, chlorophytes, nitrate and phosphate concentrations,
respectively. An important feature of the dynamic sensitivity
analysis is that the influential parameter set changes with time,
which indicates changes in the dynamic behavior of the model
throughout the time horizon. As it can be seen in these figures, the
sum of Si is seldom equal to 1. Because the summation of the first-
order sensitivity indices is a measure of model additivity (Saltelli
et al., 2004), the cumulative area plots of Si show that there are
important interactions among parameters for the output of the five
analyzed state variables. We have also calculated Si

int in order to
quantify the contribution of parameter interaction. As indicated in
Section 2.2, this index is obtained as (SiTOT� Si) and it is ameasure of
how much a parameter is involved in interactions with any other
input parameter (Figs. 4, 6, 8,10 and 12). Tables 5e9 show Si and Si

int

values at four different time periods of the year corresponding to
phytoplankton peaks for parameters included in the present
sensitivity analysis.

Cyanobacteria concentration is the state variable that has larger
values for

P
Si¼1;.;23 throughout the entire time horizon, ranging

from 0.19 to 1.00 (Fig. 3 and Table 5). In summer, most of the
parameters have influence on cyanobacteria concentration profile,
but the main ones are qmp (temperature factor for organic phos-
phorus mineralization rate), qr (temperature factor for phyto-
plankton respiration rate), qm (temperature factor for
phytoplankton mortality rate), and K1 (background light attenua-
tion), as indicated by their larger Si values. Furthermore, the
summation over these four parameters explains around 44% of
cyanobacteria concentration variance. The remaining parameters
have less influence during this season. In fall and winter, main
parameters are qmp, qr, qm and K1, explaining a mean variance of
56%, ranging between 20 and 86%. In spring, fON (fraction of dead

and respired phytoplankton recycled to organic nitrogen pool), anc
(phytoplankton nitrogen to carbon ratio) and IoptC (optimal light
intensity for cyanobacteria) also become important, with a mean
variance of 45%. With respect to interactions among parameters,
Fig. 4 and Table 5 show that kC,growth (maximum growth rate for
cyanobacteria) is the most influential parameter over the entire
year, which indicates that even though kC,growth is not important in
first effect terms, it does affect cyanobacteria concentration
through interactions with other input parameters. In summer,
kC,growth has the largest Si

int value and except for fON, kmn, IoptD
(optimal light intensity for diatoms), qmp, qr, qm, the remaining
parameters are only influential through interactions with other
parameters. During the fall, kC,growth is the only important factor,
while in winter and spring, qr, kD,death, IoptC, K1 also become
significant.

Regarding Si profiles for diatom concentration, a marked sea-
sonality can be observed, with an average summation of 0.29,
ranging from 0 to 1. As with cyanobacteria concentration, several
parameters influence diatoms concentration variance in summer
and the

P
Si¼1;.;23 is equal to one at three times throughout the

time horizon (Fig. 5 and Table 6). However, in fall first effect indices
are not relevant while parameter interactions in this season are
very important (Fig. 6). The most important factors in this period
are kG,growth (maximum growth rate for chlorophytes), qmn and K1.
In winter, first effect terms become more important reaching
a
P

Si¼1;.;23 value of 0.71 with the followingmain parameters: qmp,
qr and kG,growth. Whereas in early spring these factors remain
important, toward the middle of the season, the set of influential
factors changes and important parameters are qm, kC,growth and K1.
Finally, we can conclude that over the entire year the set of most
influential factors related to parameter interactions includes
kG,growth, qmp, qr and qm (Fig. 6 and Table 6).

Average, minimum and maximum values of
P

Si¼1;.;23 for
chlorophytes are 0.23, 0 and 1, respectively. As with the other
phytoplankton groups (cyanobacteria and diatoms), in summerP

Si¼1;.;23 has larger values and several parameters are important
(Fig. 7 and Table 7). Parameters that have the most significant
effects on chlorophytes concentration are qmp and kG,growth in fall,
and kD,growth and kC,growth in winter. They account for 1e20% and
0.3e11% of the chlorophytes concentration variance, respectively.
By mid spring, first-order effects become more important
explaining up to 49% of the variance andmain parameters are K1, qm
and kC,growth. Siint for chlorophytes show that there is a regular set of
parameters that influence this state variable through interactions
over the entire time horizon, with major influence in winter and
early spring. Influential parameters are qmp, qr, qm, Knit and kG,growth.
In addition, kC,growth becomes important in fall, kmn, IoptG, IoptD,
kG,settling and kG,death in winter and K1 in spring (Fig. 8 and Table 7).

In summary, the most important parameters for the three
phytoplankton groups are: temperature adjustment for phos-
phorus mineralization rate, phytoplankton death and respiration
and the background light attenuation coefficient (qmp, qr, qm and
K1). It is important to note that cyanobacteria concentration is not
affected by its own maximum growth rate or any other (diatoms or
chlorophytes maximum growth rate) in first-order effects, while
diatoms and chlorophytes concentration are greatly influenced by
their maximum growth rate. Also, diatoms and chlorophytes
parameters are those that are most involved in interactions.

