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STABILITY OF LOGARITHMIC DIFFERENTIAL ONE-FORMS.

FERNANDO CUKIERMAN,

JAVIER GARGIULO ACEA,

CÉSAR MASSRI.

Abstract. This article deals with the irreducible components of the space of codi-

mension one foliations in a projective space defined by logarithmic forms of a certain

degree. We study the geometry of the natural parametrization of the logarithmic com-

ponents and we give a new proof of the stability of logarithmic foliations, obtaining

also that these irreducible components are reduced.
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1. Introduction.

We consider differential one-forms of logarithmic type ω = F
∑m

i=1 λi dFi/Fi where,

for i = 1, . . . ,m, Fi is a homogeneous polynomial of a fixed degree di in variables

x0, . . . , xn, with complex coefficients, F =
∏

j Fj , and λi are complex numbers such that∑
i diλi = 0. Such an ω defines a global section of Ω1

Pn(d) for d =
∑

i di. Also, ω satisfies

the Frobenius integrability condition ω ∧ dω = 0.

Fixing d = (m; d1, . . . , dm) denote Ln(d) ⊂ H0(Pn,Ω1
Pn(d)) the collection of all such

logarithmic one-forms and Ln(d) ⊂ PH0(Pn,Ω1
Pn(d)) = PN the corresponding closed

projective variety. It is easy to see that Ln(d) is an irreducible algebraic variety. Also,

Ln(d) is contained in the subvariety Fn(d) ⊂ PN of integrable one-forms of degree d.

Here the motivating problem is to describe the irreducible components of Fn(d).

It was proved by Omegar Calvo in [2] that, for any d, the variety of logarithmic

forms Ln(d) is an irreducible component of the moduli space Fn(d) of codimension one

algebraic foliations of degree d in Pn(C). In other words, the logarithmic one-forms enjoy

a stability condition among integrable forms. Actually, the results of [2] hold for more

general ambient varieties than projective spaces.

In this article we will provide another proof of O. Calvo’s theorem, in case the ambient

space is a complex projective space. Our strategy will be to calculate the tangent space

T (ω) of Fn(d) at a general point ω ∈ Ln(d). The main results are stated in Theorems

24 and 25.

This method is completely algebraic and provides further information, especially the

fact that Fn(d) results generically reduced along the irreducible component Ln(d).

The logarithmic components are the closure of the image of a multilinear map ρ,

defined in Section 4, from a product of projective spaces into a projective space. We

describe the base locus of ρ in Section 5, and study its generic injectivity in Section 6.

Our proof requires a detailed analysis of the derivative of ρ, started in Section 7. Another

important ingredient is the resolution of the ideal of various strata of the singular scheme

of a logarithmic form; this is carried out in Section 8. The end of the proof is achieved in

Section 9, where we distinguish two cases, depending on whether or not d is balanced.

We thank Jorge Vitório Pereira, Ariel Molinuevo and Federico Quallbrunn for several

conversations at various stages of this work.
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2. Notation.

We shall use the following notations:

Cn+1 = complex affine space of dimension n+ 1.

Pn = complex projective space of dimension n.

Sn = C[x0, . . . , xn] = graded ring of polynomials with complex coefficients in n+ 1

variables.

When n is understood we denote Sn = S.

Sn(d) = homogeneous elements of degree d in Sn.

When n is understood we denote Sn(d) = S(d).

Recall that one has Sn(d) = H0(Pn,OPn(d)).

Ωq
X = sheaf of algebraic differential q-forms on an algebraic variety X.

Ωq(X) = the set of rational q-forms on X (with X an irreducible variety).

It is a vector space over the field C(X) of rational functions of X.

Ωq
n = H0(Cn+1,Ωq

Cn+1).

A typical element of Ω1
n is ω =

∑n
i=0 ai dxi with ai ∈ Sn.

More generally, a typical element of Ωq
n may be written in the usual way as∑

|J |=q aJ dxJ with aJ ∈ Sn and dxJ = dxj1 ∧ · · · ∧ dxjq where J = {j1, . . . , jq} with

j1 < · · · < jq.

When n is understood we denote Ωq
n = Ωq.

Ωq
n is a graded Sn-module with homogeneous piece of degree d defined by

Ωq
n(d) = {

∑
|J |=q aJ dxJ , aJ ∈ Sn(d− q)}.

In particular, dxi is homogeneous of degree one.

The exterior derivative is an operator of degree zero, i. e. it preserves degree.

H0(Pn,Ω1
Pn(d)) = projective one-forms of degree d.

It follows from the Euler exact sequence that ω =
∑

i aidxi ∈ Ω1
n(d) is projective if and

only if it contracts to zero with the Euler or radial vector field R =
∑n

i=0 xi
∂
∂xi

, that is,

if
∑

i aixi = 0.

Pn(d) = P(H0(Pn,Ω1
Pn(d))).

Fn(d) = {ω ∈ H0(Pn,Ω1
Pn(d))/ω ∧ dω = 0} = the set of integrable projective one-forms

in Pn of degree d, and

Fn(d) ⊂ Pn(d) the projectivization of Fn(d).

Pn(d) = PΛ(d)×
∏m

i=1 PSn(di).
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3. Logarithmic one-forms.

1. Definition. Fix natural numbers n, d and m. Let

d = (m; d1, . . . , dm)

be a partition of d into m parts, that is, for i = 1, . . . ,m each di is a natural number

and
∑m

i=1 di = d. Let us normalize so that di ≥ di+1 for all i < m. We denote

P (m,d)

the set of all such partitions of d into m parts.

2. Definition. Fix d = (m; d1, . . . , dm) ∈ P (m,d). A differential one-form ω ∈ Ω1
n is

logarithmic of type d if

ω = (
m∏

j=1

Fj)
m∑

i=1

λi dFi/Fi =
m∑

i=1

λi (
∏

j 6=i

Fj) dFi

where Fi ∈ Sn(di) is a non-zero homogeneous polynomial of degree di and the λi are

complex numbers.

3. Definition. It will be convenient to use the following notation. For d and Fi ∈ Sn(di)

as above,

F = (F1, . . . , Fm), F =

m∏

j=1

Fj ,

F̂i =
∏

j 6=i

Fj = F/Fi, F̂ij =
∏

k 6=i,k 6=j

Fk = F/FiFj , (i 6= j),

or, more generally, for a subset A ⊂ {1, . . . ,m} we write

F̂A =
∏

j /∈A

Fj

Hence a logarithmic one-form may be written

ω = F

m∑

i=1

λi dFi/Fi =

m∑

i=1

λi F̂i dFi. (3.1)

We denote d̂i =
∑

j 6=i dj the degree of F̂i and, more generally, d̂A =
∑

j /∈A dj the degree

of F̂A.

4. Proposition. For ω a logarithmic one-form as above,

a) ω is homogeneous of degree d =
∑m

i=1 di.

b) ω is integrable.

c) < R,ω >= (
∑m

i=1 diλi)F . In particular, ω is projective if and only if

m∑

i=1

diλi = 0.
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Proof. a) Since the exterior derivative is of degree zero, each term in the sum
∑m

i=1 λi F̂i dFi

is homogeneous of degree d, hence the claim.

b) For each polynomial G, the rational one-form dG/G is closed. It follows that

ω/F =
∑m

i=1 λi dFi/Fi is closed, hence integrable. A short calculation shows that

the product of a rational function with an integrable rational one-form is an integrable

rational one-form. Therefore, ω = F ω/F is integrable.

c) Euler’s formula implies that < R, dG >= eG for G ∈ Sn(e). By linearity of

contraction we have < R,ω >=< R,
∑

i λi F̂i dFi >=
∑

i diλiF̂iFi = (
∑

i diλi)F .

