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ABSTRACT

Aims. Knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. Because we measure the
projected rotational speed v sin i, we need to solve an ill-posed problem given by a Fredholm integral of the first kind to recover the
“true” rotational velocity distribution.
Methods. After discretization of the Fredholm integral we apply the Tikhonov regularization method to obtain directly the probability
distribution function for stellar rotational velocities. We propose a simple and straightforward procedure to determine the Tikhonov
parameter. We applied Monte Carlo simulations to prove that the Tikhonov method is a consistent estimator and asymptotically
unbiased.
Results. This method is applied to a sample of cluster stars. We obtain confidence intervals using a bootstrap method. Our results
are in close agreement with those obtained using the Lucy method for recovering the probability density distribution of rotational
velocities. Furthermore, Lucy estimation lies inside our confidence interval.
Conclusions. Tikhonov regularization is a highly robust method that deconvolves the rotational velocity probability density function
from a sample of v sin i data directly without the need for any convergence criteria.

Key words. stars: rotation – methods: statistical – methods: numerical – methods: data analysis – stars: fundamental parameters

1. Introduction

Understanding how stars rotate is essential in describing and
modelling many aspect of stellar evolution. From spectroscopy
observations we can only get the projected velocity, v sin i,
where i is the inclination angle with respect to the line of sight.
Furthermore, in order to deconvolve (disentangle or unfold) the
rotational velocity distribution function, an assumption on the
distribution of rotational axes is required. The standard practice
is to assume that the distribution of stellar axes is uniformly
(randomly) distributed over the sphere. Using this assumption
Chandrasekhar & Münch (1950) studied the integral equation
that describes the distribution of “true” (v) and apparent (v sin i)
rotational velocities, deriving a formal solution, which is pro-
portional to a derivative of an Abel’s Integral. Chandrasekhar &
Münch (1950) method is not usually applied, because the dif-
ferentiation of the formal solution can lead to misleading results
due to intrinsic numerical problems associated to the derivative
of the Abel’s integral.

Curé et al. (2014) extended the work of Chandrasekhar &
Münch (1950) integrating the formal solution, and obtained
the cumulative distribution function (CDF) for the rotational
velocities. This CDF is attained in only one step demonstrating
the robustness to this method.

While the CDF identifies the distribution of the speed of
rotation, it is sometimes useful to have the probability density

function (PDF) for easy handling and to directly appreciate
certain properties of the distribution (e.g., the maximum, its
symmetry and its variability, etc.). It is also known that the ob-
served values of the projected rotational velocities are provided
with measurement error. The aim of this work is to propose a
methodology that directly provides the PDF, taking into account
the measurement errors and avoiding numerical problems aris-
ing from the derivative of the CDF. Regularization methods are
techniques widely used to deconvolve inverse problems. Image
processing, geophysics and machine learning are some of the
areas where they are usually applied (Bouhamidi 2007; Deng
et al. 2013; Fomel 2007). Among the regularization methods we
find: truncated singular value decomposition (TSVD), selective
singular value decomposition (SSVD) and the Tikhonov regular-
ization method (Hansen 2010).

In this article we obtain the estimated probability distribution
function directly from the Fredholm integral by means of the
Tikhonov regularization method.

After its introduction by Tikhonov (1943) to solve integral
equation problems, this method (known as Ridge Regression in
statistics) has been developed and extensively used ever since
(see, e.g., Tikhonov 1963, 1995; Tikhonov & Arsenin 1977;
Eggermont 1993; and Hansen 2010). It allows for an increase
in the numerical stability and for errors of measurement to be
taken into account.
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This article is structured as follows: in Sect. 2 we briefly
present the mathematical description of the method and describe
a procedure for calculating the Tikhonov factor. In Sect. 3, we
perform Monte Carlo simulations to show the robustness of this
method. In Sect. 4, a real sample of cluster stars is deconvolved
using Tikhonov regularization, confidence intervals are calcu-
lated using a bootstrap method, and a comparison is made be-
tween our PDF results and both those obtained with the Lucy
(1974) method and CDF results from the work of Curé et al.
(2014). Our conclusions and plans for future work are presented
in the final section.

2. Tikhonov regularization method

Many inverse problems in physics and astronomy are given in
terms of the Fredholm integral of the first kind (Lucy 1994;
Hansen 2010). Namely:

fY (y) =

∫
p(y | x) fX(x)dx. (1)

Here fY is a function accessible to observation and fX is the func-
tion of interest. The kernel p(y | x) of this integral is related to the
remoteness of the measurement process; in this case, the projec-
tion of the distribution of stellar axes.