Regarding nitrate concentration, the parameters with most
significant effects in summer are kG,growth, qmn, anc, IoptG and
kD,settling, and kC,growth (Fig. 9). These parameters explain between
14 and 100% of the entire nitrate concentration variability. Knit
(half-saturation constant for oxygen limitation of nitrification) is
the most important parameter in fall and it is still influential until
themiddle of spring, when qmn, qr and K1 are also important. The set
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of main parameters involved in interactions with others parame-
ters for nitrate concentration include qr, qm, qmp, kG,growth and
kC,growth. For winter and spring, qmn is also influential (Fig. 10 and
Table 8).

qr, qm, qmp, kG,growth and kC,growth have themost significant effects
on phosphate concentration (Fig. 11 and Table 9) and they account

for about 32% of the overall observed variability. Until mid summer,
first-order effects explain the total variance of phosphate concen-
tration. Throughout fall, kG,growth is the only parameter with first-
term index accounting for about 24% of the output variance, while
kG,growth, qm and qmp account for 35% in winter. In summer, the
average variability related to

P
Si¼1;.;23 is 26% and the set of

Table 3
Model parameters for Paso de las Piedras eutrophication model and their nominal value.

Parameter Description Value

kC,growth (day�1) Maximum growth rate for cyanobacteria 0.195
kD,growth (day�1) Maximum growth rate for diatoms 0.653
kG,growth (day�1) Maximum growth rate for chlorophytes 0.785
kC,death (day�1) Mortality rate for cyanobacteria 0.019
kD,death (day�1) Mortality rate for diatoms 0.100
kG,death (day�1) Mortality rate for chlorophytes 0.100
kC,resp (day�1) Respiration rate for cyanobacteria 0.047
kD,resp (day�1) Respiration rate for diatoms 0.43
kG,resp (day�1) Respiration rate for chlorophytes 0.42
kC,settling (m/day) Settling velocity for cyanobacteria 0.15
kD,settling (m/day) Settling velocity for diatoms 0.20
kG,settling (m/day) Settling velocity for chlorophytes 0.15
ToptC (�C) Optimal temperature for cyanobacteria 30
ToptD (�C) Optimal temperature for diatoms 19
ToptG (�C) Optimal temperature for chlorophytes 20
IoptC (ly/day) Optimal light intensity for cyanobacteria 99
IoptD (ly/day) Optimal light intensity for diatoms 25
IoptG (ly/day) Optimal light intensity for chlorophytes 89.8
KPC (mgP/l) Half-saturation constant for P uptake by cyanobacteria 0.0002
KPD (mgP/l) Half-saturation constant for P uptake by diatoms 0.05
KPG (mgP/l) Half-saturation constant for P uptake by chlorophytes 0.0009
KS (mgSi/l) Half-saturation constant for Si uptake 0.0053
knit (day�1) Nitrification rate 0.09
kdenit (day�1) Denitrification rate 0.001
kmn (day�1) Organic nitrogen mineralization rate 0.032
kmp (day�1) Organic phosphorus mineralization rate 0.02
kbod (day�1) CBOD deoxygenation rate 0.5
ksod (day�1) Sediment oxygen demand rate 0.65
SN (gN/m2day) Release rate of ammonium from the sediment 0.4
SP (gP/m2day) Release rate of phosphate from the sediment 0.013
Knit (mg/day) Half-saturation const. for oxygen limitation of nitrification 0.115
Kdenit (mg/day) Half-saturation const. for oxygen limitation of denitrification 0.2
Kbod (mg/day) Half-saturation const. for oxygen limitation of CBOD oxidation 0.5
Ksod (mg/day) Half-saturation const. for sediment oxygen demand 0.4
Kmpc (mg/day) Half-saturation const. for phytoplankton limitation 1.00
KDOS (mg/day) Half-saturation const. for nutrient sediment fluxes 0.4
kON,settling (m/day) Settling velocity for organic nitrogen 0.03
kOP,settling (m/day) Settling velocity for organic phosphorus 0.03
Kbod,settling (m/day) Settling velocity for organic CBOD 0.03
qni Temperature adjustment for nitrification rate 1.080
qdenit Temperature adjustment for denitrification rate 1.080
qN Temperature adjustment for release of NH4 sediment rate 1.080
qP Temperature adjustment for release of PO4 sediment rate 1.080
qbod Temperature adjustment for CBOD deoxygenation rate 1.050
qr Temperature adjustment for phytoplankton respiration rate 1.04
qm Temperature adjustment for phytoplankton mortality rate 1.02
qmn Temperature adjustment for ON mineralization rate 1.08
qmp Temperature adjustment for OP mineralization rate 1.10
qsod Temperature adjustment for oxygen sediment demand rate 1.08
fON Fraction of dead and respired phytoplankton recycled to ON pool 0.5
fOP Fraction of dead and recycled phytoplankton recycled to OP pool 0.5
fDON Fraction of dissolved organic nitrogen 1.00
fDOP Fraction of dissolved organic phosphorus 1.00
fDBOD Fraction of dissolved CBOD 1.00
aoc (mgO/mgC) Oxygen to carbon ratio 2.67
cchl (mgC/mgChl) Phytoplankton carbon to chlorophyll ratio 50
K2 (m2/mg) Light attenuation coefficient for chlorophyll 0.002
JC,D,G (mgN/m3)�1 Strength of the ammonium preference 0.009
ka (day�1) Re-aeration rate 0.38
aon (mgO/mgN) Stoichiometric oxygen to nitrogen ratio for nitrification 0.216
anc (mgN/mgC) Phytoplankton nitrogen to carbon ratio 0.125
apc (mgP/mgC) Phytoplankton phosphorus to carbon ratio 0.01
K1 (m�1) Background light attenuation 1.97
A (km2) Transversal area of the lake 36
Kd (m2 day�1) Vertical eddy diffusivity rate 0.543
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influential parameters includes kG,growth, kC,growth and qm. The
maximum growth rate of the three phytoplankton groups (kG,growth,
kC,growth and kD,growth), qmp, qr and IoptD are the main parameters
involved in interactions for phosphate concentration (Fig. 12 and
Table 9).

