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ABSTRACT. This article deals with the irreducible components of the space of codi-
mension one foliations in a projective space defined by logarithmic forms of a certain
degree. We study the geometry of the natural parametrization of the logarithmic com-
ponents and we give a new proof of the stability of logarithmic foliations, obtaining
also that these irreducible components are reduced.
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1. INTRODUCTION.

We consider differential one-forms of logarithmic type w = F Y, \; dF;/F; where,
for i = 1,...,m, F; is a homogeneous polynomial of a fixed degree d; in variables
X, . - ., Tn, with complex coefficients, F' =[] i Fjs and \; are complex numbers such that
>, diA; = 0. Such an w defines a global section of QL. (d) for d = Y, d;. Also, w satisfies
the Frobenius integrability condition w A dw = 0.

Fixing d = (m;dy, ..., dy,) denote L,(d) € HY(P", Q4. (d)) the collection of all such
logarithmic one-forms and £,(d) C PH(P",QL,(d)) = PV the corresponding closed
projective variety. It is easy to see that £,(d) is an irreducible algebraic variety. Also,
L,(d) is contained in the subvariety F,(d) C PV of integrable one-forms of degree d.
Here the motivating problem is to describe the irreducible components of F,,(d).

It was proved by Omegar Calvo in [2] that, for any d, the variety of logarithmic
forms £,,(d) is an irreducible component of the moduli space F,,(d) of codimension one
algebraic foliations of degree d in P"(C). In other words, the logarithmic one-forms enjoy
a stability condition among integrable forms. Actually, the results of [2] hold for more
general ambient varieties than projective spaces.

In this article we will provide another proof of O. Calvo’s theorem, in case the ambient
space is a complex projective space. Our strategy will be to calculate the tangent space
T(w) of F,(d) at a general point w € L£,,(d). The main results are stated in Theorems
24 and 25.

This method is completely algebraic and provides further information, especially the
fact that F,,(d) results generically reduced along the irreducible component £,,(d).

The logarithmic components are the closure of the image of a multilinear map p,
defined in Section 4, from a product of projective spaces into a projective space. We
describe the base locus of p in Section 5, and study its generic injectivity in Section 6.
Our proof requires a detailed analysis of the derivative of p, started in Section 7. Another
important ingredient is the resolution of the ideal of various strata of the singular scheme
of a logarithmic form; this is carried out in Section 8. The end of the proof is achieved in
Section 9, where we distinguish two cases, depending on whether or not d is balanced.

We thank Jorge Vitério Pereira, Ariel Molinuevo and Federico Quallbrunn for several
conversations at various stages of this work.
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2. NOTATION.
We shall use the following notations:

C"t! = complex affine space of dimension n + 1.
P™ = complex projective space of dimension n.

Sp = Clzg, ..., z,] = graded ring of polynomials with complex coefficients in n + 1
variables.
When n is understood we denote S,, = S.

Sp(d) = homogeneous elements of degree d in S,,.
When n is understood we denote Sy, (d) = S(d).
Recall that one has Sy, (d) = H°(P", Opn (d)).

Q% = sheaf of algebraic differential g-forms on an algebraic variety X.
Q9(X) = the set of rational g-forms on X (with X an irreducible variety).
It is a vector space over the field C(X) of rational functions of X.

Qf = HO(C™HL, Q?C"H)'

A typical element of Q,ll isw=>",a; dr; with a; € S,,.

More generally, a typical element of Q} may be written in the usual way as
Zmzqaj drj with ay € S, and dxy = dxj, A --- Ndxj, where J = {j1,...,j,} with
jl < e & jq-

When n is understood we denote Qf = Q9.

QF is a graded S,,-module with homogeneous piece of degree d defined by

Q%(d) = {Z\J|:q ajdxry, aj € Sn(d — q)}

In particular, dx; is homogeneous of degree one.

The exterior derivative is an operator of degree zero, i. e. it preserves degree.

HO(P",Ql,.(d)) = projective one-forms of degree d.

It follows from the Euler exact sequence that w = Y, a;dz; € QL(d) is projective if and
only if it contracts to zero with the Euler or radial vector field R = >"" xia%i, that is,
P(d) = P(H"(P", Qp.(d)))-

Fo(d) = {w e H'(P",Ql,.(d))/w A dw = 0} = the set of integrable projective one-forms
in P™ of degree d, and

Fn(d) C P*(d) the projectivization of F,(d).

P (d) = PA(d) x 7, PS,(d;).
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3. LOGARITHMIC ONE-FORMS.

1. Definition. Fix natural numbers n,d and m. Let

d:(m;dl,...,dm)

be a partition of d into m parts, that is, for i = 1,...,m each d; is a natural number
and Z:il d; = d. Let us normalize so that d; > d;y1 for all i < m. We denote
P(m,d)

the set of all such partitions of d into m parts.

2. Definition. Fiz d = (m;dy,...,dy,) € P(m,d). A differential one-form w € QL is
logarithmic of type d if

w=]F)D_ X dF/F=> x (][ ) dF;
j=1 i=1 i=1 jF#i

where F; € Sy(d;) is a non-zero homogeneous polynomial of degree d; and the \; are
complex numbers.

3. Definition. It will be convenient to use the following notation. For d and F; € Sy, (d;)
as above,

m
F=(F,.. F,), F=]][F,

7j=1
E=1[F=F/F F;y= [ F=F/EF, (i#)),
i ki kit
or, more generally, for a subset A C {1,...,m} we write
Ea=]]F
jgA
Hence a logarithmic one-form may be written
m m
w=F Y X\ dF/F, =) X\ F dF; (3.1)
i=1 i=1

We denote d; = Zj# d; the degree ofFi and, more generally, da = ZﬁA d; the degree
of Fy.
4. Proposition. For w a logarithmic one-form as above,

a) w is homogeneous of degree d = " | d;.

b) w is integrable.

c) < Ryw>= (", dN)F. In particular, w is projective if and only if

i diN; = 0.
i=1
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Proof. a) Since the exterior derivative is of degree zero, each term in the sum » " | \; F, dF,
is homogeneous of degree d, hence the claim.

b) For each polynomial G, the rational one-form dG/G is closed. It follows that
w/F = ", \i dF;/F; is closed, hence integrable. A short calculation shows that
the product of a rational function with an integrable rational one-form is an integrable
rational one-form. Therefore, w = F w/F is integrable.

c) Euler’s formula implies that < R,dG >= eG for G € Sy(e). By linearity of
contraction we have < R,w >=< R,) . \; F, dF; >= > A\ F; = (D didi)F.