Chandrasekhar & Münch (1950) were the first to consider
the integral equation governing the distribution of “true” and ap-
parent (projected) rotational velocities of stars, y = x sin i, where
x = v is the rotational speed and i is the inclination angle with
respect to the line of sight. Assuming a uniform distribution of
stellar axes over the sphere (see Curé et al. 2014, for details), this
integral equation (Eq. (1)) reads as follows:

fY (y) =

∫ ∞
y

y

x
√

x2 − y2
fX(x)dx. (2)

Expressing Eq. (2) in matrix form (by a quadrature discretization
of the problem), we get:

Y = A X. (3)

Now, A is a matrix representing the kernel p(y|x), Y is a vector
representing the density of projected rotational velocities fY (y)
and X is the unknown vector representing the density of “true”
rotational velocities fX(x).

Since the observed data are measured with error, the last
equation is an example of a discrete ill-posed problem, that
is, small errors in the measured data can produce large varia-
tions in the recovered function which make the solution unstable
(Ivanov et al. 2002, and references therein). Nevertheless, in the
decades following the work of Chandrasekhar & Münch (1950),
much mathematical theory on this kind of problem has been de-
veloped. Among others, one of the most common methods is
the Tikhonov regularisation method (Tikhonov & Arsenin 1977;
Tikhonov et al. 1995; Hansen 2010).

The standard method to solve Eq. (3) is to apply ordinary
least squares (OLS), that is, min{||A X − Y ||2}, where || · || repre-
sents the euclidean norm. However, for ill-posed problems this
method fails in the sense that it can produce unstable estima-
tors. In order to avoid this problem the Tikhonov regularization
method imposes a regularization term to be included in the min-
imization process, namely:

min{||A X − Y ||2} → min{||A X − Y ||2 + λ2 ||L (X − X0)||2}, (4)

where λ is the Tikhonov factor. The standard definition for the
L matrix is L = I, where I is the identity matrix and X0 is an
initial estimation, setting X0 = 0, when there is no previous in-
formation. There exist different quantitative approaches to obtain
the Tikhonov factor, for example, Generalized Cross-Validation
(GCV), L-curve Method, Discrepancy Principle, and Restricted
Maximum Likelihood. More details of these are explained in,
Press et al. (2007), Hansen (2010) and Tikhonov & Arsenin
(1977), for example. Once the λ-value is attained, the solution Xλ

of the regularized problem by the Tikhonov method is given by:

Xλ = (AT A + λ2I)−1AT Y. (5)

In this article we use the Tikhonov regularization method using
singular value decomposition (see Appendix A for details) to
deconvolve the distribution of the rotational stellar velocities.

In the data analyzed in this article the L-curve method failed,
that is, we do not obtain the “L” shape in the L-curve plot, but
only the horizontal part of it (see details in Appendix B). For
this reason we propose the method described below to select
the Tikhonov factor based on the fact that, when λ → 0, Xλ

tends to the exact solution X, the difference between two regu-
larized solutions tends to 0. In Monte Carlo runs (Sect. 3) the
Tikhonov factor has been calculated with our proposed method
(see below). We proved (Sect. 3) empirically that the Tikhonov
estimator we obtained is unbiased and consistent; both desirable
properties of any statistical estimator.

We determine the value of the Tikhonov factor, λ, using the
following iterative procedure, which turned out to be fast and
efficient in obtaining the regularization parameter in the case of
smooth solutions:

i) We start with an initial value of λ (λ = λ0).
ii) In each following iteration we reduce the value of λ by a

factor f , (λ j = f j λ0), we use typically f = 0.99.
iii) At iteration step j we calculate the difference between the

corresponding regularization solutions: φ = ||Xλ j − Xλ j−1 ||.
iv) If φ is small enough, that is, φ < ε, we stop the iterative

process and get the value of λ. Typically a value of ε = 10−7

has been used in this procedure.

In Appendix B, we show the criteria for selecting λ0 and factor f .