Finally, Table 10 provides a summary of the contribution of the
selected set of main parameters to account for cyanobacteria and
phosphate concentration variability. It can be seen that the first six
parameters (qr, qm, qmp, kC,growth, kG,growth and K1) account for the
entire variability of phosphate concentration along the entire year,
while they account for 70% of cyanobacteria concentration during
the summer bloom and almost 100% of its variability during the rest
of the year (as previously discussed, kC,growth does not account as
first-order index, but through interactions).

4. Discussion

The global variance-based sensitivity analysis applied in this
work aims at establishing the relative importance of the parame-
ters involved in the seasonal dynamic of a eutrophication model
aiming at two major issues:

1) Parameters fixing setting, to identify the parameters that can
be fixed at any given value in their domains without signifi-
cantly reducing the state variables variance (Homma and

Saltelli, 1996). In this case, we study total effect sensitivity
indices, and

2) Parameters priorization setting, to determine the most
important factors which, if fixed to their true value, could lead
to the greatest reduction in state variables variance (Saltelli and
Tarantola, 2002). First effect sensitivity indices provide a reli-
able measure in this case.

Even though we are presenting a case study, the methodology is
quite general and we show how main parameters can be deter-
mined in a complex mechanistic model for water quality. From
factors fixing setting analysis, we have removed six of twenty three
parameters. One of them is an stoichiometric parameter (apc), three
are related to nutrient kinetics (kmp, kmn, knit) and the remaining
two are settling rates for cyanobacteria and diatoms (kC,settling and
kD,settling), respectively. From the remaining parameters, kmn, IoptD
and kC,settling are engaged only in interactions with other parame-
ters, while the others are mainly involved in first effect terms.

Based on first effect sensitivity indices analysis (parameters
priorization setting) qmp, qr, qm, K1, kG,growth and kC,growth were
ranked as the six most influential parameters for the three phyto-
plankton groups, and also for nutrients state variables. Knit is added
to the list above accounting for nitrate concentration.

Global sensitivity analysis results have shown that the set of
main parameters changes with time and it has a marked seasonal
pattern because most of the main parameters are closely related to

Table 4
List of parameters used for GSA and equations in which they are involved.

Parameter St. dev. Variable Parameter St. dev. Variable

anc 0.10 NO3j, NH4j, ONj kG,death 0.10 Gj, ONj, NH4j, PO4j, OPj
apc 0.10 PO4j, OPj qm 0.05 Cj, Dj, Gj, ONj, NH4j, PO4j, OPj, BODj

fON 0.10 NO3j, NH4j, ONj qr 0.05 Cj, Dj, Gj, DOj

K1 0.10 Cj, Dj, Gj, NO3j, NH4j, PO4j, DOj qmn 0.05 NH4j, ONj

Kmn 0.10 NH4j, ONj qmp 0.05 PO4i, OPj
Kmp 0.10 PO4j, OPj kC,growth 0.30 Cj, NO3j, NH4j, PO4j, DOj

knit 0.10 NO3j, NH4j, DOj kD,growth 0.30 Dj, NO3j, NH4j, PO4j, DOj

Knit 0.10 NO3j, NH4j kG,growth 0.30 Gj, NO3j, NH4j, PO4j, DOj

IoptC 0.10 Cj, NO3j, NH4j, PO4j, DOj kCsettling 0.10 Cj
IoptD 0.10 Dj, NO3j, NH4j, PO4j, DOj kD,settling 0.10 Dj

IoptG 0.10 Gj, NO3j, NH4j, PO4j, DOj kG,settling 0.10 Gj

kD,death 0.10 Dj, ONj, NH4j, PO4j, OPj
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Fig. 1. Cyanobacteria mean concentration profiles as function of the number of
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the seasonal variables that drive the model, i.e., water temperature
and solar radiation.

In the literature, background light attenuation, light limitation
of phytoplankton growth related parameters and algae growth
rates have been determined as main parameters in a number of
freshwater andmarinemodels with both local (Bierman and James,
1995; Omlin et al., 2001a; Chu et al., 2007; Fragoso et al., 2008) and
global (Arhonditsis and Brett, 2005; Guven and Howard, 2007)
sensitivity analysis. Results from the local sensitivity analysis per-
formed by Omlin et al. (2001a) for a Lake Zürich biogeochemical,
have shown that temperature dependence coefficient of biological
processes contributed less to the uncertainty of model predictions
than half-saturation light intensity of algae growth and algae

respiration, growth and death. In our study some of these coeffi-
cients (qmp, qr, qm) were found between the most influent param-
eters, both in first-order and total effects explaining large state
variable variability (e.g. sum of qmp, qr, qm Si for cyanobacteria
concentration in day 150 is 57%). Guven and Howard (2007) applied
a generalized sensitivity analysis to a model of cyanobacterial
growth and found that the temperature dependence coefficient
was the most critical parameter, while maximum growth rate and
background light attenuation were the second and the last one in
the list of 12 analyzed parameters. The parameters with stronger

Fig. 3. Si profiles for cyanobacteria concentration. anc; Kmp; IoptG;
qmn; kC,growth; apc; knit; kD,death; qmp; kD,growth; fON;

Knit; kG,death; kC,settling; kG,growth; K1; Ioptc; qm;
kD,settling; Kmn; IoptD; qr; kG,settling.