�

5. Proposition. Suppose ω is logarithmic as in 3.1. Then,

a) dω = (dF/F )∧ω =
∑

1≤i,j≤m λj F̂ij dFi∧dFj =
∑

1≤i<j≤m(λj −λi) F̂ij dFi∧dFj .

b) F is an integrating factor of ω: d(ω/F ) = 0, or, equivalently, Fdω − dF ∧ ω = 0.

c) Each hypersurface Fi = 0 is an algebraic leaf of ω, that is, dFi/Fi ∧ ω is a regular

2-form (i. e. without poles). Hence dFi ∧ ω = 0 on the hypersurface Fi = 0.

Proof. These follow by straightforward calculations, left to the reader. �

4. The logarithmic components and their parametrization.

As before, we fix natural numbers n, d and m and a partition d = (m; d1, . . . , dm) of

d.

For a complex vector space V we denote PV = V −{0}/C∗ the corresponding projec-

tive space of one-dimensional subspaces of V . Let π : V − {0} → PV be the canonical

projection. If X ⊂ V we call PX = π(X − {0}) ⊂ PV the projectivization of X.

As in Section 2, we denote

Pn(d) = PH0(Pn,Ω1
Pn(d))

the projective space of sections of Ω1
Pn(d). This is the ambient projective space that

contains the set of integrable forms Fn(d) and the logarithmic components that we will

investigate.

6. Definition. Let Ln(d) ⊂ H0(Pn,Ω1
Pn(d)) denote the set of all logarithmic projective

one-forms of type d in Pn, and PLn(d) ⊂ Pn(d) its projectivization. We denote

Ln(d) ⊂ Pn(d)

the Zariski closure of PLn(d).

If ω is a non-zero logarithmic form, the corresponding projective point π(ω) will be

denoted simply by ω when the danger of confusion is small.

Let

Λ(d) = {(λ1, . . . , λm) ∈ Cm/

m∑

i=1

diλi = 0}
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which is a hyperplane in Cm.

7. Definition. Consider the map

µ : Vn(d) := Λ(d)×
m∏

i=1

Sn(di) → H0(Pn,Ω1
Pn(d))

such that

µ((λ1, . . . , λm), (F1, . . . , Fm)) =

m∑

i=1

λi F̂i dFi

and

ρ : Pn(d) := PΛ(d)×
m∏

i=1

PSn(di) Pn(d) = PH0(Pn,Ω1
Pn(d))

such that

ρ(π(λ1, . . . , λm), (π(F1), . . . , π(Fm))) = π(
m∑

i=1

λi F̂i dFi).

8. Remark. a) µ is a multi-linear map. By Proposition 4, the image of µ is Ln(d).

b) The induced map ρ from a product of projective spaces into a projective space is only a

rational map. Later we will determine the base locus B(ρ) = {(π(λ), π(F ))/µ(λ, F ) = 0}

of ρ. Anyway, it is clear that the image of ρ is PLn(d). Hence Ln(d) is the closure of

the image of ρ. Therefore, Ln(d) is a projective irreducible variety.

5. Base locus.

Let B(µ) = µ−1(0). Then B(µ) ⊂ Vn(d) is an affine algebraic set, and we intend to

describe its irreducible components.

Let us remark that the multilinearity of µ implies that B(µ) is stable under the natural

action of (C∗)m+1 on Vn(d).

From the multilinearity of µ it follows that Z = {(λ,F) ∈ Vn(d)/λ = 0 or Fi =

0 for some i} is contained in B(µ). We denote B = B(µ)− Z and

B(ρ) = π(B) ⊂ Pn(d)

the base locus of ρ.

An example of a point in the base locus is the following. Suppose d1 = · · · = dm.

It is then clear that if F1 = · · · = Fm then (λ,F) ∈ B(µ). More generally, each string

of equal di’s gives elements of B(µ): if di = dj for all i, j ∈ A, where A ⊂ {1, . . . ,m},

then taking Fi = Fj for all i, j ∈ A,
∑

i∈A diλi = 0, λj = 0 for j /∈ A, we obtain that

(λ,F) ∈ B(µ).

These examples generalize as follows: suppose our di’s may be written as

di =

m′∑

j=1

eijd
′
j , i = 1, . . . ,m, (5.1)
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where m′ ∈ N, d′j ≥ 1 and eij ≥ 0 are integers. Let λ ∈ Λn(d) such that
∑m

i=1 eijλi = 0

for j = 1, . . . ,m′, and take F such that

Fi =

m′∏

j=1

G
eij
j (5.2)

for some Gj ∈ Sn(d
′
j), j = 1, . . . ,m′. Then,

m∑

i=1

λi dFi/Fi =

m∑

i=1

λi

m′∑

j=1

eij dGj/Gj =

m′∑

j=1

(

m∑

i=1

λieij) dGj/Gj = 0 (5.3)

and we obtain elements in the base locus.

We will see now that this construction accounts for all the irreducible components of the

base locus.

9. Definition. We denote F (d) the collection of all decompositions of d as in 5.1, that

is, let

F (d) = {(m′, e,d′)/ m′ ∈ N, e ∈ Nm×m′

, d′ ∈ (N−{0})m
′

, d = e d′, e without zero columns }

In 5.1, for each i there exists j such that eij > 0; that is, all rows of e are non-zero. This

follows from di > 0. If the j-th column of e is zero then in the decomposition 5.1 the

terms eijd
′
j are zero and do not contribute, so this zero column may be disregarded.

Let us remark that F (d) is finite: we have, d =
∑

i di =
∑

i,j eijd
′
j ≥

∑
j d

′
j ≥ m′, hence

m′ is bounded. Also, 5.1 implies eij ≤ di/d
′
j ≤ di, so all eij are also bounded.

For ϕ = (m′, e,d′) ∈ F (d) denote the (Segre-Veronese) map

νϕ :
m′∏

j=1

Sn(d
′
j) →

m∏

i=1

Sn(di)

νϕ(G1, . . . , Gm′) = (F1, . . . , Fm)

such that Fi =
∏m′

j=1G
eij
j . Also, let

Λ(e) = {λ ∈ Λ(d)/λ e = 0}

which is a linear subspace of Cm of dimension m− rank(e).

Notice that λ e = 0 implies λ d = 0. For ϕ ∈ F (d) let

Bϕ = Λ(e) × im νϕ ⊂ Vn(d)

By the calculation 5.3 we know that Bϕ ⊂ B(µ) for all ϕ ∈ F (d).

Each Bϕ is clearly irreducible. Next we will see, first, that B(µ) = Z∪
⋃

ϕ∈F (d)Bϕ. And,

second, we will determine when there are inclusions among the Bϕ’s, thus characterizing

the irreducible components of the base locus.

Let us first recall from [14], Lemme 3.3.1, page 102, the following
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10. Proposition. Let Fi ∈ Sn(di), i = 1, . . . ,m, be irreducible distinct (modulo multi-

plicative constants) homogeneous polynomials. If λi ∈ C are such that
m∑

i=1

λi dFi/Fi = 0

then λi = 0 for all i. That is, the rational one-forms dF1/F1, . . . , dFm/Fm are linearly

independent over C.