O

5. Proposition. Suppose w is logarithmic as in 3.1. Then,
a) dw = (dF /F) Aw = 21§i,j§m Aj Fij dFiNdEFj = Zl§i<j§m()‘j —Ai) Fij dFi NdEj.
b) F is an integrating factor of w: d(w/F) =0, or, equivalently, Fdw — dF Nw = 0.
¢) Each hypersurface F; = 0 is an algebraic leaf of w, that is, dF;/F; AN w is a regular
2-form (i. e. without poles). Hence dF; Aw = 0 on the hypersurface F; = 0.

Proof. These follow by straightforward calculations, left to the reader. O

4. THE LOGARITHMIC COMPONENTS AND THEIR PARAMETRIZATION.

As before, we fix natural numbers n,d and m and a partition d = (m;dy,...,dy,,) of
d.

For a complex vector space V' we denote PV =V — {0} /C* the corresponding projec-
tive space of one-dimensional subspaces of V. Let m : V — {0} — PV be the canonical
projection. If X C V we call PX = n(X — {0}) C PV the projectivization of X.

As in Section 2, we denote

P"(d) = PH°(P", Qf.(d))

the projective space of sections of Q,(d). This is the ambient projective space that
contains the set of integrable forms F,,(d) and the logarithmic components that we will
investigate.

6. Definition. Let L,(d) C H°(P",QL.(d)) denote the set of all logarithmic projective
one-forms of type d in P", and PL,(d) C P"(d) its projectivization. We denote

Ly(d) C P"(d)
the Zariski closure of PLy,(d).

If w is a non-zero logarithmic form, the corresponding projective point m(w) will be
denoted simply by w when the danger of confusion is small.
Let

A(d) = {()\1,. .. ,)\m) S Cm/idl)\z = 0}
=1
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which is a hyperplane in C™.

7. Definition. Consider the map

o Vi(d) := A(d) x ﬁ Sy (d;) — HO(P", Qb (d))
i=1
such that .
PO Am) (1 F)) = N By dF,
and . .
p:P(d) :=PA(d) x [[PSn(di) - P"(d) = PHO(P", Qpn (d))
such that .

p(r(A, s Am), (1(FY), - (Fn))) = 7D N i dFy).
=1

8. Remark. a) p is a multi-linear map. By Proposition 4, the image of u is L,(d).

b) The induced map p from a product of projective spaces into a projective space is only a
rational map. Later we will determine the base locus B(p) = {(w(\), n(F))/u(\, F) = 0}
of p. Anyway, it is clear that the image of p is PL,(d). Hence L,(d) is the closure of
the image of p. Therefore, Ly, (d) is a projective irreducible variety.

5. BASE LOCUS.

Let B(p) = p~1(0). Then B(u) C V;,(d) is an affine algebraic set, and we intend to
describe its irreducible components.

Let us remark that the multilinearity of x implies that B(u) is stable under the natural
action of (C*)™*! on V,,(d).

From the multilinearity of p it follows that Z = {(\,F) € V,(d)/\A = 0 or F; =
0 for some i} is contained in B(u). We denote B = B(u) — Z and

B(p) = =(B) C P"(d)

the base locus of p.

An example of a point in the base locus is the following. Suppose di = -+ = dp,.
It is then clear that if F} = --- = F,, then (\,F) € B(u). More generally, each string
of equal d;’s gives elements of B(p): if d; = d; for all i,j € A, where A C {1,...,m},
then taking F; = Fj for all i,j € A, Y ;. 4diXi =0, A\; = 0 for j ¢ A, we obtain that
(\F) € B(u).

These examples generalize as follows: suppose our d;’s may be written as

m/

di :Zez-]d.;’ Z: 1,...,m, (51)
j=1
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where m’ € N, d; > 1 and e;; > 0 are integers. Let A € Ay, (d) such that Y ;" e;; A\ =0
for j =1,...,m/, and take F such that

F=1]c5" (5.2)
j=1
for some G € Sy(d), j =1,...,m'. Then,
Z)\Z dFZ/FZ = Z)\ZZGU de/Gj = Z(Z )\ieij) de/Gj =0 (5.3)
=1 =1 7=1 7j=1 i=1

and we obtain elements in the base locus.

We will see now that this construction accounts for all the irreducible components of the
base locus.

9. Definition. We denote F(d) the collection of all decompositions of d as in 5.1, that
is, let

F(d) = {(m,e,d")/ m' €N, e e N d' e (N—{0}))™, d = e d’, e without zero columns }
In 5.1, for each i there exists j such that e;; > 0; that is, all rows of e are non-zero. This

follows from d; > 0. If the j-th column of e is zero then in the decomposition 5.1 the
terms eijdg are zero and do not contribute, so this zero column may be disregarded.