Fig. 4. Siint profiles for cyanobacteria concentration. anc; Kmp; IoptG;
qmn; kC,growth; apc; knit; kD,death; qmp; kD,growth; fON;

Knit; kG,death; kC,settling; kG,growth; K1; Ioptc; qm;
kD,settling; Kmn; IoptD; qr; kG,settling.

Fig. 5. Si profiles for diatoms concentration. anc; Kmp; IoptG; qmn;
kC,growth; apc; knit; kD,death; qmp; kD,growth; fON;

Knit; kG,death; kC,settling; kG,growth; K1; Ioptc; qm;
kD,settling; Kmn; IoptD; qr; kG,settling.

Fig. 6. Si
int profiles for diatoms concentration. anc; Kmp; IoptG; qmn;

kC,growth; apc; knit; kD,death; qmp; kD,growth; fON;
Knit; kG,death; kC,settling; kG,growth; K1; Ioptc; qm;
kD,settling; Kmn; IoptD; qr; kG,settling.
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effects for the model developed by Fragoso et al. (2008) were those
related to the effects of temperature (temperature effect coefficient
and respiration and excretion effect coefficient) and maximum
growth rate of algae, but parameters associated to light penetration
appeared to have a weaker effect on phytoplankton growth.

A sensitivity analysis based on Monte Carlo simulations and
multivariate regression analysis for a eutrophication model of West
Lake (China) showed that the settling rate of algae and temperature
had the largest contribution to model prediction uncertainty of the
state variables (Hongping and Yong, 2003). In our case, parameters
associated to settling of the three phytoplankton groups (kC,settling,
kD,settling, kG,settling) modeled in for Paso de las Piedras Reservoir

were excluded of the calibration candidate list due to their low STOTi
values.

Cyanobacteria concentration is mainly driven by parameters
related to meteorological conditions throughout the year and not
by parameters related to other phytoplankton groups, both for first-
order effects and interactions. Though kC,growth is not important in
first effect terms, it is themain parameter that affects cyanobacteria
concentration through interactions with other parameters. Chlor-
ophyte and diatoms concentration profiles are more dominated by
interactions between parameters than cyanobacteria through the
year. These interactions, in addition to meteorological conditions,
are related to other groups of phytoplankton and may be related to

Fig. 7. Si profiles for chlorophyta concentration. anc; Kmp; IoptG;
qmn; kC,growth; apc; knit; kD,death; qmp; kD,growth; fON;

Knit; kG,death; kC,settling; kG,growth; K1; Ioptc; qm;
kD,settling; Kmn; IoptD; qr; kG,settling.

Fig. 8. Siint profiles for chlorophyta concentration. anc; Kmp; IoptG;
qmn; kC,growth; apc; knit; kD,death; qmp; kD,growth; fON;

Knit; kG,death; kC,settling; kG,growth; K1; Ioptc; qm;
kD,settling; Kmn; IoptD; qr; kG,settling.

Fig. 9. Si profiles for nitrate concentration. anc; Kmp; IoptG; qmn;
kC,growth; apc; knit; kD,death; qmp; kD,growth; fON;

Knit; kG,death; kC,settling; kG,growth; K1; Ioptc; qm;
kD,settling; Kmn; IoptD; qr; kG,settling.

Fig. 10. Si
int profiles for nitrate concentration. anc; Kmp; IoptG; qmn;

kC,growth; apc; knit; kD,death; qmp; kD,growth; fON;
Knit; kG,death; kC,settling; kG,growth; K1; Ioptc; qm;
kD,settling; Kmn; IoptD; qr; kG,settling.
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the dominance of cyanobacteria and the competitive exclusion
between ecological groups.

Even when sensitivity analysis results may be naturally depen-
dent on model assumptions, local sensitivity analysis, which only
takes into account infinitesimal variations of the parameter around
the nominal value, assuming linear behavior, cannot quite capture
model sensitivity to the parameter over its entire range of variation,
especially in highly nonlinear models, as the eutrophication one
described in this manuscript (Section 2.2). On the other global
sensitivity analysis does not require the assumption of model
linearity and/or additivity and explores the entire range of variation
of the parameters, sampling from its probability distribution

function. This feature justifies its higher computational cost against
local sensitivity approaches. Due to the eutrophication model size,
we do not perform different sensitivity analysis to compare with
the global sensitivity analysis results reported in this work.
However, for the sake of comparison of sensitivity analysis
approaches performance, Cariboni et al. (2007) apply local and
global strategies to ecological models, a classic LotkaeVolterra
model and a fish population dynamics one. They conclude that the

Fig. 11. Si profiles for phosphate concentration. anc; Kmp; IoptG; qmn;
kC,growth; apc; knit; kD,death; qmp; kD,growth; fON;

Knit; kG,death; kC,settling; kG,growth; K1; Ioptc; qm;
kD,settling; Kmn; IoptD; qr; kG,settling.

Fig. 12. Si
int profiles for phosphate concentration. anc; Kmp; IoptG;

qmn; kC,growth; apc; knit; kD,death; qmp; kD,growth; fON;
Knit; kG,death; kC,settling; kG,growth; K1; Ioptc; qm;

kD,settling; Kmn; IoptD; qr; kG,settling.