3. Monte Carlo simulation

In this section we present the results of Monte Carlo numerical
simulations to assess the performance of the Tikhonov regular-
ization method in deconvolving rotational velocity distribution
from the Fredhoml integral. Our Monte Carlo runs consist of
nMC = 1000 independent replications for each chosen scenario,
where we considered two specific distributions of rotational ve-
locities. Therefore, we simulate 30 different cases, described as
follows:

a) Unimodal distribution: we chose a Maxwellian distribution

fM(x) =

√
2
π

1
σ3 x2e−

x2

2σ2 , x > 0, (6)

with parameter σ = 8, which is the same distribution used
in Curé et al. (2014). Furthermore, we considered three dif-
ferent cases, each one including an additive error from a uni-
form distribution U[−σε , σε], with PDF given by fU(x) =
1/(2σε) for −σε ≤ x ≤ σε . The chosen values of σε are
σε = 0.5, 1, 2 (km s−1).
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Fig. 1. Upper panels: univariate Maxwellian distribution, with parameter σ = 8, is shown with a solid line in all upper panels; black squares
connected by dashed lines represent the mean of the nMC = 1000 samples of Tikhonov regularization. Results are for: ns = 30 with σε = 0.5
(upper left), ns = 100 with σε = 1 (upper center) and ns = 1000 with σε = 2 (upper right). Lower panels: bivariate Maxwellian distributions are
shown by a solid line in all lower panels, with parameters σ1 = 5 and σ2 = 15 and amplitudes A = 0.7 and B = 0.3. Black squares connected by
a dashed line show the estimated PDFs obtained by Tikhonov regularization. Results are for: ns = 30 with σε = 0.5 (lower left), ns = 300 with
σε = 1 (lower center) and ns = 1000 with σε = 2 (lower right).

b) Bimodal distribution: for a mix of two Maxwellian
distributions

f2M(x) =

√
2
π

x2

A + B

 A
σ3

1

e
− x2

2σ2
1 +

B
σ3

2

e
− x2

2σ2
2

 , x > 0, (7)

dispersion parameters are: σ1 = 5 and σ2 = 15, and ampli-
tudes: A = 0.3 and B = 0.7. We consider the same additive
error cases as for the unimodal distribution.

Furthermore, for both uni- and bimodal cases, we consider five
sample lengths ns: ns = 30, 100, 300, 1000, 10 000.

For each independent Monte Carlo sample two samples
needed to be simulated, one from the distribution of the rota-
tional velocities (uni- or bimodal) and another for the kernel,
p(y|x), representing the distribution of the inclination angles in
the Fredholm integral (Eq. (2)). Then, we multiplied each ele-
ment of the first sample with the corresponding element of the
second sample and added the error term. This gave the final sam-
ple of v sin i for each scenario. The following step was to estimate
the PDF of the projected rotational velocities with a Kernel Den-
sity Estimator (KDE, Silverman 1986). Using a grid of ng points
we discretized the Fredholm integral obtaining the linear system
(Eq. (4)). With this data we calculated the Tikhonov factor λ us-
ing the procedure described above and obtained the Tikhonov
regularization solution, Xλ, which is the estimated PDF of rota-
tional speeds.

Figure 1 upper panels show, using a solid line, the original
Maxwellian distribution (Eq. (6)) together with the mean esti-
mated PDF of all Monte Carlo simulations (black squares con-
nected by a dashed line) for different values of σε and ns. It is
clearly shown that sample lengths of order ns ∼ 30 give accept-
able results when compared with the original sample. For larger
sample lengths, ns & 100, the agreement between the original
distribution and the mean of the estimated PDFs is almost ex-
act. Although the mean estimated distribution is slightly shifted
to lower velocities. Lower panels of Fig. 1 show the original bi-
modal mixed Maxwellian distributions (in a solid line) together

with the mean estimated PDF (black squares connected by a
dashed line). When a sample length is of the order ns ∼ 30,
a difference between the estimated PDF and the original PDF
is observed. Nevertheless, the Tikhonov regularized solution re-
trieves the bimodality and delivers ther approximate position of
the maximum of both components, but gives a false estimate of
the tail of the original distribution.

In the other cases (ns & 100) the mean of the Tikhonov
regularization solutions is very close to the original mixture
of Maxwellian distributions, although the estimated value of
the amplitudes is slightly lower (first distribution) and slightly
higher (second distribution) than the original one.

In order to quantify the error of the estimated PDF, we cal-
culated (following Curé et al. 2014) the mean integrated square
error (MISE), that is:

MISE =
1

nMC

nMC∑
j=1

 1
ng

ng∑
i=1

( f̂ j(xi) − f (xi))2

 , (8)

where f (x) represents the original distribution function of rota-
tional speeds and f̂ j(x) represents the estimated Tikhonov regu-
larization density of the j-run in Monte Carlo simulations.