11. Corollary. Let (λ,F) ∈ Vn(d) with the Fi distinct and irreducible, and λ 6= 0. Then

(λ,F) /∈ B(µ).

12. Proposition. With the notations above, we have B(µ) = Z ∪
⋃

ϕ∈F (d)Bϕ.

Proof. Let (λ,F) ∈ B = B(µ) − Z. Write each Fi as a product of distinct irreducible

homogeneous polynomials:

Fi =

m′∏

j=1

G
eij
j

We allow some eij = 0. Denote d′j the degree of Gj . Taking degree we obtain d = e d′.

Repeating the calculation of 5.3 we have

0 =

m∑

i=1

λi dFi/Fi =

m∑

i=1

λi

m′∑

j=1

eij dGj/Gj =

m′∑

j=1

(

m∑

i=1

λieij) dGj/Gj (5.4)

Since the Gj are irreducible, Proposition 10 implies that
∑m

i=1 λieij = 0 for all j =

1, . . . ,m′. Therefore, (λ,F) ∈ Bϕ with ϕ = (m′, e,d′) ∈ F (d), as claimed. �

Regarding possible inclusions among the Bϕ’s, we make the following

13. Definition. For ϕ1 = (m1, e1,d1), ϕ2 = (m2, e2,d2) ∈ F (d) we write ϕ2 ≤ ϕ1 if

rank(e1) = rank(e2) and there exists e3 ∈ Nm1×m2 such that e2 = e1 e3.

Then we have

14. Proposition. For ϕ1, ϕ2 ∈ F (d), Bϕ2 ⊂ Bϕ1 if and only if ϕ2 ≤ ϕ1.

Proof. Suppose Bϕ2 ⊂ Bϕ1 . Choose an element (λ,F) ∈ Bϕ2 , that is, λ e2 = 0 and

Fi =
∏m2

k=1H
e2ik
k for all i, for some Hk. We may take this element so that the Hk’s are

irreducible. By our hypothesis, (λ,F) ∈ Bϕ1 and we also have Fi =
∏m1

j=1G
e1ij
j for all i,

for some Gj . By unique factorization and the irreducibility of the Hk, Gj =
∏m2

k=1H
e3jk
k

for some e3jk ∈ N. A simple calculation now gives e2 = e1 e3.

Also, the equality e2 = e1 e3 just obtained easily implies Λ(e1) ⊂ Λ(e2). Since we are

assuming Bϕ2 ⊂ Bϕ1 , we also have Λ(e2) ⊂ Λ(e1). Hence Λ(e1) = Λ(e2), and therefore

rank(e1) = rank(e2).

Conversely, suppose ϕ2 ≤ ϕ1. Then e2 = e1 e3 and rank(e1) = rank(e2) imply, as

before, that Λ(e1) = Λ(e2). Also, the condition e2 = e1 e3 easily implies that im νϕ2 ⊂

im νϕ1 . Hence Bϕ2 ⊂ Bϕ1 . �
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15. Corollary. The irreducible components of B(ρ) are the π(Bϕ) for ϕ a maximal

element of the finite ordered set (F (d),≤).

6. Generic injectivity.

Suppose (λ,F), (λ′,F′) ∈ Vn(d) are such that µ(λ,F) = µ(λ′,F′) 6= 0, that is,

F
m∑

i=1

λi dFi/Fi = ω = F ′
m∑

i=1

λ′
i dF

′
i/F

′
i .

Next we discuss conditions that imply that (λ,F) = (λ′,F′).

Let’s observe that if the partition d contains repeated di
′s then the generic injectivity

may hold only up to order. More precisely, suppose A ⊂ {1, . . . ,m} is such that di = dj
for all i, j ∈ A. For each permutation σ ∈ Sm such that σ(j) = j for j /∈ A, clearly we

have µ(λ,F) = µ(σ.λ, σ.F) for all (λ,F) ∈ Vn(d). For e ∈ N let Ae = {i/di = e}. Then

the non-empty Ae form a partition of {1, . . . ,m}. Let S(e) = {σ ∈ Sm/σ(j) = j,∀j /∈ Ae}

and S(d) =
∏

e S(e). Then the subgroup S(d) ⊂ Sm acts on Vn(d) and µ is constant on

its orbits. By injectivity up to order we will of course mean injectivity of the induced

map with domain Vn(d)/S(d).

16. Proposition. The rational map

ρ : Pn(d) Ln(d) ⊂ Pn(d)

as in Definition 7, is generically injective (up to order).

Proof. We will prove the existence of a non-empty Zariski open U ⊂ X such that ρ|U is

injective morphism (up to order). It is easy to see, using that ρ is a dominant map of

irreducible varieties, that the existence of such a U implies that there exists a non-empty

Zariski open V ⊂ Ln(d) such that ρ : ρ−1(V ) → V is injective (up to order).

Consider the Zariski open S(d)-stable U ⊂ Vn(d) of points (λ,F) such that the Fi

are irreducible and all distinct. Hence, for (λ,F), (λ′,F′) ∈ U distinct (up to order),

F =
∏

i Fi 6= F ′ =
∏

i F
′
i . Suppose µ(λ,F) = ω = µ(λ′,F′) 6= 0. Then ω has two

integrating factors F and F ′, and therefore has a rational first integral f = F/F ′. It

follows that ω has infinitely many algebraic leaves (the fibers of f).

On the other hand, if (λ1 : · · · : λm) ∈ Pm−1(C)− Pm−1(Q), Proposition (3.7.8) from

[14] implies that ω has only finitely many algebraic leaves.

Let U0 = {(λ,F) ∈ U/λ ∈ Pm−1(C)− Pm−1(Q)}.

Consider the restriction ρ : U → Ln(d) and ρ̃ : U/S(d) → Ln(d) the induced map.

We obtain that if ω = µ(λ,F) with (λ,F) ∈ U0 then ρ̃−1(ω) = {(λ,F)}.

This implies, first, that since ρ has a fiber of dimension zero, dim(U) = dim(Ln(d))

and the general fiber of ρ is finite. Also, since the (open analytic) set U0 is Zariski dense

in U (because C − Q is dense in C), U0 is not contained in the branch divisor of ρ̃ and

hence ρ̃ has degree one, and therefore is birational, as claimed.
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�

7. Derivative of the parametrization.

With the notation of Definition 7, let

(λ,F) = ((λ1, . . . , λm), (F1, . . . , Fm)) ∈ Vn(d)

be a point in the vector space Vn(d) domain of µ.

Let (λ′,F′) = ((λ′
1, . . . , λ

′
m), (F ′

1, . . . , F
′
m)) ∈ Vn(d) represent a tangent vector

(λ,F) + ǫ(λ′,F′), ǫ2 = 0,

to Vn(d) at (λ,F).

From the multilinearity of µ we easily obtain the following formula for its derivative:

dµ(λ,F) : Vn(d) → H0(Pn,Ω1
Pn(d))

dµ(λ,F)(λ′,F′) =
∑

i

λ′
i F̂i dFi +

∑

i 6=k

λi F
′
k F̂ik dFi +

∑

i

λi F̂i dF
′
i (7.1)

17. Remark. By Proposition 4 b), the image of µ is contained in the variety of integrable

projective forms Fn(d) ⊂ H0(Pn,Ω1
Pn(d)). Hence for each (λ,F) ∈ Vn(d) we have an

inclusion of vector spaces

im dµ(λ,F) ⊂ TFn(d)(ω) = {α ∈ H0(Pn,Ω1
Pn(d))/ ω ∧ dα+ α ∧ dω = 0} (7.2)

where ω = µ(λ,F) and TFn(d)(ω) denotes de tangent space of Fn(d) at the point ω.