Let us remark that F(d) is finite: we have, d =3, d; = >, s e;;d; > 3, d; > m/, hence
m' is bounded. Also, 5.1 implies e;; < di/dg < d;, so all e;; are also bounded.
For ¢ = (m/,e,d’) € F(d) denote the (Segre-Veronese) map

m

Ve o [T Sn(dj) = ] Snldi)
j=1

i=1
V@(Gly e ,Gm/) = (Fl, e ,Fm)

such that F; = H;”:ll G;” . Also, let

Ale) ={A € A(d)/\ e =0}
which is a linear subspace of C"™ of dimension m — rank(e).
Notice that A e = 0 implies A d = 0. For ¢ € F'(d) let

B, = A(e) x imv, C V,(d)
By the calculation 5.3 we know that B, C B(u) for all ¢ € F(d).
Each By, is clearly irreducible. Next we will see, first, that B(u) = ZUU ¢ pa) Be- And,
second, we will determine when there are inclusions among the B, ’s, thus characterizing

the irreducible components of the base locus.
Let us first recall from [14], Lemme 3.3.1, page 102, the following
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10. Proposition. Let F; € S, (d;), i = 1,...,m, be irreducible distinct (modulo multi-
plicative constants) homogeneous polynomials. If \; € C are such that

S dE/F =0
i=1

then A; = 0 for all i. That is, the rational one-forms dFy/F,...,dF,,/F,, are linearly
independent over C.

11. Corollary. Let (A, F) € V,,(d) with the F; distinct and irreducible, and X\ # 0. Then
(A F) ¢ B(p).

12. Proposition. With the notations above, we have B(u) = Z U, cpq) By

Proof. Let (\,F) € B = B(u) — Z. Write each F; as a product of distinct irreducible
homogeneous polynomials:

m/
r=1le
v J
Jj=1

We allow some e;; = 0. Denote d} the degree of G;. Taking degree we obtain d = e d'.
Repeating the calculation of 5.3 we have

ml

0= Z)\Z dFZ/FZ = Z)\Z Zeij de/Gj = Z(Z )\ieij) de/Gj (5.4)
i=1 i=1 j=1 j=1 =1

Since the G; are irreducible, Proposition 10 implies that >, Aje;; = 0 for all j =
1,...,m/. Therefore, (\,F) € B, with ¢ = (m’,e,d’) € F(d), as claimed. O

Regarding possible inclusions among the B,’s, we make the following

13. Definition. For p; = (mq,e1,d1), w2 = (ma,e2,da) € F(d) we write o3 < @1 if
rank(e;) = rank(ez) and there exists e3 € N™*™2 sych that ea = e; e3.

Then we have
14. Proposition. For 1,92 € F(d), By, C By, if and only if g2 < ¢;.

Proof. Suppose B,, C B,,. Choose an element (\,F) € B,, that is, A ex = 0 and
F;, =112, H,?““ for all 4, for some Hj. We may take this element so that the H}’s are
irreducible. By our hypothesis, (A\,F) € B, and we also have F; = H;n:ll G;“j for all i,
for some G;. By unique factorization and the irreducibility of the Hy, G; = [}, HZSj i
for some e3;, € N. A simple calculation now gives ez = e; e3.

Also, the equality e; = ey e3 just obtained easily implies A(e;) C A(ez). Since we are

assuming By, C B, we also have A(ez) C A(ey). Hence A(e;) = A(ez), and therefore

P15

rank(ej) = rank(ez).
Conversely, suppose @3 < 1. Then ez = e e3 and rank(e;) = rank(eg) imply, as

before, that A(e;) = A(ez). Also, the condition ey = ey e3 easily implies that im v, C

imv,,. Hence B, C By, . U
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15. Corollary. The irreducible components of B(p) are the w(By) for ¢ a mazximal
element of the finite ordered set (F(d), <).

6. GENERIC INJECTIVITY.

Suppose (A, F), (XN, F’) € V,,(d) are such that u(\, F) = u(N,F') # 0, that is,

m m
F Y NdF/Fi=w=F Y X dF//F.
i=1 i=1
Next we discuss conditions that imply that (A, F) = (N, F’).

Let’s observe that if the partition d contains repeated d; 's then the generic injectivity
may hold only up to order. More precisely, suppose A C {1,...,m} is such that d; = d;
for all i, € A. For each permutation o € S,, such that o(j) = j for j ¢ A, clearly we
have (X, F) = p(o.X, 0.F) for all (A\,F) € V,,(d). For e € Nlet Ac = {i/d; = e}. Then
the non-empty A, form a partition of {1,...,m}. Let S(e) = {o € S;,/0(j) = 4,Vj ¢ A}
and S(d) =[], S(e). Then the subgroup S(d) C S, acts on V,,(d) and 4 is constant on
its orbits. By injectivity up to order we will of course mean injectivity of the induced

map with domain V,,(d)/S(d).
16. Proposition. The rational map

p:P*d) --» L,(d) C P*(d)
as in Definition 7, is generically injective (up to order).

Proof. We will prove the existence of a non-empty Zariski open U C X such that p|y is
injective morphism (up to order). It is easy to see, using that p is a dominant map of
irreducible varieties, that the existence of such a U implies that there exists a non-empty
Zariski open V' C L,(d) such that p: p~1(V) — V is injective (up to order).

Consider the Zariski open S(d)-stable U C V,,(d) of points (A, F) such that the F;
are irreducible and all distinct. Hence, for (\,F), (N, F’) € U distinct (up to order),
F =1L F # F' =1I,F/. Suppose u(\,F) = w = pu(N,F’) # 0. Then w has two
integrating factors F' and F’, and therefore has a rational first integral f = F/F’. It
follows that w has infinitely many algebraic leaves (the fibers of f).

On the other hand, if (A1 : -+ : \p,) € P™HC) — P™~1(Q), Proposition (3.7.8) from
[141] implies that w has only finitely many algebraic leaves.

Let Uy = {(\,F) € U/X € P 1(C) — P 1(Q)}.

Consider the restriction p : U — L£,(d) and p: U/S(d) — L,,(d) the induced map.

We obtain that if w = p(A\, F) with (\,F) € Uy then p~1(w) = {(\,F)}.