In the left panel of Fig. 2 we plotted the MISE as a function
of sample length for σε = 0.5. In the other cases (σε = 1, 2) the
MISE value is very similar to values MISE . 10−4. Also it can
be seen that as the sample size increases, MISE tends to zero,
that is, MISE( f̂ )→0 when ns→∞.

The right panel in Fig. 2 shows Tikhonov factor as a function
of sample size. These factors are of the same order of magni-
tude for both types of distribution (uni- and bimodal). Our sim-
ulations confirm for all sample lengths and different σε values
that the Tikhonov factor (λ) is almost independent of the mag-
nitude of the error σε . Furthermore, since the Tikhonov param-
eter changes only slightly as a function of sample size, we can
consider the Tikhonov factor as being almost independent of the
sample length, ns.

To confirm this result, we performed MC simulations with a
fixed value of λ. The range of λ was from 0.002 to 0.01 with a
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Fig. 2. Left panel: value of MISE (black dots) from the estimated PDF for univariate distributions (solid line) and bivariate distributions (dashed
line) both using σε = 0.5. Right panel: value of Tikhonov factor λ as a function of sample size for the cases where σε = 2. See text for details.

step of ∆λ = 0.001. We calculated the MISE from nMC = 1000
samples, each with a size of ns = 1000 for each value of λ. For
the unimodal Maxwellian distribution the values of the MISE
vary, increasing from 7.319 × 10−5 to 7.320 × 10−5 for this
range of λ, an almost negligible difference. In the case of a
bimodal Maxwellian distribution the scenario is very similar.
Using the same range of λ, the MISE values vary, increasing
from 4.717 × 10−5 to 4.718 × 10−5. Similar behaviour is found
when ns = 30, 100, 300, 10 000, supporting our claim that the
Tikhonov factor (λ) is almost independent of the sample size.

By means of the average of the estimated PDFs we can esti-
mate the expected value for the Tikhonov regularization solution.
In all cases, the mean of the estimated PDFs is very close to the
original unimodal or bimodal distributions, and this mean proba-
bility density function is closer to the true PDF when increasing
the sample size.

This fact shows, empirically, that the studied estimator is
asymptotically unbiased. Therefore, since MISE tends to zero
when ns tends to infinity, it is implied that the variance of the
Tikhonov regularization estimator tends to zero as well and
hence is a consistent estimator.

4. Deconvolving a real sample

In this section, we perform the following steps: (i) apply the
Tikhonov regularization method to a sample of measured v sin i
data of cluster stars in order to estimate the rotational velocity
probability density distribution; and (ii) compare the application
of different methods to deconvolve the velocity distribution to-
gether with previous non-parametric results from the literature.

4.1. Tarantula sample

We select the Tarantula sample for single O-type stars from
the VLT Flames Tarantula Survey, where Ramírez-Agudelo
et al. (2013) deconvolved the rotational velocity distribution us-
ing the Lucy (1974) method (see also Richardson 1972). This
sample contains 216 stars with v sin i data from 40 km s−1 up
to 610 km s−1. Following Ramírez-Agudelo et al. (2013) for
comparison purposes, we also omitted the two largest values
(outliers) of the sample. To build the Y vector, we used the
KDE method with the following bandwidths (Silverman 1986,
pages 45 and 47):

h1 = 0.79 IQR n−1/5
s (9)

h2 = 0.9 min{Σ, IQR/1.34} n−1/5
s , (10)

here, IQR is the interquartile range, Σ is the standard deviation
of the sample and ns is the sample length.

Figure 3 shows, by a solid line, the rotational velocity
distribution after Tikhonov regularization. Our procedure for
Tikhonov factor determination gives a value of λ = 0.0174 for
a step of ∆x = 2 km s−1. Figure 3 also shows the confidence
intervals calculated using a bootstrap method (nBS = 3000,
Efron & Tibshirani 1993). The lower is the bandwidth, the wider
is the confidence interval. The “bump” around 400 to 450 km s−1

is wider in our case ranging from 340 km s−1 to 480 km s−1. This
discrepancy is probably due to the use of the KDE method with
a Gaussian kernel in Y .