Our main task in Section 9 will be to show that this inclusion is actually an equality,

for a sufficiently general (λ,F) ∈ Vn(d).

18. Definition. It is convenient now to introduce the following notation:

ω = µ(λ,F) =
∑m

i=1 λi F̂i dFi (a logarithmic one-form),

η = ω/F =
∑m

i=1 λi dFi/Fi (the corresponding rational logarithmic one-form),

α = dµ(λ,F)(λ′,F′) =
∑

i λ
′
i F̂i dFi +

∑
i 6=k λi F

′
k F̂ik dFi +

∑
i λi F̂i dF

′
i ,

β = α/F =
∑

i λ
′
i dFi/Fi +

∑
i 6=k λi F

′
k/Fk dFi/Fi +

∑
i λi dF

′
i/Fi.

19. Proposition. With the notations above, we have

β = η′ + (G/F )η + d(H/F )

where

η′ =
∑m

i=1 λ
′
i dFi/Fi,

G =
∑m

i=1 F̂i F
′
i ∈ Sn(d), and

H =
∑m

i=1 λi F̂i F
′
i ∈ Sn(d).

Proof. We add and substract to β the sum
∑

i λi F
′
i/F

2
i dFi. A straightforward calcu-

lation gives the proposed expression. �
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8. Singular ideals of logarithmic one-forms and their resolution.

For ω ∈ H0(Pn,Ω1
Pn(d)) denote S(ω) ⊂ Pn the scheme of zeros of ω and I = Iω ⊂ OPn

the corresponding ideal sheaf. Considering ω as a morphism OPn → Ω1
Pn(d), I is defined

as the image of the dual morphism TPn(−d) → OPn . Also, if ω =
∑n

i=0 aidxi then I

corresponds to the homogeneous ideal generated by a0, . . . , an ∈ Sn(d− 1).

We keep the notation of Definitions 2 and 3.

Let (λ,F) ∈ Vn(d) and ω = F.
∑m

i=1 λi dFi/Fi =
∑m

i=1 λi F̂i dFi the corresponding

logarithmic one-form.

We denote

Xi = {x ∈ Pn/Fi(x) = 0}

the hipersurface defined by Fi.

For i 6= j,

Xij = Xi ∩Xj = {x ∈ Pn/Fi(x) = Fj(x) = 0}

and, more generally, for a subset A ⊂ {1, . . . ,m},

XA =
⋂

i∈A

Xi

For 1 ≤ r ≤ m we write

X(r) =
⋃

|A|=r

XA

and we shall use especially the following particular cases

X(1) =

m⋃

i=1

Xi, X(2) =
⋃

i<j

Xij , X(3) =
⋃

i<j<k

Xijk.

20. Remark. For our purposes we will be able to assume that the Fi ∈ Sn(di) are

general. We shall assume, more precisely, that each Fi is smooth irreducible and that

X(1) is a normal crossings divisor. Hence, each XA is a smooth complete intersection

of codimension |A|, and thus the strata X(r) are of codimension r, singular only along

X(r+1).

It is shown in [8] and [3] that for ω logarithmic as above, with all λi 6= 0,

S(ω) = X(2) ∪ P

with P ⊂ Pn−X(1) closed, and P is a finite set if ω is general. Let’s revisit the argument,

under the assumptions of Remark 20. First, since clearly F̂i vanishes on X(2) for all i,

we have X(2) ⊂ S(ω). Since ω = λiF̂idFi on Xi, we see that (X(1) −X(2)) ∩ S(ω) = ∅.

As for the zeros of ω in the complement of X(1), they are the same as the zeros of

η = ω/F =
∑m

i=1 λi dFi/Fi, which is a section of the locally free sheaf E = Ω1
Pn(log X(1))

of rank n (see [9], [12], [15], [11]). Considering the Fi (hence the divisor X(1)) as fixed,

the space of global sections of E has dimension m − 1, and these sections correspond
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bijectively with the residues (λ1, . . . , λm), satisfying
∑

i diλi = 0, as it follows from

taking cohomology in the exact sequence ([9] or [11], p. 170):

0 → Ω1
Pn → E → ⊕m

i=1OXi
→ 0.

For general (λ1, . . . , λm) as above, the corresponding section η of E has a finite set P of

simple zeros. Further, the cardinality of P (see [8]) is the degree of the top Chern class

cn(E), computable from the exact sequence above.

Coming back to the study of the resolution of the ideal Iω, let us denote

J (r) = I(X(r)) ⊂ OPn

the ideal sheaf of regular functions vanishing on X(r), and

J (r) =
⊕

k∈Z

H0(Pn,J (r)(k)) ⊂ Sn

the corresponding saturated homogeneous ideal.

Our arguments to prove stability of logarithmic forms will rely on the following results

regarding the ideals J (2).

21. Proposition. Under the hypothesis of Remark 20,

a) J (2) is generated by {F̂i, 1 ≤ i ≤ m}.

b) The relations among the generators of a) are generated by

Fj F̂j − Fi F̂i, 1 ≤ i < j ≤ m,

and also by the subset

Rj = Fj F̂j − F1 F̂1, 2 ≤ j ≤ m.

c) We have a resolution of J (2)

0 → O(−d)m−1 δ0−→
⊕

1≤i≤m

O(−d̂i)
δ1−→ J (2) → 0

where, denoting {ei} the respective canonical basis,

δ0(ej) = Fj ej − F1 e1 for 2 ≤ j ≤ m,

δ1(ei) = F̂i for 1 ≤ i ≤ m.

Proof. a) We are assuming that the Fi are generic. This implies in particular that

each ideal < Fi, Fj > is prime. Then, J (2) =
⋂

1≤i<j≤m < Fi, Fj >. Let us denote

J =< F̂1, . . . , F̂m >. It is clear that J ⊂ J (2). We shall prove that J (2) ⊂ J by induction

on m. The case m = 2 is trivial. The inductive hypothesis, applied to F1, . . . , Fm−1,

may be written as
⋂

1≤i<j≤m−1 < Fi, Fj > ⊂ < F̂1m, . . . , F̂m−1m >. Take an element

G ∈
⋂

1≤i<j≤m < Fi, Fj > =
⋂

1≤i<j≤m−1 < Fi, Fj > ∩
⋂

1≤i<m < Fi, Fm >. Using the

inductive hypothesis, we may write G =
∑

i<m aiF̂im, and we also have G ∈< Fi, Fm >

for i < m. Since F̂jm ∈< Fi, Fm > for j 6= i, it follows that aiF̂im ∈< Fi, Fm > for i < m.
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Since< Fi, Fm > is prime, we have ai = biFi+ciFm. Then, G =
∑

i<m(biFi+ciFm)F̂im =∑
i<m(biF̂m + ciF̂i) ∈ J , as wanted.

b) and c) Using the relations Rj of b) we write down the complex in c). The proof

will be complete if we show that this complex is exact. The surjectivity of δ1 follows

from a). Looking at the matrix of δ0 it is easy to see that the determinant of the minor

obtained by removing row j is precisely F̂j , for j = 1, . . . ,m. Then this complex is the

one associated to the maximal minors of a matrix of size m×m− 1. Since in our case,

by a), the ideal of minors vanishes in codimension two, the complex is exact (see [1] (5),

[10] (20.4)). �

22. Remark. Let X be an algebraic variety, J ⊂ OX a sheaf of ideals, and E a locally

free sheaf on X. Let Y ⊂ X denote the subvariety corresponding to J . Taking global

sections on the exact sequence 0 → E ⊗ J → E → E ⊗ OY = E|Y → 0 we obtain an

identification of H0(X,E⊗J ) with the global sections of E vanishing on Y , that is, with

the kernel of the restriction map H0(X,E) → H0(Y,E|Y ).