This implies, first, that since p has a fiber of dimension zero, dim(U) = dim(L,(d))
and the general fiber of p is finite. Also, since the (open analytic) set Uy is Zariski dense
in U (because C — Q is dense in C), Uy is not contained in the branch divisor of p and
hence p has degree one, and therefore is birational, as claimed.
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7. DERIVATIVE OF THE PARAMETRIZATION.
With the notation of Definition 7, let
MF)= (A, ), (F1, ..., Fi)) € Vi (d)
be a point in the vector space V,,(d) domain of u.
Let (N, F') = ((\},..., L), (F{,...,Fl)) € V,(d) represent a tangent vector
(AMF) + eV, F), =0,
to Vi (d) at (A, F).
From the multilinearity of u we easily obtain the following formula for its derivative:
du(\F) : Vi (d) = HO(P™, Qb (d))
dp\FYNF) =Y X, B dF;+ Y N Ff Fy dF;+ ) N Fy dF] (7.1)
i itk i
17. Remark. By Proposition 4 b), the image of p is contained in the variety of integrable
projective forms Fp(d) C H°(P",Q4,(d)). Hence for each (\,F) € V,(d) we have an
inclusion of vector spaces
im dp(\, F) C T, gy (w) = {a € HO(P",Qpn(d))/ w A da+ o A dw = 0} (7.2)

where w = p(\, F) and T, 4)(w) denotes de tangent space of Fy,(d) at the point w.
Our main task in Section 9 will be to show that this inclusion is actually an equality,
for a sufficiently general (\,F) € V,(d).

18. Definition. It is convenient now to introduce the following notation:
w=pu\F) =" X\ F; dF; (a logarithmic one-form),
n=w/F ="\ dF;/F; (the corresponding rational logarithmic one-form),
o = du\E)Y N F') = S N, By dFy+ Y M B B dB+ Y0, A By dE,

19. Proposition. With the notations above, we have
B=n"+(G/F)n+dH/F)

where

77/ = 2?1:1 ):; dFZ/FH

G=>",F F € Syd), and

H=Y1" N F; Fl € 5,(d).
Proof. We add and substract to 2 the sum ), A\; F';/ Ff dF;. A straightforward calcu-
lation gives the proposed expression. ]
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8. SINGULAR IDEALS OF LOGARITHMIC ONE-FORMS AND THEIR RESOLUTION.

For w € HY(P", Q4,.(d)) denote S(w) C P" the scheme of zeros of w and Z = Z,, C Opn
the corresponding ideal sheaf. Considering w as a morphism Op» — Q3,.(d), T is defined
as the image of the dual morphism Tpn(—d) — Opn. Also, if w = Y " a;dz; then
corresponds to the homogeneous ideal generated by ay,...,a, € Sy(d —1).

We keep the notation of Definitions 2 and 3.

Let (\,F) € V(d) and w = F.3 " Ny dF;/F; = Y0\ F, dF; the corresponding
logarithmic one-form.

We denote

X, ={z e P"/F(z) =0}
the hipersurface defined by F;.

For i # j,
and, more generally, for a subset A C {1,...,m},
Xa=[)Xi
€A
For 1 <r < m we write
x ) — U X4
|Al=r

and we shall use especially the following particular cases

m
xW={Jx;, x®={x; x%=1J X
i=1 i<j i<j<k
20. Remark. For our purposes we will be able to assume that the F; € Sy(d;) are
general. We shall assume, more precisely, that each F; is smooth irreducible and that
XU s a normal crossings divisor. Hence, each X4 is a smooth complete intersection

of codimension |A|, and thus the strata X ) are of codimension r, singular only along
x (r+1)

It is shown in [3] and [3] that for w logarithmic as above, with all \; # 0,
Sw)y=x@uPp

with P . P*— XM closed, and P is a finite set if w is general. Let’s revisit the argument,
under the assumptions of Remark 20. First, since clearly F} vanishes on X® for all 4,
we have X ¢ S(w). Since w = N FjdF; on X;, we see that (X(1) — X®) N S(w) = 0.
As for the zeros of w in the complement of X1, they are the same as the zeros of
n=w/F =" X\ dF;/F;, which is a section of the locally free sheaf £ = Q3. (log X (1))
of rank n (see [9], [12], [15], [11]). Considering the F; (hence the divisor XM) as fixed,
the space of global sections of E has dimension m — 1, and these sections correspond
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bijectively with the residues (A1,...,Ay), satisfying > . d;A; = 0, as it follows from
taking cohomology in the exact sequence ([9] or [L1], p. 170):

0— Qpn = E— @™ ,0x, — 0.

For general (\1,..., A\, ) as above, the corresponding section n of E has a finite set P of
simple zeros. Further, the cardinality of P (see [3]) is the degree of the top Chern class
cn(E), computable from the exact sequence above.

Coming back to the study of the resolution of the ideal Z,,, let us denote
I =7(XM) c Opn
the ideal sheaf of regular functions vanishing on X", and
IO =D BE" IO ®) C 5,
keZ
the corresponding saturated homogeneous ideal.

Our arguments to prove stability of logarithmic forms will rely on the following results
regarding the ideals J®).

21. Proposition. Under the hypothesis of Remark 20,

a) J?) is generated by {F;, 1 <i<m}.

b) The relations among the generators of a) are generated by

FjFj—F F, 1<i<j<m,
and also by the subset
RjZFij—Fl Fl, 2<j53<m.
¢) We have a resolution of J@
0= 0™ % @ 0(-d) 2 TP 0
1<i<m
where, denoting {e;} the respective canonical basis,
(SQ(BJ') = Fj €; —F1 €1 for 2 S] < m,
01(e;) = F, for 1<i<m.

Proof. a) We are assuming that the F; are generic. This implies in particular that
each ideal < Fj, F; > is prime. Then, J? = ﬂl§i<j§m < F;,Fj >. Let us denote
J =< Fy,...,F, >. Itis clear that J C J2) . We shall prove that J2 cJ by induction
on m. The case m = 2 is trivial. The inductive hypothesis, applied to Fi,..., Fin_1,
may be written as ﬂ1<i<j<m71 < F,F; > C < Fiyn, oo, Frpm1m >. Take an element
icm @i Fim, and we also have G €< F;, Fy, >
for i < m. Since ij e< F;, F,, > for j # i, it follows that aiﬁ’im e< F;, F,, > fori <m.

inductive hypothesis, we may write G = )
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Since < F;, F,;, > is prime, we have a; = b;F;+¢; F,;,. Then, G =) (biFi—i—ciFm)Fim =

Zi<m(bipm + C@Fz) € J, as wanted.