4.2. Comparing results

For the Tarantula sample, we calculate the CDF by direct in-
tegration of the PDF obtained via the Tikhonov regulariza-
tion method and compare this to the CDF calculated using the
method described by Curé et al. (2014). Figure 4 shows both
CDFs. Their agreement is remarkable. In addition to our results
for the PDF, Fig. 3 also shows the PDF (dashed lines) obtained
from Ramírez-Agudelo et al. (2013, see their Fig. 17) calcu-
lated using the Lucy (1974) method. It can clearly be seen that
Lucy-PDF lies inside our confidence interval.

In order to evaluate whether or not both estimated PDFs
correspond to the same distribution, we obtained the q–q plot
and calculated the respective quantiles. Figure 5 shows the q–q
plot of these densities, confirming that both come from the same
probability distribution.

5. Conclusions

In this work we have obtained the estimated probability distribu-
tion function of “true” rotational velocities using the Tikhonov
regularization method. Furthermore, this estimated PDF uses a
Tikhonov parameter λ obtained by means of an iterative method
with a specific stopping criterion in comparison to the widely
used iterative method of Lucy (1974).

Through Monte Carlo numerical simulations we assess the
proposed method in two cases: when the rotational velocity dis-
tribution is described by a Maxwell distribution and for a mixture
of two Maxwell distributions. For each situation different scenar-
ios were evaluated obtaining satisfactory results for all of them,
except for ns = 30, when the velocities are described by a mix-
ture of two Maxwellian distributions.
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Fig. 3. Estimated PDF from the Tarantula sample (solid lines). Both panels with λ = 0.0174 and ∆x = 2 km s−1, Left panel with bandwidth
h1 = 35.676 and right panel with bandwidth h2 = 30.313. Gray-shaded regions represent the 2.5% (lower) and 97.5% (upper) confidence intervals
calculated using a bootstrap method. Dashed lines show the PDF (from Ramírez-Agudelo et al. 2013) obtained using the Lucy (1974) method.
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Fig. 4. Estimated cumulative rotational velocity distribution function for
the Tarantula sample (solid line) obtained using Tikhonov regularization
using a spacing of ∆x = 2 km s−1 for the velocities. Dots connected
by dashed lines show the CDF calculated using the Curé et al. (2014)
method with a spacing of ∆x = 10 km s−1.
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Fig. 5. q-q plot from the Tarantula sample, black dots represent the
quantiles of each distribution, one calculated using the Tikhonov regu-
larization method and the other calculated using the Lucy method (data
from Ramírez-Agudelo et al. 2013).

This method retrieves the typical rotational velocity distribu-
tion for uni- and bimodal distributions. We showed, empirically,
that the studied estimator is asymptotically unbiased and its vari-
ance tends to zero. Furthermore, we use the MISE as a measure
of goodness of fit of the estimated PDF, which is approximately

equal to or less than 10−4 for all sample sizes and tends to zero
when ns tends to infinity.

We apply this method to a set of observed data from the
Tarantula cluster (Ramírez-Agudelo et al. 2013). The estimated
PDF from the Tikhonov regularization method agreed very well
with the PDF obtained using the Lucy method, as shown by the
q-q plot, demonstrating the method’s ability to deconvolve rota-
tional velocities distribution.

In comparison with the method that delivers the CDF de-
scribed by Cure et al. (2014), Tikhonov regularization solution
gives, by direct integration of the PDF, almost the same non–
parametric estimation of the true underlying cumulative distri-
bution function of rotational velocities.

To summarize, we previously developed a method to obtain
the CDF of “true” rotational velocities (Curé et al. 2014). This
current publication presents the Tikhonov regularization method
for obtaining the corresponding PDF directly from the Fredhoml
integral. Both methods calculate in a simple and straightforward
way (PDF, CDF), without any assumptions of the underlying dis-
tribution.

Future work: we would like to develop a general function
of the kernel of the Fredholm integral, p(y|x), in order to de-
scribe an arbitrary orientation of rotational axes. Thus, we can
study the distribution of rotational speeds relaxing the standard
assumption of uniformity of stellar axes.
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Appendix A: The Tikhonov regularization method

In this Appendix we give a brief description of the Tikhonov
regularization method closely following Burger (2007) and
Eggermont (1993). Suppose that we have a linear system of the
form

A X = Y, (A.1)

with a matrix A ∈ Rn×n, and vectors X,Y ∈ Rn. Suppose addi-
tionally that A is a symmetrical, positive definite matrix. In this
case, from spectral theory for symmetrical matrices there exist
eigenvalues, 0 < µ1 ≤ · · · ≤ µn and corresponding eigenvectors
ui ∈ R

n, with the euclidean norm ||ui|| = 1, such that

A =

n∑
i=1

µiuiuT
i , (A.2)

where we consider ui ∈ R
n×1.