23. Proposition. Let α ∈ Ω1
n(d) be a 1-form of degree d in Cn+1. Denote X̃(2) ⊂ Cn+1

the cone over X(2).

a) α vanishes on X̃(2) if and only if it may be written as

α =

m∑

i=1

F̂iαi

for some αi ∈ Ω1
n(di).

b) α is projective (see Section 2) and vanishes on X(2) if and only if it may be written

as

α =
m∑

i=1

λ′
iF̂idFi +

m∑

i=1

F̂iγi

where λ′
i ∈ C,

∑m
i=1 diλ

′
i = 0 and γi ∈ H0(Pn,Ω1

Pn(di)) are projective 1-forms of respec-

tive degrees di.

Proof. a) By Remark 22, we need to determine H0(Pn,Ω1
Pn(d)⊗J (2)). The stated result

then follows from Proposition 21 c), by tensoring with Ω1
Pn(d) and taking global sections.

b) Suppose α is also projective, that is, < R,α >= 0, where R is the radial vector field.

From a) we have
m∑

i=1

F̂i < R,αi >= 0.

This is a relation among the F̂i with coefficients < R,αi > homogeneous of degrees di.

By Proposition 21 c), by tensoring with OPn(d) and taking global sections, this relation
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is a linear combination of the relations Ri of Proposition 21 b), that is,

(< R,α1 >, . . . , < R,αm >) =
∑

2≤i≤m

aiRi.

This means that

< R,α1 >= (
∑

j

aj)F1, < R,αi >= −aiFi, i = 2, . . . ,m.

Hence ai has degree zero, i. e. ai ∈ C, for all i. Define λ′
i = ai/di for i = 2, . . . ,m,

λ′
1 = −(

∑
j aj)/d1 and γi = αi − λ′

idFi. It follows that < R, γi >= 0 and hence α may

be written as stated. �

9. Surjectivity of the derivative and main Theorem.

As in Remark 17 we denote the derivative of µ at the point µ(λ,F)

dµ(λ,F) : Vn(d) → T (ω) (9.1)

where ω = µ(λ,F) and

T (ω) = TFn(d)(ω) = {α ∈ H0(Pn,Ω1
Pn(d))/ ω ∧ dα+ α ∧ dω = 0} (9.2)

denotes the Zariski tangent space of Fn(d) at the point ω.

Our main objective is to prove the following:

24. Theorem. Let n, d,m and d ∈ P (m,d) be as in Definition 1. Suppose n ≥ 3. Then

the derivative dµ(λ,F) : Vn(d) → T (ω) is surjective for (λ,F) ∈ Vn(d) general.

Proof. The proof will be obtained through various steps, including several Propositions

of independent interest. �

25. Theorem. If n ≥ 3, the set of logaritmic forms Ln(d) ⊂ Fn(d), as in Definition

6, is an irreducible component of Fn(d). Furthermore, the scheme Fn(d) is reduced

generically along Ln(d).

Proof. Follows from Theorem 24 by the same arguments as in [6] or [7]. �

Let us now start with several steps towards the proof of Theorem 24.
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26. Remark. A typical element α in the image of dµ(λ,F) as in 7.1

α =
∑

i

λ′
i F̂i dFi +

∑

i 6=j

λi F
′
j F̂ij dFi +

∑

i

λi F̂i dF
′
i

may be written

α =
∑

i

F̂i (λ
′
i dFi + λi dF

′
i ) +

∑

i 6=j

λi F
′
j F̂ij dFi

or

α =
∑

i

F̂i (λ
′
i dFi + λi dF

′
i ) +

∑

i<j

F̂ij (λi F
′
j dFi + λj F ′

i dFj)

Let us observe that the first sum is zero on X(2) (hence on X(3)) and the second sum

is zero on X(3). The idea of our proofs, leading to Theorem 24, will be based on this

observation.

Our strategy to characterize the elements α ∈ T (ω) will be this: first we shall deter-

mine α|X(3) , next we shall determine α|X(2) , and finally we show that α may be written

as in 7.1 for some λ′ and F′, and therefore α belongs to the image of dµ(λ,F).

In order to carry out this plan, let us start with some Propositions, some of them of

independent interest.

27. Proposition. For ω ∈ Fn(d) and α ∈ H0(Pn,Ω1
Pn(d)), the following conditions are

equivalent:

a) ω ∧ dα+ α ∧ dω = 0, that is, α ∈ T (ω).

b) dω ∧ dα = 0.

Further, for ω logarithmic, η = ω/F and β = α/F ,

c) η ∧ dβ = 0.

d) d(η ∧ β) = 0.

Proof. From a) one obtains b) by applying exterior derivative. Conversely, from b) one

obtains a) by contracting with the radial vector field. The equivalence with c) follows

from Proposition 5 by a straightforward calculation. The equivalence of c) and d) follows

from the fact that η is closed. �

28. Proposition. Let ω = µ(λ,F) be a logarithmic form and α ∈ T (ω). Assume that

X(1) is normal crossings, with smooth irreducible components Xi, as in Remark 20. Then

α|X(3) = 0, that is, α(x) = 0 for all x ∈ X(3).

Proof. Let us denote, for 1 ≤ i < j ≤ m,

Uij := Xij −X(3) = {x ∈ Pn/Fi(x) = Fj(x) = 0, Fk(x) 6= 0 for k /∈ {i, j}}

and, similarly, for 1 ≤ i < j < k ≤ m,

Uijk := Xijk −X(4)
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Since the set of zeros of α is closed, it is enough to see that α is zero on X(3) −X(4),

which is the disjoint union of the Uijk. Notice that dFi, dFj , dFk are linearly independent

on Uijk because of the normal-crossings hypothesis. Since clearly ω|X(2) = 0, the relation

ω∧dα+α∧dω = 0 reduces to α(x)∧dω(x) = 0 for each x ∈ X(2). We may assume that

λi 6= λj for i 6= j without losing generality. Then it follows from Proposition 5 a) that

α ∧ dFi ∧ dFj = 0 (9.3)

on Uij , and hence on its closure Xij . This means that

α(x) ∈ C.dFi(x) + C.dFj(x) ⊂ Ω1
Pn(x) (9.4)

for x ∈ Xij . Therefore, for x ∈ Uijk we have

α(x) ∈ (C.dFi(x) +C.dFj(x)) ∩ (C.dFi(x) + C.dFk(x)) ∩ (C.dFj(x) +C.dFk(x)).