Table 5
Si and Si

int for cyanobacteria concentration. Blanks correspond to zero values of
sensitivity indices.

Si Si
int

t¼ 34 t¼ 86 t¼ 180 t¼ 250 t¼ 34 t¼ 86 t¼ 180 t¼ 250

kC,grog 0.992 0.812 0.582 0.725
kD,grog 0.013 0.006 0.033 0.092 0.048
kG,grog 0.017 0.008 0.010 0.142 0.069
kD,death 0.015 0.091 0.151
kG,death 0.011 0.091
kC,setlling 0.018 0.002 0.081 0.150
kD,setlling 0.015 0.091 0.011 0.092
kG,setlling 0.015 0.088
IoptC 0.018 0.093 0.405
IoptD 0.015 0.178
IoptG 0.015 0.076
knit 0.013 0.092
kmn 0.015
kmp 0.129
Knit 0.015 0.091
qr 0.084 0.107 0.170 0.032 0.138 0.576
qm 0.076 0.085 0.181 0.269
qmn 0.012 0.093
qmp 0.091 0.078 0.194 0.074
fON 0.013
anc 0.013 0.092 0.092
apc 0.013 0.079
K1 0.026 0.100 0.148 0.003 0.054X23
i¼1

Si 0.529 0.378 0.711 0.437

Table 6
Si and Si

int for diatoms concentration. Blanks correspond to zero values of sensitivity
indices.

Si Si
int

t¼ 34 t¼ 86 t¼ 180 t¼ 250 t¼ 34 t¼ 86 t¼ 180 t¼ 250

kC,growh 0.013 0.417 0.174 0.097
kD,growh 0.048 0.124 0.419
kG,growh 0.023 0.037 0.061 0.102 0.480 0.867 0.541 0.391
kD,death 0.030 0.092 0.146
kG,death 0.005 0.002 0.052 0.282 0.033
kC,setlling 0.020 0.051 0.013
kD,setlling 0.021 0.010 0.031
kG,setlling 0.024 0.008 0.005 0.013
IoptC 0.019 0.007 0.028
IoptD 0.032 0.011 0.074
IoptG 0.010 0.025 0.050 0.148 0.147 0.105
knit 0.023 0.005 0.031
kmn 0.020 0.008 0.031
kmp 0.027 0.031 0.009
Knit 0.008 0.031
qr 0.086 0.004 0.045 0.128 0.793 0.788 0.604 0.390
qm 0.022 0.057 0.616 0.379 0.824 0.605
qmn 0.028 0.008 0.035
qmp 0.241 0.629 0.387 0.479 0.038
fON 0.023 0.005 0.031
anc 0.023 0.005 0.031
apc 0.018 0.009 0.009 0.023
K1 0.179 0.115 0.016X23
i¼1

Si 0.501 0.042 0.129 0.652
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variance-based sensitivity approach provides more accurate
measures in nonlinear models and that local sensitivity results are
only representative for linear or moderately nonlinear models.
Saltelli et al. (2008) apply both the standardized regression coef-
ficients (SRC) and Sobol’ methods to perform sensitivity analysis to
a dynamic model representing a batch reactor. They conclude that
even though bothmethods give similar information regarding first-
order sensitivity indices in this case, the variance-based one
provides accurate information on interaction among parameters,
which cannot be estimated with the SRC approach.

Finally, regarding parameter estimation with the reduced set of
parameters determined with the presented global sensitivity
analysis, we can say that the number of observed data from the
reservoir under study is significantly greater than the number of
parameters in the reduced set determined by the global sensitivity
analysis, as required for good parameter estimation (Bard, 1974;
Hangos and Cameron, 2001). They have been collected with
a frequency of twice a week for phytoplankton (cyanobacteria,
diatoms and chlorophyta) and once a week for nutrients
throughout an entire year, with four repetitions. Also, as dealing
with a dynamic model, sampling times are, as required, at less than
one quarter of the fastest time response of the process system
(cyanobacteria and diatoms), as suggested in Hangos and Cameron

Table 7
Si and Si

int for chlorophyta concentration. Blanks correspond to zero values of
sensitivity indices.

Si Si
int

t¼ 34 t¼ 86 t¼ 180 t¼ 250 t¼ 34 t¼ 86 t¼ 180 t¼ 250

kC,growh 0.01 0.307
kD,growh 0.03 0.027 0.356 0.946
kG,growh 0.05 0.116 0.001 0.515 0.792 0.479
kD,death 0.03 0.002 0.040 0.225
kG,death 0.04 0.216 0.177
kC,setlling 0.03 0.009
kD,setlling 0.03 0.059
kG,setlling 0.03 0.001 0.032 0.068
IoptC 0.03
IoptD 0.03 0.001 0.410
IoptG 0.03 0.001 0.109 0.257 0.428
knit 0.03
kmn 0.03
kmp 0.034
Knit 0.03 0.953 0.483 0.928 0.947
qr 0.03 0.701 0.750 1.027 0.999
qm 0.018 0.460 0.713 1.000
qmn 0.25 0.053 0.349 0.001
qmp 0.002 0.438 0.416 0.852 0.999
fON 0.03
anc 0.03 0.059
apc 0.02 0.001 0.012 0.012
K1 0.08 0.029 0.066X23
i¼1

Si 0.893 0.188 0.029 0.035

Table 8
Si and Si

int for nitrate concentration. Blanks correspond to zero values of sensitivity
indices.