Since the solution of (A.1) is given by:

X =

n∑
i=1

µ−1
i uiuT

i , (A.3)

small eigenvalues of A can cause numerical difficulties when
they are arbitrarily close to zero and the problem is ill-posed.
The condition number κ := µn/µ1, is a measure of the stability
of the system. For simplicity we shall assume that µn = 1 then
κ = 1/µ1. When we have data with error Yδ instead of Y, satis-
fying ||Yδ − Y|| < δ, we obtain a solution Xδ and the error in the
solution is:

||Xδ − X||2 =

n∑
i=1

µ−2
i |u

T
i (Yδ − Y)|2 ≤ µ−2

1 ||Yδ − Y||2, (A.4)

then ||Xδ − X||2 ≤ κδ.
One observes that with increasing condition number the er-

ror amplification increases simultaneously. Often the nature of
the error is unknown, then it is necessary used a method to solve
the linear system that deals with error effects. The regulariza-
tion methods face this problem efficiently. If matrix A is positive
semi-definite, its eigenvalues are non-negative, but it can have
a zero eigenvalue. In this case, let µm be the smallest positive
eigenvalue, then the solution of (A.1) becomes:

X =

n∑
i=m

µ−1
i uiuT

i , (A.5)

and the problem is solvable if and only if uT
i Y = 0 for i < m.

For data with error, we can use the projection PYδ onto the
range of A. This analysis can be extended to a general matrix
A ∈ Rn×m by considering the associated system AT A X = AT Y,
being that the matrix AT A is always symmetrical, positive and
semi-definite.

In order to shift away from zero the smallest eigenvalues of
this matrix AT A, it seems natural to approximate AT A for a fam-
ily of matrices Aλ := AT A + λ I, whose eigenvalues are µi + λ,
where µis are the eigenvalues of AT A.

We obtain an approximated solution Xλ = A−1
λ AT Y and for

data with error we have Xλ,δ = A−1
λ AT Yδ. The error of the esti-

mation is then

||X − Xλ,δ||
2 ≤ ||X − Xλ||

2 + ||Xλ − Xλ,δ||
2. (A.6)

The first term on the right side corresponds to the approximation
error and the second term corresponds to the error in data. Using
spectral theory (Burger 2007), we obtain:

||X − Xλ,δ||
2 ≤

λ

µ1(µ1 + λ)
(||Yδ|| + δ) +

δ

(µ1 + λ)
· (A.7)

The first term on the right side decreases when λ tends to zero
while the second term on the right side increases when λ tends to
zero. Thus, we have to find an estimation of λ that is a compro-
mise between the error of the approximation and the error from
measurements.

The solution of the Tikhonov regularization can be obtained
also from the Singular Value Descomposition (SVD) of ma-
trix A. In this case, we write a general matrix A ∈ Rm×n with
rank n in the form:

AT A =

n∑
i=1

uiσiv
T
i , (A.8)

where ui and vi are orthonormal vectors of dimensions m and n
respectively, and σi ≥ 0 are the singular values of AT A such
that σ1 ≥ σ2 ≥ · · · ≥ σn > 0. Under this decomposition the
Tikhonov solution is given by:

Xλ =

n∑
i=1

fi
uT

i Y
σi

vi, (A.9)

where fi, i = 1, · · · , n are defined by fi = σi/(σi + λ2).
As we mentioned in Sect. 2 there are several methods to esti-

mate λ. The most frequently used are the L-curve Criterion, the
Discrepancy Principle and Generalized Cross Validation.