Due to the normal crossings hypothesis this last intersection of two-dimensional sub-

spaces is zero, hence α(x) = 0 for x ∈ Uijk, as wanted. �

29. Proposition. With the notation and hypothesis of Proposition 28, for each ordered

pair (i, j) with 1 ≤ i, j ≤ m and i 6= j, there exists Aij ∈ Sn(dj) such that

α = F̂ij (Aij dFi +Aji dFj) on Xij .

Proof. This will follow easily combining that Xij is a smooth complete intersection of

codimension two in a proyective space, and the fact that α|X(3) = 0 that we just proved.

Suppose J =< A,B > is the ideal generated by general homogenous polynomials A

and B of respective degrees a and b. Let Y ⊂ Pn be the set of zeroes of J . We have an

exact sequence ([13], II.8)

0 → J/J2 = OY (−a)⊕OY (−b)
δ

−→ Ω1
Pn|Y → Ω1

Y → 0

Tensoring with OY (d) and taking global sections we obtain that an element α|Y ∈

H0(Y,Ω1
Pn(d)|Y ) which belongs to the image of H0(δ), may be written as A′dA+B′dB

for A′ ∈ H0(Y,OY (d− a)) and B′ ∈ H0(Y,OY (d− b)). By [13], Ex. III (5.5), A′ and B′

are represented by homogeneous polynomials of respective degrees d− a and d− b.

For each (i, j), α|Xij
belongs to the image of the corresponding H0(δ), by 9.4. Hence,

we know that α = A′
ij dFi +A′

ji dFj on Xij , for homogeneous polynomials A′
ij of degree

d − di. Now, α|X(3) = 0 by Proposition 28, and in particular α = 0 on Xijk for all k.

Since dFi and dFj are linearly independent at all points of Xijk by the normal crossings

hypothesis, it follows that A′
ij and A′

ji are divisible by F̂ij and we obtain the claim. �

30. Corollary. With the notation of Proposition 29, define

α′ =
∑

i<j

F̂ij (Aij dFi +Aji dFj) ∈ Ω1
n(d)

Then α′|X̃(2) = α|X̃(2) .
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(But notice that α′ may not satisfy 7.2; see the Proof of Corollary 35).

Proof. Follows from Proposition 29 since F̂ij vanishes on Xhk if {h, k} 6= {i, j}. �

31. Corollary. We keep the notation of Proposition 29. Then any α ∈ T (ω) may be

written as

α =
∑

i<j

F̂ij (Aij dFi +Aji dFj) +
∑

i

F̂i αi

=
∑

i 6=j

F̂ij Aij dFi +
∑

i

F̂i αi.

for some αi ∈ Ω1
n(di).

Proof. For α ∈ T (ω), take α′ as in Corollary 30. Then α− α′ ∈ Ω1
n(d) vanishes on X̃(2)

and hence, by Proposition 23 a), may be written as
∑m

i=1 F̂iαi for some αi ∈ Ω1
n(di). �

We would like to obtain further information on the Aij’s and the αi’s. For this, we will

use again that α satisfies ω ∧ dα+ α ∧ dω = 0 as in 7.2.

32. Proposition. Suppose n ≥ 3. With notation as in Corollary 31, for each j =

1, . . . ,m there exists F ′
j ∈ Sn(dj) such that

Aij = λi F
′
j on Xij

for all (i, j) with 1 ≤ i, j ≤ m and i 6= j.

Proof. The calculation is nicer working with the equivalent condition dβ ∧ η = 0, where

β = α/F and η = ω/F , see Proposition 27 c). We have:

β =
∑

i 6=j

Aij

Fj

dFi

Fi
+

∑

i

αi

Fi

dβ =
∑

i 6=j

d(
Aij

Fj
) ∧

dFi

Fi
+

∑

i

d(
αi

Fi
)

dβ ∧ η =
∑

i 6=j,k

λk d(
Aij

Fj
) ∧

dFi

Fi
∧

dFk

Fk
+

∑

i,k

λk d(
αi

Fi
) ∧

dFk

Fk
=

∑

i 6=j 6=k

λk d(
Aij

Fj
) ∧

dFi

Fi
∧

dFk

Fk
++

∑

i 6=j

λj d(
Aij

Fj
) ∧

dFi

Fi
∧
dFj

Fj
+

∑

i 6=k

λk d(
αi

Fi
) ∧

dFk

Fk
+

∑

k

λk d(
αk

Fk
) ∧

dFk

Fk
= 0

Let’s replace

d(
Aij

Fj
) =

dAij

Fj
−

Aij

Fj

dFj

Fj
, d(

αi

Fi
) =

dαi

Fi
−

dFi

Fi
∧
αi

Fi
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and multiply by F 2. After some straightforward calculation we obtain:

F
∑

i 6=j 6=k

λk F̂ijk dAij ∧ dFi ∧ dFk +
∑

i 6=k

λk F̂k F̂ik dAik ∧ dFi ∧ dFk +

∑

i 6=j 6=k

λk F̂j F̂ijk Aij dFi ∧ dFj ∧ dFk +

F
∑

j 6=k

λk F̂jk dαj ∧ dFk +
∑

k

λk F̂ 2
k dαk ∧ dFk +

∑

j 6=k

λk F̂j F̂jk αj ∧ dFj ∧ dFk = 0

Now we choose r such that 1 ≤ r ≤ m and restrict to Xr, that is, we reduce modulo Fr.

We get:

F̂r (
∑

i 6=r

λr F̂ir dAir ∧ dFi ∧ dFr +
∑

i 6=k 6=r

λk F̂irk Air dFi ∧ dFr ∧ dFk +

λr F̂r dαr ∧ dFr +
∑

k 6=r

λk F̂rk αr ∧ dFr ∧ dFk) = 0 (9.5)

Since F̂r is not zero on the irreducible variety Xr, we may cancel this factor out.

Next, choose s such that 1 ≤ s ≤ m, s 6= r, and further restrict to Xr ∩ Xs = Xrs to

obtain:

λr F̂sr dAsr ∧ dFs ∧ dFr +
∑

k 6=r 6=s

λk F̂srk Asr dFs ∧ dFr ∧ dFk +

∑

i 6=r 6=s

λs F̂irs Air dFi ∧ dFr ∧ dFs + λs F̂rs αr ∧ dFr ∧ dFs = 0 (9.6)

And, once more, choose t such that 1 ≤ t ≤ m, t 6= s 6= r. Restricting to Xr ∩Xs ∩Xt =

Xrst we get:

F̂rst(λt Asr − λs Atr) dFr ∧ dFs ∧ dFt = 0

By the genericity of the Fi’s, Xrst is irreducible, and we may cancel out the factor

F̂rst 6= 0. By the normal crossing hypothesis we may also cancel out dFr ∧dFs∧dFt 6= 0.

Therefore,

Asr/λs = Atr/λt on Xrst (9.7)

for all distinct 1 ≤ r, s, t ≤ m.

Let us fix r, 1 ≤ r ≤ m. We consider the natural restriction maps

Sn(dr) = H0(Pn,O(dr)) → H0(Xr,O(dr)) → H0(Xrs,O(dr)) → H0(Xrst,O(dr)).

For s = 1, . . . ,m, s 6= r, the polynomials Asr/λs ∈ Sn(dr) (all of the same degree dr)

define, by restriction to the hypersurfaces Xrs ⊂ Xr, sections Asr/λs ∈ H0(Xrs,O(dr)).