<m

b) and c) Using the relations R; of b) we write down the complex in ¢). The proof
will be complete if we show that this complex is exact. The surjectivity of d; follows
from a). Looking at the matrix of dy it is easy to see that the determinant of the minor
obtained by removing row j is precisely F j, for j = 1,...,m. Then this complex is the
one associated to the maximal minors of a matrix of size m x m — 1. Since in our case,
by a), the ideal of minors vanishes in codimension two, the complex is exact (see [1] (5),

[10] (20.4)). O

22. Remark. Let X be an algebraic variety, J C Ox a sheaf of ideals, and E o locally
free sheaf on X. Let' Y C X denote the subvariety corresponding to J. Taking global
sections on the exact sequence 0 - E® J — E — E® Oy = E|ly — 0 we obtain an
identification of HY(X, E® J) with the global sections of E vanishing on'Y, that is, with
the kernel of the restriction map H°(X,E) — H°(Y, Ely).

23. Proposition. Let a € QL(d) be a 1-form of degree d in C"*1. Denote X® c crtt
the cone over X,
a) a vanishes on X @ if and only if it may be written as

m
o= g Fio;
i=1

for some a; € QL(d;).
b) av is projective (see Section 2) and vanishes on X @) if and only if it may be written
as

m m
a=Y NEdF;+) Fy
i=1 1=1

where N, € C, > d;N; = 0 and v; € HO(P",Q4.,.(d;)) are projective 1-forms of respec-
tive degrees d;.

Proof. a) By Remark 22, we need to determine H°(P", Qb (d)®J?)). The stated result
then follows from Proposition 21 ¢), by tensoring with 3, (d) and taking global sections.
b) Suppose « is also projective, that is, < R, >= 0, where R is the radial vector field.
From a) we have

m
ZFZ < R,a; >=0.
=1

This is a relation among the F, with coefficients < R, o > homogeneous of degrees d;.
By Proposition 21 ¢), by tensoring with Opn(d) and taking global sections, this relation
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is a linear combination of the relations R; of Proposition 21 b), that is,

(< Rya; >,...,< Ry, >) = Z a; R;.
2<i<m
This means that

< R, a; >= (Zaj)Fl, < Rya;>=—a;F;, 1=2,...,m.
J

Hence a; has degree zero, i. e. a; € C, for all i. Define \; = a;/d; for i = 2,...,m,
A =2 a5)/di and v = a; — NjdF;. It follows that < R,; >= 0 and hence o may
be written as stated. O

9. SURJECTIVITY OF THE DERIVATIVE AND MAIN THEOREM.

As in Remark 17 we denote the derivative of p at the point p(\, F)
du(A\,F) : V(d) —» T'(w) (9.1
where w = p(A\, F) and
T(w) =Tp,@)(w) ={a € HO(P", Qbn(d))/ wAda+aAdo=0} (9.2)
denotes the Zariski tangent space of F,(d) at the point w.
Our main objective is to prove the following:
24. Theorem. Let n,d,m and d € P(m,d) be as in Definition 1. Suppose n > 3. Then
the derivative du(A,F) : V,(d) — T(w) is surjective for (\,F) € V,,(d) general.

Proof. The proof will be obtained through various steps, including several Propositions
of independent interest. O

25. Theorem. If n > 3, the set of logaritmic forms L, (d) C F,(d), as in Definition
6, is an irreducible component of F,(d). Furthermore, the scheme F,(d) is reduced
generically along L, (d).

Proof. Follows from Theorem 24 by the same arguments as in [6] or [7]. O

Let us now start with several steps towards the proof of Theorem 24.
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26. Remark. A typical element « in the image of du(\,F) as in 7.1

a=3 X FidFi+y_ X Ff Fj dF;+ ) N Fy dF]
i i#j i
may be written
a=YF (X dF;+ X dF)) + Y\ F] Fy; dF;
( i#]
or
a=> F (N dF,+ X\ dF))+ Y _ Fy (A Fj dFi + X, F] dFy)
i i<j
Let us observe that the first sum is zero on X?) (hence on X®)) and the second sum
is zero on X©) . The idea of our proofs, leading to Theorem 2/, will be based on this
observation.

Our strategy to characterize the elements a € T'(w) will be this: first we shall deter-
mine «y(s), next we shall determine |y (2), and finally we show that a may be written
as in 7.1 for some X\ and F', and therefore a belongs to the image of du(\, F).

In order to carry out this plan, let us start with some Propositions, some of them of
independent interest.

27. Proposition. For w € F,(d) and o € H°(P",Q},.(d)), the following conditions are
equivalent:

a) wAdo+aAdw =0, that is, « € T'(w).

b) dw A da = 0.
Further, for w logarithmic, n = w/F and = a/F,

c)nNdpB=0.

d)dnnp)=0.

Proof. From a) one obtains b) by applying exterior derivative. Conversely, from b) one
obtains a) by contracting with the radial vector field. The equivalence with c) follows
from Proposition 5 by a straightforward calculation. The equivalence of ¢) and d) follows
from the fact that 7 is closed. O

28. Proposition. Let w = p(\,F) be a logarithmic form and o € T'(w). Assume that
X s normal crossings, with smooth irreducible components X;, as in Remark 20. Then
alye =0, that is, a(x) =0 for all z € X®),

Proof. Let us denote, for 1 <i < j < m,
Uij = Xij = X© = {& € P"/Fy(x) = Fj(x) = 0, Fy(x) # 0 for k ¢ {i, j}}
and, similarly, for 1 <7< j <k < m,
Uiji == Xije — XW



16 FERNANDO CUKIERMAN, JAVIER GARGIULO ACEA AND CESAR MASSRI.

Since the set of zeros of « is closed, it is enough to see that a is zero on X®) — X4,
which is the disjoint union of the U;;,. Notice that dF;, dF;, dFy, are linearly independent
on Ui, because of the normal-crossings hypothesis. Since clearly w|y ) = 0, the relation
wAda+aAdw =0 reduces to a(x) Adw(x) = 0 for each z € X?). We may assume that

i # A; for i # j without losing generality. Then it follows from Proposition 5 a) that
aNdF; NdF; =0 (9.3)
on U;j, and hence on its closure X;;. This means that
a(z) € C.dFy(z) + C.dFj(z) C Qpn(z) (9.4)
for z € X;;. Therefore, for x € U;j, we have
a(z) € (C.dF;(z) + C.dF;(x)) N (C.dF;(z) + C.dFy(z)) N (C.dF}(x) + C.dFy(z)).