The L-curve is a plot of log(||A Xλ − Y||22) versus log(||Xλ||
2
2),

the logarithm of two square euclidean norm, for different val-
ues of the Tikhonov factor λ. This plot has the characteristic “L”
shape (see Fig. B.1). According to Hansen (2010) the Tikhonov
solution Xλ can be decomposed as Xλ = X̄λ + Xλ,e, where
X̄λ = (AT A + λ2I)−1 AT Y is the regularized version of the ex-
act solution X, and Xλ,e = (AT A + λ2I)−1 AT e is the solution
obtained by applying Tikhonov regularization to the error com-
ponent e. For small values of λ, the error dominates the L-curve
because the regularized solution Xλ is dominated by Xλ,e and for
large values of λ, Xλ is dominated by X̄λ, the unperturbed term.
The λ chosen achieves a compromise between the two parts, al-
located in the corner of the L-curve. The L-curve criterion for
choosing the regularization factor is one of the most frequently
used methods. The advantages are robustness and ability to man-
age observations with correlated errors. The limitations of the L-
curve are the reconstruction of very smooth, exact solutions and
treatment with a large amount of data (Hansen 2010).

Appendix B: Determination of regularization
parameters

When we apply the L-curve method to different v sin i samples,
the obtained values of the Tikhonov factor (λ) are “large”. The
large size of these values is due to the small values of the coeffi-
cients in singular value decomposition with almost constant sin-
gular values around 1, requiring the addition of too many terms
to increase the norm of X (the vertical part of the “L” shape, see
Fig. B.1). We suspect that the reason for this is the smoothness of
the solution (Hansen 2010). For the Tarantula sample (Sect. 4),
the Tikhonov parameter delivered by the L-Curve, and the GCV
methods, are the same, λ = 0.2956.
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Fig. B.1. L-curve plot for the data obtained by the Monte Carlo sample
for a unimodal distribution. Horizontal axis shows log(||A Xλ − Y||22),
i.e., the residuals of the regularization. Vertical axis shows log(||Xλ||

2
2),

i.e., the norm of the regularization. Thihkonov parameter values (λ) are
overplotted to the corresponding data points. Only the horizontal part of
the typical “L” shape is shown. This situation occurs with very smooth
exact solutions. See text for details.

Here we show how to determine the value of λ0 and the
choice of factor ( f ) to select the parameters λ of the Thikhonov
method.

As we stated at the end of Sect. 2, we start with an initial
value of λ0 and calculate the Tikonov method to obtain the PDF,
(Xλ(1)), then we multiply λ0 by a factor f and obtain a new
value of λ = λ(1) = λ0 × f , and another PDF (Xλ(2)), after
applying Tikhonov method. After “m” iterations we have a set
of {λ(1), λ(2), . . . , λ(m)}.

Defining φ( j) as:

φ( j) = ‖Xλ( j) − Xλ( j − 1)‖ (B.1)

where ‖ · ‖ represents the euclidian norm. After these “m” itera-
tions we also have a set of {φ(2), φ(3), . . . , φ(m)}. The iteration
stops when the value of φ(m) is less than a certain value of ε. In
our case we chose ε = 10−7.

-8 -7 -6 -5 -4 -3 -2 -1
-4

-3

-2

-1

0

1

log( )

lo
g
(λ
)

Fig. B.2. log(λ) versus log(φ). Factor f varies from f = 0.99 (left),
f = 0.75 (center) to f = 0.5 (right). Each of these curves starts with
three initial values of λ0, dotted line (λ0 = 10), dashed line (λ0 = 1) and
solid line (λ0 = 0.1). See text for details. The vertical gray solid line
shows the selected value of ε = 10−7 as a criterion to finish the iteration
process. The horizontal gray solid line shows the value of λ = 0.2956
(log(λ) = −0.53) obtained using the L–Curve or GCV methods.

Figure B.2 shows, log(λ) versus log(φ) for different values
of λ0 and f , for the Tarantula sample. The initial values of λ0
are: λ0 = 10, shown as a dotted line in all three curves; λ0 = 1,
shown as dashed lines and λ0 = 0.1, as solid lines.

For a given value of f , all three curves are superimposed,
showing that the final value of λ is independent of the start-
ing value λ0. Therefore we chose to start our calculations with
λ0 = 0.1. On the other hand, the critical parameter here is f ; the
lower this value, the lower the final value of λ, when φ(m) ≤ ε.
Considering that λ is of the order λ2 in Eq. (5), a very small
parameter λ should be avoided in order to have a non-zero regu-
larization term. Thus we select f = 0.99 as our default value to
obtain the Tikhonov parameter λ.

It is clearly seen in Fig. B.2, that for log(λ) = −0.53, that is,
the value obtained by the L–Curve or GCV method (horizontal
gray line) corresponds to a very “high” value of ε. If f = 0.99
then ε = 1.8 × 10−4, value much larger than ε = 10−7, which is
our criterion to stop this iteration process.
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