Si Si
int

t¼ 34 t¼ 86 t¼ 180 t¼ 250 t¼ 34 t¼ 86 t¼ 180 t¼ 250

kC,growh 0.027 0.027 0.065 0.410 0.217 0.200
kD,growh 0.016 0.001 0.084 0.099
kG,growh 0.174 0.154 0.206 0.131 0.202 0.278 0.274 0.309
kD,death 0.015 0.001 0.018
kG,death 0.019 0.022 0.017 0.031
kC,setlling 0.018 0.004
kD,setlling 0.015 0.001
kG,setlling 0.018 0.014 0.004
IoptC 0.028 0.009 0.003
IoptD 0.016 0.011 0.020 0.017
IoptG 0.016
knit 0.015 0.001
kmn 0.015 0.001
kmp 0.026
Knit 0.015 0.001
qr 0.314 0.023 0.041 0.492 0.245 0.369
qm 0.063 0.098 0.109 0.236 0.058 0.351
qmn 0.016 0.001
qmp 0.049 0.050 0.094 0.021 0.167 0.095
fON 0.015
anc 0.015 0.001
apc 0.028 0.015
K1 0.031 0.005 0.036 0.030X22
i¼1

Si 0.600 0.177 0.466 0.295

Table 9
Si and Si

int for phosphate concentration. Blanks correspond to zero values of sensi-
tivity indices.

Si Si
int

t¼ 34 t¼ 86 t¼ 180 t¼ 250 t¼ 34 t¼ 86 t¼ 180 t¼ 250

kC,growh 0.015 0.009 0.043 0.357 0.130 0.111
kD,growh 0.031 0.035 0.015 0.053 0.031
kG,growh 0.173 0.032 0.016 0.270 0.261 0.211 0.147
kD,death 0.022 0.005 0.015 0.004 0.015 0.012
kG,death 0.031 0.011 0.047 0.016 0.025
kC,setlling 0.021 0.015 0.007
kD,setlling 0.057 0.021 0.039
kG,setlling 0.018 0.010 0.017 0.007
IoptC 0.028 0.010 0.015
IoptD 0.030 0.011 0.023 0.024
knit 0.032 0.023 0.025 0.019
kmn 0.035 0.025 0.027 0.012
kmp 0.045 0.015
Knit 0.165 0.092 0.153 0.045 0.068
qr 0.042 0.100 0.530 0.470 0.524 0.363
qm 0.025 0.010 0.176 0.290 0.337 0.448
qmn 0.227 0.050 0.056 0.022 0.157
qmp 0.016 0.186 0.261 0.281 0.299
fON 0.034 0.035 0.021
anc 0.053 0.022 0.060 0.023
apc 0.038 0.033 0.049 0.013 0.039 0.012
K1 0.011 0.071 0.024 0.031 0.029

X23
i¼ 1

Si 0.498 0.679 0.207 0.633

Table 10
Si values for the main parameters taken into account in factors priorization setting
for cyanobacteria and phosphate concentration. First summation is over the most
important factors and the second summation is overall parameters. Note that the top
six parameters explain most of the variability.

Cyanobacteria Phosphate

t¼ 34 t¼ 86 t¼ 180 t¼ 250 t¼ 34 t¼ 86 t¼ 180 t¼ 250

qr 0.084 0.107 0.170 0.032 0.314 0.023 0.041
qm 0.076 0.085 0.181 0.269 0.063 0.098 0.109
qmp 0.091 0.078 0.194 0.074 0.049 0.050 0.094 0.021
kC,growh 0.027 0.027
kG,growh 0.017 0.008 0.010 0.174 0.154 0.206 0.131
K1 0.026 0.100 0.148 0.003P

Si¼1;.;6 0.294 0.378 0.703 0.378 0.600 0.227 0.466 0.288
kD,growh 0.013 0.006 0.033
kD,death 0.015
kG,death 0.011
IoptC 0.018
IoptG 0.015
Knit 0.015
qmn 0.012
fON 0.013
anc 0.013P

Si¼1;.;15 0.419 0.378 0.709 0.411 0.600 0.277 0.466 0.288
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(2001). As it is reported in Estrada et al. (2009a), after parameter
estimation for the fifteen most important parameters, average
deviations between observed data and model predictions for
concentrations of cyanobacteria, phosphate and nitrate are 0.11;
0.04 and 0.12, respectively. The model with the adjusted set of
parameters closely reproduces cyanobacteria autumn bloom, as
well as summer bloom, mainly composed of chlorophytes and
cyanobacteria (80 and 20%, respectively) and spring blooms of
diatoms in the lake.

5. Conclusions

In this paper we have applied a global variance-based sensitivity
analysis to a highly nonlinear first principle-based dynamic eutro-
phication model. Global sensitivity analysis is a model independent
technique, based on estimating the fractional contribution of each
parameter to the variance of the model variables. It also takes into
account interactions between parameters and provides qualitative
accurate sensitivity measures. By applying Sobol’seSaltelli’s algo-
rithm, we have calculated time profiles for first-order and total
sensitivity indices to determine non-influential parameters and
select the set for calibrationpurposes according to their importance.
Global sensitivity analysis results have shown that the set of main
parameters changeswith time and it has amarked seasonal pattern,
as expected, because most of the control parameters are closely
related to the seasonal variables that drive the model, i.e., water
temperature and solar radiation (qmp, qr, qm and K1). Since the
summation of the first-order sensitivity indices is most of the time
lower than 1, we can conclude that the model is not simply additive
in model parameters, mainly regarding diatom and chlorophyte
concentrations. Based on parameter ranking by global sensitivity
analysis, we have estimated these parameters with advanced
dynamic optimization techniques and available observed data from
Paso de las Piedras reservoir (Estrada et al., 2009a).