By 9.7 these sections coincide on the pairwise intersections Xrs ∩ Xrt = Xrst. Hence
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this collection defines a section of O(dr) on the (reducible) variety Dr = ∪s 6=rXrs ⊂ Xr.

By Lemma 33 below, with X = Xr and D = Dr, there exists F ′
r ∈ Sn(dr), such that

Asr/λs = F ′
r on Xrs, for each s 6= r, as claimed.

�

33. Lemma. Let n ≥ 3, and let X ⊂ Pn be a smooth irreducible hypersurface of degree e.

For m ≥ 1 and i = 1, . . . ,m let Di ⊂ X be smooth irreducible distinct hypersurfaces. We

consider the (reducible) hypersurface D = ∪1≤i≤mDi ⊂ X. Then the natural restriction

map

H0(X,O(e)) → H0(D,O(e))

is surjective.

Proof. In the exact sequence 0 → OX(−D) → OX → OD → 0 we tensor by OX(e)

and take cohomology. Since OX(−D)(e) = OX(−d)(e) = OX(e − d) for some d, and

H1(X,OX (e− d)) = 0 (see e. g. [13], Exercise III, (5.5)), we obtain the claim. �

34. Corollary. Let n ≥ 3. Any α ∈ T (ω) may be written as

α =
∑

i 6=j

λi F̂ij F ′
j dFi +

∑

i

F̂i αi.

for some F ′
i ∈ Sn(di) and αi ∈ Ω1

n(di).

Proof. Follows from Corollary 31 and Proposition 32. �

35. Corollary. Let n ≥ 3. Any α ∈ T (ω) may be written as

α = ᾱ+
∑

i

F̂i γi.

where ᾱ belongs to the image of dµ(λ,F), γi ∈ Ω1
n(di) and

∑
i F̂i γi ∈ T (ω).

Proof. Using Corollary 34, then adding and substracting
∑

i λi F̂i dF
′
i , we have:

α =
∑

i 6=j

λi F̂ij F ′
j dFi +

∑

i

F̂i αi

=
∑

i 6=j

λi F̂ij F ′
j dFi +

∑

i

λi F̂i dF
′
i +

∑

i

F̂i (αi − λi dF
′
i )

= dµ(λ,F)(0,F′) +
∑

i

F̂i γi

taking γi = αi − λi dF ′
i . Since α, ᾱ ∈ T (ω), we have α − ᾱ =

∑
i F̂iγi ∈ T (ω), as

claimed. �
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36. Remark. Corollary 35 implies that to prove Theorem 24 we are reduced to showing

that any α ∈ T (ω) of the form α =
∑

i F̂iγi, with γi ∈ Ω1
n(di), belongs to the image of

dµ(λ,F).

To this end, let us first prove the following

37. Proposition. Let α ∈ T (ω) be of the form

α =
∑

j

(F̂j)
e γj (9.8)

with e ∈ N, e ≥ 1, and γj ∈ Ω1
n(d − ed̂j). Then, for 1 ≤ i, j ≤ m, i 6= j, there exist

λ′
j ∈ C, Dij ∈ Sn(dj − ed̂j) and ǫj ∈ Ω1

n(dj − ed̂j), such that

γj = λ′
j dFj +

∑

i 6=j

F̂ij Dij dFi + F̂j ǫj

for j = 1, . . . ,m. In case e ≥ 2, all λ′
j = 0.

Proof. Let us use once more that α satisfies 7.2 ω ∧ dα + α ∧ dω = 0. We may apply

to our present α the calculation in the Proof of Proposition 32, with Aij = 0 and

αj = (F̂j)
e−1 γj, for all i, j. Then it follows from equation 9.6 that

γj ∧ dFi ∧ dFj = 0 on Xij , for all i 6= j,

since λj 6= 0, and F̂ij 6= 0 on Xij . Then,

γj = BijdFi + CijdFj on Xij

for some Bij ∈ Sn(d− ed̂j − di) and Cij ∈ Sn((1− e)d̂j). Notice that Cij ∈ Sn(0) = C if

e = 1, and Cij = 0 if e ≥ 2, since (1− e)d̂j < 0.

Now we fix j and vary i 6= j. On Xij ∩ Xkj = Xijk we have BijdFi + CijdFj =

BkjdFk +CkjdFj . From the normal crossings hypothesis we obtain, for all i 6= k:

a) Bij = Bkj = 0 on Xijk, and

b) Cij = Ckj

From b), Cij does not depend on i and we may denote Cij = λ′
j. As noticed above,

Cij = λ′
j = 0 in case e ≥ 2.

On the other hand, a) implies that Bij = F̂ijDij on Xij for some Dij ∈ Sn(dj − ed̂j).

Therefore,

γj = λ′
jdFj + F̂ijDijdFi on Xij

for all j and all i 6= j. Let γ′j = γj − (λ′
jdFj +

∑
i 6=j F̂ijDijdFi) ∈ Ω1

n(d− ed̂j). Then γ′j
is zero on Dj = ∪i 6=jXij ⊂ Xj , hence there exists ǫj ∈ Ω1

n(dj − ed̂j) such that γ′j = F̂j ǫj
on Xj . Denoting Jj ∼= O(−dj) the ideal sheaf of Xj, we have H0(Pn,Ω1

Pn(dj)(Jj)) ∼=

H0(Pn,Ω1
Pn) = 0. Therefore the equality γ′j = F̂j ǫj holds in Pn, and this implies our

claim.

�
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38. Corollary. If α ∈ T (ω) is divisible by (F̂1)
e, that is, α = (F̂1)

e γ1 for some γ1 ∈

Ω1
n(d−ed̂1), then there exist λ′

1 ∈ C, Di ∈ Sn(d1−ed̂1), for i > 1, and ǫ1 ∈ Ω1
n(d1−ed̂1),

such that

α = (F̂1)
e(λ′

1 dF1 +
∑

i>1

F̂i1 Di dFi + F̂1 ǫ1).

In case e ≥ 2, λ′
1 = 0.

Proof. It follows immediately from Proposition 37 applied to the case γj = 0 for j >

1. �

9.1. End of the proof: balanced case.

39. Definition. Let d = (m; d1, . . . , dm) ∈ P (m,d). We say that d is balanced if

di <
∑

j 6=i dj = d̂i for all i = 1, . . . ,m. Equivalently, if 2di < d for all i.

Notice that if d is not balanced then there exists a unique i such that 2di ≥ d. Since we

normalized d so that d1 ≥ d2 ≥ · · · ≥ dm (see Definition 1), it follows that d is balanced

if and only if 2d1 < d.

40. Theorem. Suppose d ∈ P (m,d) is balanced. Let (λ,F) ∈ Vn(d) be general and

ω = µ(λ,F). Then, for any α ∈ T (ω) such that α =
∑

i F̂i γi, with γi ∈ Ω1
n(di), there

exists λ′ = (λ′
1, . . . , λ

′
m) ∈ Cm, with

∑m
i=1 diλ

′
i = 0, such that

α =
m∑

i=1

λ′
i F̂i dFi.

In particular,

α = dµ(λ,F)(λ′, 0)

belongs to the image of dµ(λ,F).

Proof. We apply Proposition 37 with e = 1. Since d is balanced, dj − d̂j < 0 for all j

and then Dij = 0 and ǫj = 0 for all i, j. Hence γj = λ′
j dFj for all j, as claimed. �

It follows from Remark 36 that the proof of Theorem 24 is now complete, if d is balanced.