Due to the normal crossings hypothesis this last intersection of two-dimensional sub-
spaces is zero, hence a(x) = 0 for x € Uy, as wanted. O

29. Proposition. With the notation and hypothesis of Proposition 28, for each ordered
pair (i,j) with 1 <i,5 <m and i # j, there exists A;; € Sp(d;) such that

o = Fz‘j (Aij dF; + Aji dF]) on Xij-

Proof. This will follow easily combining that Xj;; is a smooth complete intersection of
codimension two in a proyective space, and the fact that «|y @ = 0 that we just proved.

Suppose J =< A, B > is the ideal generated by general homogenous polynomials A
and B of respective degrees a and b. Let Y C P" be the set of zeroes of J. We have an
exact sequence ([13], I11.8)

0= J/J2 = Oy (—a) ® Oy (=b) - QL.]y — Qb =0

Tensoring with Oy (d) and taking global sections we obtain that an element aly €
HO(Y,Q%.,.(d)]y) which belongs to the image of H(§), may be written as A'dA + B'dB
for A’ € H(Y,Oy(d —a)) and B’ € H°(Y, Oy (d —b)). By [13], Ex. III (5.5), A" and B’
are represented by homogeneous polynomials of respective degrees d — a and d — b.

For each (i, j), alx,, belongs to the image of the corresponding H°(5), by 9.4. Hence,
we know that a = A}, dF; + A%, dFj on X;;, for homogeneous polynomials A;; of degree
d — d;. Now, a|y@s) = 0 by Proposition 28, and in particular o = 0 on Xjj;, for all k.
Since dF; and dFj are linearly independent at all points of X;;; by the normal crossings
hypothesis, it follows that A}; and A); are divisible by F}; and we obtain the claim. [

30. Corollary. With the notation of Proposition 29, define
o = ZEJ (AZJ dF; + Aji dF]) € Q%L(d)
1<j

/
Then (6% |Xv(2) =« X -
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(But notice that o/ may not satisfy 7.2; see the Proof of Corollary 35).
Proof. Follows from Proposition 29 since F}; vanishes on Xy, if {h, k} # {4, j}. O

31. Corollary. We keep the notation of Proposition 29. Then any o € T'(w) may be
written as

> Fiy (Aij dF; + Aji dFy) + > Fi o

i<j i
= Y Fj; Aij dF;+ ) F, o
i#j i
for some a; € QL(d;).

Proof. For a € T(w), take o’ as in Corollary 30. Then a — o/ € Q! (d) vanishes on X?)
and hence, by Proposition 23 a), may be written as Y " | Fya; for some a; € QL (d;). O

We would like to obtain further information on the A;;’s and the a;’s. For this, we will
use again that a satisfies w Ada+ a Adw =0 as in 7.2.

32. Proposition. Suppose n > 3. With notation as in Corollary 31, for each j =
L,...,m there exists F; € Sp(d;) such that

Aij = )‘2 F}/ on Xij
for all (i,7) with 1 <i,5 <m and i # j.

Proof. The calculation is nicer working with the equivalent condition d8 A n = 0, where
B =a/F and n = w/F, see Proposition 27 c). We have:

AZ] dF (674
=) & R
1#£] )
df = Zd Aij F’+Zd(%)
z : FZ
i#£] )
dF dF %y dF
dgAn = 2k Z)‘k %i Fk_
k
z;ﬁ]k
A; dF dF A; dF dF;
> M dF) o N A AT
i J
i#jFk i#j
%y dF dF
Z)\k di —k + Z)\k ak el 0
1#£k k
Let’s replace
d(AiJ') dAij Ay dE; d(%)_dai _dF ai
T TR T R A R R
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and multiply by F2. After some straightforward calculation we obtain:

F > M Fy dAy; ANdF; AdFy + ) Ny, By, Fiy dAge A dF; A dFy, +

i#j#k i#k
Z Ak Fj Fijk Aij dF; NdF; A dFy, +
1#]#k
F Z)\k F]k daj/\dFk+Z)‘k F,? dag N dFy, +
J#k k
Z)\k Fj ij Q; /\dFj/\dFk =0
J#k

Now we choose r such that 1 < r < m and restrict to X,., that is, we reduce modulo F;..
We get:
E, (Z A Fiy dAi A dF; A dF, + Z Ne Eivie Air dF; A dE, A dFy, +
ir i#k#r
A By dow AdF, + Y Mg By o AdF, NdFy) = 0 (9.5)
k#r

Since F, is not zero on the irreducible variety X,, we may cancel this factor out.
Next, choose s such that 1 < s < m, s # r, and further restrict to X, N Xy = X,s to
obtain:

A\ Fy dAge A dFs A dEF, + Z Ne Eie Asy dFs A dF, A dF), +

k#r#s

> A Fips Aip dF; NdF NdF, + X Frg ap NdF. AdF, = 0 (9.6)

1£r#£s
And, once more, choose t such that 1 <t <m, t # s # r. Restricting to X, N X, N X; =

Xt we get:
Frg(\ Agr — As Ay) dE, NdFy AdF; =0

By the genericity of the F;’s, X, is irreducible, and we may cancel out the factor
F.s+ # 0. By the normal crossing hypothesis we may also cancel out dF, AdFs AdF; # 0.