References

Anh, D.T., Bonnet, M.P., Vachaud, G., Van Minh, C., Prieur, N., Vu Duc, L., Anh, L.L.,
2006. Biochemical modeling of the Nhue River (Hanoi, Vietnam): practical
identifiability analysis and parameters estimation. Ecological Modelling,
193182e193204.

Arhonditsis, G.B., Brett, M.T., 2005. Eutrophication model for Lake Washington
(USA) Part. I. Model description and sensitivity analysis. Ecological Modelling
187, 140e178.

Arhonditsis, G.B., Brett, M.T., 2005a. Eutrophication model for Lake Washington
(USA) Part. I. Model description and sensitivity analysis. Ecological Modelling
187, 140e178.

Arhonditsis, G.B., Brett, M.T., 2005b. Eutrophication model for Lake Washington
(USA) Part. II. Model calibration and system dynamic analysis. Ecological
Modelling 187, 179e200.

Baklouti, M., Faure, V., Pawlowski, L., Sciandra, A., 2006. Investigation and sensi-
tivity analysis of mechanistic phytoplankton model implemented in a new
modular numerical tool (Eco3M) dedicated to biogeochemical modelling.
Progress in Oceanography 71, 34e58.

Bard, Y., 1974. Nonlinear Parameter Estimation. Academic Press, Cambridge, MA.
Bierman, V.J., James, R.T., 1995. A preliminary modeling analysis of water quality in

Lake Okeechobee, Florida: diagnostic and sensitivity analyses. Water Research
29, 2767e2775.

Brun, R., Reichert, P., Kúnsch, H.R., 2001. Practical identifiability analysis of large
environmental simulation models. Water Resources Research 37, 1015e1030.

Campolongo, F., Cariboni, J., Saltelli, A., 2007. An effective screening design for
sensitivity analysis of large models. Environmental Modelling & Software 22,
1509e1518.

Cariboni, J., Gatelli, D., Liska, R., Saltelli, A., 2007. The role of sensitivity analysis in
ecological modelling. Ecological Modelling 203, 167e182.

Chu, P.C., Ivanov, L.M., Margolina, T.M., 2007. On non-linear sensitivity of marine
biological models to parameter variations. Ecological Modelling 206, 369e382.

Cossarini, G., Solidoro, C., 2008. Global sensitivity analysis of a trophodynamic
model of the Gulf of Trieste. Ecological Modelling 212, 16e27.

Cukier, R.I., Fortuin, C.M., Shuler, K.E., Petschek, A.G., Schaibly, J.H., 1973. Study of the
sensitivity of coupled reaction systems to uncertainties in rate coefficients.
Journal of Chemical Physics 59, 3873e3878.

Cukier, R.I., Levine, H.B., Shuler, K.E., 1978. Nonlinear sensitivity analysis of multi-
parameter model systems. Journal of Computational Physics 26, 1e42.

Estrada, V., Parodi, E.R., Diaz, M.S., 2009a. Determination of biogeochemical
parameters in eutrophication models as large scale dynamic parameter
estimation problems. Computers and Chemical Engineering 33,
1760e1769.

Estrada, V., Parodi, E.R., Diaz, M.S., 2009b. Addressing the control problem of algae
growth in water reservoirs with advanced dynamic optimization approaches.
Computers & Chemical Engineering 33, 2063e2074.

Fragoso Jr., C.R., Motta Marques, D.M.L., Collischonn, W., Tucci, C.E.M., van Nes, E.H.,
2008. Modelling spatial heterogeneity of phytoplankton in Lake Mangueira,
a large shallow subtropical lake in South Brazil. Ecological Modelling 219,
125e137.

Guven, B., Howard, A., 2007. Identifying the critical parameters of a cyanobacterial
growth and movement model by using generalised sensitivity analysis.
Ecological Modelling 207, 11e21.

Håkanson, L., 2000. The role of characteristic coefficients of variation in uncertainty
and sensitivity analyses, with examples related to the structuring of lake
eutrophication models. Ecological Modelling 131, 1e20.

Hamilton, D.P., Schladow, S.G., 1997. Prediction of water quality in lakes and
reservoirs. Part 1. Model description. Ecological Modelling 96, 91e110.

Hangos, K., Cameron, I., 2001. Process Modelling and Model Analysis. Academic
Press.

Homma, T., Saltelli, A., 1996. Importance measures in global sensitivity analysis of
nonlinear models. Reliability Engineering & System Safety 52, 1e17.

Hongping, P., Yong, W., 2003. Eutrophication research of West Lake, Hangzhou,
China: modeling under uncertainty.

Intartaglia, C., Sala, S.E., 1989. Variación estacional del fitoplancton en un lago no
estratificado: Embalse Paso de las Piedras, Argentina. Revista Brasileira de
Biología 49, 873e882.

Koda, M., McRae, G.J., Seinfeld, J.H., 1979a. Automatic sensitivity analysis of kinetic
mechanisms. International Journal of Chemical Kinetics 11, 427e444.