9.2. End of the proof: general case. When d is not balanced, Theorem 40 is not

true; we may have an α ∈ T (ω) such that α|X(2) = 0 but α is not logarithmic as in

Theorem 40. For example, take F ′
1 = G1 F̂1 where G1 is any homogeneous polynomial

of degree d1 − d̂1 > 0, and F ′
j = 0 for j > 1. Then α = dµ(λ,F)(0, F ′) satisfies this

condition, as it easily follows from 7.1. Notice that this α is divisible by F̂1.

In Theorem 42 we will see that any α ∈ T (ω) such that α|X(2) = 0 may be written in a

special form that still implies it belongs to the image of dµ(λ,F).
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41. Definition. Let d ∈ P (m,d). We define

r(d) = max {e ∈ N/ d1 ≥ e d̂1} = [d1/d̂1]

the integer part of d1/d̂1.

Notice that d is balanced when r(d) = 0.

42. Theorem. Fix d ∈ P (m,d). Let (λ,F) ∈ Vn(d) be general and ω = µ(λ,F). Then,

any α ∈ T (ω) such that α =
∑

i F̂iγi, with γi ∈ Ω1
n(di), may be written as

α = dµ(λ,F)(λ′,F′)

where λ′ ∈ Cm is such that
∑m

i=1 diλ
′
i = 0, F ′

j = 0 for j > 1, and

F ′
1 =

r(d)∑

e=1

Ge F̂ e
1

where Ge are homogeneous polynomials of respective degrees d1−ed̂1, for e = 1, . . . , r(d).

Proof. By Proposition 37 with e = 1,

α =
∑

j

λ′
j F̂j dFj +

∑

i 6=j

F̂ij F̂jDij dFi +
∑

j

F̂j F̂jǫj . (9.9)

In the current unbalanced case, d1 − d̂1 ≥ 0 and di − d̂i < 0 for i > 1, as in Definition

9.2. Hence Dij = 0 and ǫj = 0 for j > 1. Also, since
∑

j λ
′
j F̂j dFj = dµ(λ,F)(λ′, 0), it

is enough to consider

α = α(1) =
∑

i>1

F̂i1 F̂1Di1 dFi + F̂1 F̂1ǫ1 = F̂1 (
∑

i>1

F̂i1 Di1 dFi + F̂1 ǫ1) (9.10)

which is divisible by F̂1 (the last term is actually divisible by F̂ 2
1 ).

What we shall do is to express α(1) as the sum of an element of the image of dµ(λ,F) (of

the claimed shape) plus an α(2) ∈ T (ω) divisible by F̂ 2
1 . Next we repeat the argument

and express α(2) as the sum of another element of the image of dµ(λ,F) plus an α(3) ∈

T (ω) divisible by F̂ 3
1 . After at most r(d) iterations this process ends, since α(r(d)+1) = 0

by degree reason, and hence we obtain the claimed expression for the original α.

The essential step is to pass from α(e) to α(e+1), for 1 ≤ e ≤ r(d).

To carry out this step, let us assume that α is divisible by F̂ e
1 , that is,

α = α(e) = F̂ e
1 (

∑

i>1

F̂i1 Di1 dFi + F̂1 ǫ1). (9.11)

as in Corollary 38.

Now we apply to α the calculation in the Proof of Proposition 32 with

Aij = F̂ e
1 Dij , αj = F̂ e

1 ǫj ,

that is:

Ai1 = F̂ e
1 Di1 for i > 1, α1 = F̂ e

1 ǫ1,
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Aij = 0, αj = 0 for j > 1.

From equation 9.5 with r = 1 we get

F̂1 (
∑

i 6=1

λ1 F̂i1 d(F̂ e
1 Di1) ∧ dFi ∧ dF1 +

∑

i 6=k 6=1

λk F̂i1k F̂ e
1 Di1 dFi ∧ dF1 ∧ dFk +

λ1 F̂1 d(F̂ e
1 ǫ1) ∧ dF1 +

∑

k 6=1

λk F̂1k F̂ e
1 ǫ1 ∧ dF1 ∧ dFk) = 0(9.12)

We have d(F̂ e
1 Di1) = eF̂ e−1

1 Di1dF̂1 + F̂ e
1 dDi1. Also, dF̂1 ∧ dFi = (

∑
j 6=1 F̂j1dFj) ∧

dFi =
∑

j 6=1,j 6=i F̂j1dFj ∧ dFi, so that F̂i1dF̂1 ∧ dFi =
∑

j 6=1,j 6=i F̂i1F̂j1dFj ∧ dFi =

F̂1
∑

j 6=1,j 6=i F̂ij1dFj ∧ dFi. Replacing these into 9.12, we obtain, on X1:

F̂ e+1
1 (

∑

i 6=j 6=1

eλ1F̂ij1Di1 dFj ∧ dFi ∧ dF1 +
∑

i 6=1

λ1F̂i1 dDi1 ∧ dFi ∧ dF1 +

∑

i 6=j 6=1

λjF̂ij1Di1 dFi ∧ dF1 ∧ dFj + eλ1 dF̂1 ∧ ǫ1 ∧ dF1 + λ1F̂1 dǫ1 ∧ dF1 +

∑

i 6=1

λiF̂1i ǫ1 ∧ dF1 ∧ dFi) = 0 (9.13)

Now we cancel the factor F̂ e+1
1 on X1 and then restrict to X1st for 1, s, t distinct. After

straightforward calculation we obtain, on X1st:

(eλ1 + λs)Dt1 = (eλ1 + λt)Ds1

Then the collection {Ds1/(eλ1 + λs) ∈ Sn(d1 − ed̂1)}s 6=1 defines a section of O(d1 − ed̂1)

on ∪s 6=1X1s ⊂ X1. Hence, there exists Ge ∈ Sn(d1 − ed̂1) such that

Ds1 = (eλ1 + λs)Ge

on X1s for all s 6= 1. Then, with the notation of 9.11,
∑

i>1

F̂i1 Di1 dFi + F̂1 ǫ1 −
∑

i>1

F̂i1 (eλ1 + λi)Ge dFi = 0

on ∪s 6=1X1s ⊂ X1, and hence is divisible by F̂1. We obtain

α = F̂ e
1

∑

i>1

F̂i1 (eλ1 + λi)Ge dFi + F̂ e+1
1 ǭ1 (9.14)

for some ǭ1 ∈ Ω1
n(d1 − ed̂1).

Denote F′ = (F̂ e
1 Ge, 0, . . . , 0). Combining 9.14 with

dµ(λ,F)(0,F′) =
∑

i>1

λi F
e

1 Ge F̂i1 dFi + λ1F̂1d(F̂
e

1 Ge)

(see 7.1), one immediately obtains

α = dµ(λ,F)(0,F′) + α(e+1)
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with α(e+1) = F̂ e+1
1 (ǭ1 − λ1dGe). Now, α(e+1) ∈ T (ω) because α and dµ(λ,F)(0,F′)

belong to T (ω). Since α(e+1) is divisible by F̂ e+1
1 , by Corollary 38, it may be written

as in 9.11 with exponent e + 1. Hence we may apply again the previous procedure to

α(e+1). This proves the essential iterative step and implies our statement. �

It follows from Remark 36 that the proof of Theorem 24 is now complete, for any d.
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