Therefore,
Asr /s = Ay /N on Xyt (9.7)
for all distinct 1 < r,s,t < m.
Let us fix r, 1 <r < m. We consider the natural restriction maps
Sn(dr) = HO(P", O(dy)) = H*(X;, O(dy)) = H (X, O(dy)) = H*(Xrst, O(dr)).

For s = 1,...,m, s # r, the polynomials Ag./\s € S,(d,) (all of the same degree d,)
define, by restriction to the hypersurfaces X,s C X,., sections Ay, /Ay € HY(X,.s,0(d,)).
By 9.7 these sections coincide on the pairwise intersections X,; N X+ = X,s. Hence
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this collection defines a section of O(d,) on the (reducible) variety D, = Us£, Xys C X,
By Lemma 33 below, with X = X, and D = D,, there exists F| € S,(d,), such that
Agr/As = F! on X, for each s # r, as claimed.

0

33. Lemma. Letn > 3, and let X C P™ be a smooth irreducible hypersurface of degree e.
Form>1andi=1,...,mlet D; C X be smooth irreducible distinct hypersurfaces. We
consider the (reducible) hypersurface D = Uj<i<mD; C X. Then the natural restriction
map

H(X,0(e)) — H(D,0O(e))

18 surjective.

Proof. In the exact sequence 0 — Ox(—D) — Ox — Op — 0 we tensor by Ox(e)
and take cohomology. Since Ox(—D)(e) = Ox(—d)(e) = Ox(e — d) for some d, and
HY(X,0x(e—d)) =0 (see e. g. [13], Exercise III, (5.5)), we obtain the claim. O

34. Corollary. Let n > 3. Any o € T(w) may be written as

a=> X\ Fy FjdF;+)_F, o
i#j i
for some F! € S,,(d;) and o; € QL (d;).

Proof. Follows from Corollary 31 and Proposition 32. O

35. Corollary. Letn > 3. Any a € T(w) may be written as
o=+ Z F, Y-
i
where @ belongs to the image of du(\,F), v € QL(d;) and 3, F; v; € T(w).

Proof. Using Corollary 34, then adding and substracting >, A; F; dF!, we have:

)

i#j

= d,u()\, F)(07F,) + Zﬁz Vi
i
taking v; = a; — A\; dF]. Since o,a € T(w), we have a —a = ), Fi% € T(w), as
claimed. O
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36. Remark. Corollary 35 implies that to prove Theorem 24 we are reduced to showing
that any o € T(w) of the form o =Y, Firyi, with ; € QL(d;), belongs to the image of
du(\F).

To this end, let us first prove the following

37. Proposition. Let o € T'(w) be of the form
a=> (F) (9-8)
J
with e € Nye > 1, and y; € QL(d — eczj). Then, for 1 < i,5 < m, i # j, there exist
N, € C, Dij € Sp(dj — ed;) and ¢; € QL(d; — ed;), such that

Y5 :)\; dF]—i-ZFU Dij sz-i-F] €j
i#]
forj=1,...,m. In case e > 2, all \; = 0.
Proof. Let us use once more that « satisfies 7.2 w A da + a A dw = 0. We may apply
to our present o the calculation in the Proof of Proposition 32, with A;; = 0 and
aj = (Fj)e_l 7;, for all 7, j. Then it follows from equation 9.6 that
v NdF; NdF; = 0 on X;;, forall i# j,
since \j # 0, and Fij # 0 on X;;. Then,
Vi = szdFZ + Cz‘dej on X;;
for some Bjj € Sp(d — edj — d;) and Cy; € S,,((1 — e)d;). Notice that Cy; € S,,(0) = C if
e=1,and C;; =0if e > 2, since (1 —e)d; < 0.
Now we fix j and vary i # j. On X;; N Xp; = X, we have ByjdF; + Cj;dF; =
ByjdFy, + Cj;dF;. From the normal crossings hypothesis we obtain, for all ¢ # k:
a) Bij = Bk:j =0 on Xijlm and
b) Cij = Ci;
From b), Cj; does not depend on i and we may denote Cj; = )\;. As noticed above,
Cij:)\;:OincaseeEQ.
On the other hand, a) implies that B;; = FijDij on Xj; for some D;; € Sy(dj — ecfj).
Therefore,
Yi = )\;dﬂ + E]DZ]dE on Xij
for all j and all i # j. Let v} = v; — (N;dFj + 37,4, Fy;D;jdFy) € QL(d — ed;). Thefl v
is zero on Dj = U, 2;X;; C X, hence there exists ¢; € Q) (d; — ed;) such that ’y§ =Fj ¢
on X;. Denoting J; & O(—d;) the ideal sheaf of X;, we have H°(P", Qb (d;)(J;))
HO(P", Qﬂ»n) = 0. Therefore the equality 7§~ = Fj €; holds in P", and this implies our
claim.

0
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38. Corollary. If a € T(w) is divisible by (F})¢, that is, a = (F1)¢ v, for some v €
QL(d—edy), then there exist Ny € C, D; € Sp(dy —edy), fori > 1, and e; € QL (d; —edy),
such that
a=(F)(\, dFy +ZFZ‘1 D; dF; + Fi ).
i>1
In case e > 2, N\ = 0.

Proof. It follows immediately from Proposition 37 applied to the case v; = 0 for j >
1. O

9.1. End of the proof: balanced case.

39. Definition. Let d = (m;dy,...,dy) € P(m,d). We say that d is balanced if
d; < Zﬁéi dj = d; for alli=1,...,m. Equivalently, if 2d; < d for all i.

Notice that if d is not balanced then there exists a unique ¢ such that 2d; > d. Since we
normalized d so that d; > dy > -+ > d,, (see Definition 1), it follows that d is balanced
if and only if 2d; < d.