Koda, M., Dogru, A.H., Seinfeld, J.H., 1979b. Sensitivity analysis of partial differential
equations with application to reaction and diffusion processes. Journal of
Computational Physics 30, 259e282.

Liepmann, D., Stephanopoulos, G., 1985. A dynamic model of a closed
ecosystem: development and global sensitivity analysis. Ecological Modelling
30, 13e30.

Lindenschmidt, K.E., 2006. The effect of complexity on parameter sensitivity and
model uncertainty in river water quality modelling. Ecological Modelling 190,
72e86.

Manache, G., Melching, C.S., 2008. Identification of reliable regression- and corre-
lation-based sensitivity measures for importance ranking of water-quality
model parameters. Environmental Modelling & Software 23, 549e562.

McRae, G.J., Tilden, J.W., Seinfeld, J.H., 1982. Global sensitivity analysisda compu-
tational implementation of the Fourier Amplitude Sensitivity Test (FAST).
Computers & Chemical Engineering 6, 15e25.

Mieleitner, J., Reichert, P., 2006. Analysis of the transferability of a biogeochemical
lake model to lakes of different trophic state. Ecological Modelling 194, 49e61.

Morris, M.D., 1991. Factorial sampling plans for preliminary computational exper-
iments. Technometrics 33, 161e174.

Nguyen, T.G., Kok, J.L., 2007. Systematic testing of an integrated systems model for
coastal zone management using sensitivity and uncertainty analyses. Envi-
ronmental Modelling & Software 22, 1572e1587.

Norton, J.P., 2008. Algebraic sensitivity analysis of environmental models. Envi-
ronmental Modelling & Software 23, 963e972.

Omlin, M., Brun, R., Reitchert, P., 2001a. Biogeochemical model of Lake Zürich:
model equations and results. Ecological Modelling 141, 77e103.

Omlin, M., Reichert, P., Forster, R., 2001b. Biogeochemical model of Lake Zürich:
sensitivity, identifiability and uncertainty analysis. Ecological Modelling 141,
105e123.

Parodi, E., Estrada, V., Trobbiani, N., Argañaraz Bonini, G., 2004. Análisis del
estado trófico del embalse Paso de las Piedras. Ecología en tiempos de
Cambio, 178.

Pastres, R., Chart, K., Solidoro, C., Dejak, C., 1999. Global sensitivity analysis of
a shallow-water 3D eutrophication model. Computer Physics Communications
117, 62e74.

Pastres, R., Ciavatta, S., Cossarini, G., Solidoro, C., 2003. Sensitivity analysis as a tool for
the implementation of a water quality regulation based on the maximum
permissible loads policy. Reliability Engineering and System Safety 79, 239e244.

Pastres, R., Ciavatta, S., 2005. A comparison between the uncertainties in model
parameters and in forcing functions: its application to a 3D water-quality
model. Environmental Modelling & Software 20, 981e989.

Process Systems Enterprise Limited, 2009. gProms Model Developer Guide (www.
psenterprise.com).

Saloranta, T.M., Andersen, T., 2007. MyLake e a multi-year lake simulation model
code suitable for uncertainty and sensitivity analysis simulations. Ecological
Modelling 207, 45e60.

Saltelli, A., Sobol’, I.M., 1995. About the use of rank transformation in sensitivity
analysis ofmodel output. Reliability Engineering and SystemSafety 50, 225e239.

Saltelli, A., Tarantola, S., Chan, K., 1999. Quantitative model-independent method for
global sensitivity analysis of model output. Technometrics 41, 39e56.

Saltelli, A., Tarantola, S., 2002. On the relative importance of input factors in
mathematical models: safety assessment for nuclear waste disposal. Journal of
the American Statistical Association 97, 702e709.

V. Estrada, M.S. Diaz / Environmental Modelling & Software 25 (2010) 1539e15511550



Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M., 2004. Sensitivity analysis in
practice. A guide to assessing scientific models. In: Probability and Statistics
Series. John Wiley & Sons Publishers.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M.,
Tarantola, S., 2008. Global Sensitivity Analysis. The Primer. John Wiley & Sons
Publishers.

Schefer, J.C, 2004. Los recursos hídricos y el abastecimiento de agua. Región de
Bahía Blanca. CEPADE, Argentina. 132e137.

Schladow, S.G., Hamilton, D.P., 1997. Prediction of water quality in lakes and
reservoirs. Part 2. Model calibration, sensitivity analysis and application.
Ecological Modelling 96, 111e123.

Sobol’, I.M., 1990. Sensitivity estimates for nonlinear mathematical models. Mate-
maticheskoe Modelirovanie 2, 112e118 [in Russian]. Translated in English in
Sobol’, 1993. Mathematical Modelling and Computational Experiment 1,
407e414.

Sobol’, I.M., 2001. Global sensitivity indices for nonlinearmathematicalmodels and their
Monte Carlo estimates. Mathematics and Computers in Simulation 55, 271e280.

Sobol’, I.M., Levitan, Y.L., 1999. On the use of variance reducing multipliers in Monte
Carlo computations of a global sensitivity index. Computer Physics Communi-
cations 117, 52e61.

Zhang, J., Jørgensen, S.E., Mahler, H., 2004. Examination of structurally dynamic
eutrophication model. Ecological Modelling 173, 313e333.

V. Estrada, M.S. Diaz / Environmental Modelling & Software 25 (2010) 1539e1551 1551