40. Theorem. Suppose d € P(m,d) is balanced. Let (\,F) € V,(d) be general and
w = u(\,F). Then, for any a € T(w) such that o =Y, F; v;, with v; € QL(d;), there
exists X' = (X},...,AL,) € C™, with 37", d;\; = 0, such that

m
a=> X\ F; dF,
i=1
In particular,

o = du(\ F)(X,0)
belongs to the image of du(\, F).

Proof. We apply Proposition 37 with e = 1. Since d is balanced, d; — cfj < 0 for all j
and then D;; =0 and ¢; = 0 for all 4, j. Hence v; = )\;» dF; for all j, as claimed. 0

It follows from Remark 36 that the proof of Theorem 24 is now complete, if d is balanced.

9.2. End of the proof: general case. When d is not balanced, Theorem 40 is not
true; we may have an a € T'(w) such that a|y@ = 0 but « is not logarithmic as in
Theorem 40. For example, take F| = G, Fy where Gy is any homogeneous polynomial
of degree d; — d; > 0, and Fi =0 for j > 1. Then a = du(\, F)(0, F") satisfies this

condition, as it easily follows from 7.1. Notice that this « is divisible by F].

In Theorem 42 we will see that any « € T'(w) such that oy @ = 0 may be written in a
special form that still implies it belongs to the image of du(\, F).
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41. Definition. Let d € P(m,d). We define
r(d) =max {e € N/ dy > e di} = [dy/di]
the integer part of dy/d,.

Notice that d is balanced when r(d) = 0.

42. Theorem. Fizd € P(m,d). Let (\,F) € V,,(d) be general and w = (N, F). Then,
any a € T(w) such that « =), Eyyi, with ~; € QL(d;), may be written as

o = du(\ F)(X, F)
where X' € C™ s such that 3 d;iX; =0, F] =0 for j > 1, and
r(d)
Fl=) G.FK°
e=1
where G, are homogeneous polynomials of respective degrees dy —ecfl, fore=1,...,r(d).
Proof. By Proposition 37 with e =1,
QZZ)\;F]' dF]—i-ZFU FjDij dFi‘i‘ZFj ijj- (9.9)
J i) J
In the current unbalanced case, di — ch > 0 and d; — ciz < 0 for 7 > 1, as in Definition
9.2. Hence D;j = 0 and ¢; = 0 for j > 1. Also, since >_; N} Fj dFj = du(X\, F)(N',0), it
is enough to consider
a=al) = Zle F\Dy;y dF; + F) Fre, = Fy (Z Fj Dy dF; + Fy e1) (9.10)
i>1 i>1
which is divisible by F} (the last term is actually divisible by F}?).
What we shall do is to express a(!) as the sum of an element of the image of du(\, F) (of
the claimed shape) plus an o(?) € T(w) divisible by F,2. Next we repeat the argument
and express a(® as the sum of another element of the image of du(A, F) plus an al®) ¢
T(w) divisible by F,3. After at most 7(d) iterations this process ends, since a"(+1) =0
by degree reason, and hence we obtain the claimed expression for the original a.
The essential step is to pass from a(® to aletD) for 1 <e < r(d).
To carry out this step, let us assume that « is divisible by F}¢, that is,
o= Oé(e) = Fle (Z El D;1 dF; + Fl 61). (911)
i>1
as in Corollary 38.
Now we apply to « the calculation in the Proof of Proposition 32 with

Aij = FleDij, Oéj = FleEj,
that is:
A= FleDl'l fori>1, a3 = Fleel,
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Ajj =0, aj=0 forj>1.

From equation 9.5 with » = 1 we get

Py (O M Fia d(Fy°Di) ANdF; NdFy + Y Ay Fag Fy°Dyy dF; AdFy A dFy +
i#1 i#k#1
M Py d(Fy ) NdFy + Y N P By e AdFy AdFy) = 0(9.12)
k#1
We have d(F}°Dyy) = eF,* 'DidFy + F\°dDj1. Also, dFy A dF; = (3,44 FjudFy) A
dF; = Y442 FjndFy A dF;, so that FpdFy A dF; = Y o FaFpdFy A dF; =
Py Z#L#i FijldFj A dF;. Replacing these into 9.12, we obtain, on X;:

F16+1( Z e)\lﬁl-lel-l df} ANdF; NdF] + Z Alﬁh dD; N dF; N dFy +
i#j#1 i#1
> XjFj1Di dF, AdFy AdFj + edy dEFy Aey AdFy + M Fy dey AdFy +
i#i#1
Z)\ZFM eg NdEFy A dFZ) =0 (913)
i#1
Now we cancel the factor Fl ¢! on X; and then restrict to X for 1, s, ¢ distinct. After
straightforward calculation we obtain, on Xi4:

(6)\1 + )‘S)Dtl = (6)\1 + At)Dsl

Then the collection {Ds1/(eA; + As) € Sp(d1 — edl)}s;ﬂ defines a section of O(d; — ed,)
on Ug£1 X1, C X1. Hence, there exists G. € Sy, (dy — edl) such that
Dg = (6)\1 + )\S)Ge
on Xi for all s # 1. Then, with the notation of 9.11,
> FaDindF; + Frep — > Fy (e +X)Ge dF, = 0
i>1 i>1
on Ug21 X175 C X1, and hence is divisible by Fl. We obtain
o= Fle ZEl (e)\1 + )\Z‘)Ge dF; + Fle—I—l €1 (9.14)
i>1
for some & € QL(d; — edy).
Denote F' = (F,¢ G,,0,...,0). Combining 9.14 with
dp(\F)(0,F') =Y "\ Fi° Ge Fyy dF; + M Fud(F°Ge)
i>1
(see 7.1), one immediately obtains

a = du(\ F)(0,F') + ol
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with ot = F 1 (6 — \dG.). Now, al**1) € T(w) because a and du(\, F)(0, F')
belong to T'(w). Since ol is divisible by F,°*!, by Corollary 38, it may be written
as in 9.11 with exponent e + 1. Hence we may apply again the previous procedure to
aletD | This proves the essential iterative step and implies our statement. ]

It follows from Remark 36 that the proof of Theorem 24 is now complete, for any d.
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