STABILITY OF LOGARITHMIC DIFFERENTIAL ONE-FORMS.

FERNANDO CUKIERMAN,
JAVIER GARGIULO ACEA,
CÉSAR MASSRI.

Abstract

This article deals with the irreducible components of the space of codimension one foliations in a projective space defined by logarithmic forms of a certain degree. We study the geometry of the natural parametrization of the logarithmic components and we give a new proof of the stability of logarithmic foliations, obtaining also that these irreducible components are reduced.

Contents

1. Introduction. 2
2. Notation. 3
3. Logarithmic one-forms. 4
4. The logarithmic components and their parametrization. 5
5. Base locus. 6
6. Generic injectivity. 9
7. Derivative of the parametrization. 10
8. Singular ideals of logarithmic one-forms and their resolution. 11
9. Surjectivity of the derivative and main Theorem. 14
9.1. End of the proof: balanced case. 21
9.2 . End of the proof: general case. 21
References 25
[^0]
1. Introduction.

We consider differential one-forms of logarithmic type $\omega=F \sum_{i=1}^{m} \lambda_{i} d F_{i} / F_{i}$ where, for $i=1, \ldots, m, F_{i}$ is a homogeneous polynomial of a fixed degree d_{i} in variables x_{0}, \ldots, x_{n}, with complex coefficients, $F=\prod_{j} F_{j}$, and λ_{i} are complex numbers such that $\sum_{i} d_{i} \lambda_{i}=0$. Such an ω defines a global section of $\Omega_{\mathbb{P}^{n}}^{1}(d)$ for $d=\sum_{i} d_{i}$. Also, ω satisfies the Frobenius integrability condition $\omega \wedge d \omega=0$.

Fixing $\mathbf{d}=\left(m ; d_{1}, \ldots, d_{m}\right)$ denote $L_{n}(\mathbf{d}) \subset H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right)$ the collection of all such logarithmic one-forms and $\mathcal{L}_{n}(\mathbf{d}) \subset \mathbb{P} H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right)=\mathbb{P}^{N}$ the corresponding closed projective variety. It is easy to see that $\mathcal{L}_{n}(\mathbf{d})$ is an irreducible algebraic variety. Also, $\mathcal{L}_{n}(\mathbf{d})$ is contained in the subvariety $\mathcal{F}_{n}(d) \subset \mathbb{P}^{N}$ of integrable one-forms of degree d. Here the motivating problem is to describe the irreducible components of $\mathcal{F}_{n}(d)$.

It was proved by Omegar Calvo in [2] that, for any d, the variety of logarithmic forms $\mathcal{L}_{n}(\mathbf{d})$ is an irreducible component of the moduli space $\mathcal{F}_{n}(d)$ of codimension one algebraic foliations of degree d in $\mathbb{P}^{n}(\mathbb{C})$. In other words, the logarithmic one-forms enjoy a stability condition among integrable forms. Actually, the results of [2] hold for more general ambient varieties than projective spaces.

In this article we will provide another proof of O . Calvo's theorem, in case the ambient space is a complex projective space. Our strategy will be to calculate the tangent space $T(\omega)$ of $\mathcal{F}_{n}(d)$ at a general point $\omega \in \mathcal{L}_{n}(\mathbf{d})$. The main results are stated in Theorems 24 and 25.

This method is completely algebraic and provides further information, especially the fact that $\mathcal{F}_{n}(d)$ results generically reduced along the irreducible component $\mathcal{L}_{n}(\mathbf{d})$.

The logarithmic components are the closure of the image of a multilinear map ρ, defined in Section 4, from a product of projective spaces into a projective space. We describe the base locus of ρ in Section 5, and study its generic injectivity in Section 6. Our proof requires a detailed analysis of the derivative of ρ, started in Section 7. Another important ingredient is the resolution of the ideal of various strata of the singular scheme of a logarithmic form; this is carried out in Section 8. The end of the proof is achieved in Section 9, where we distinguish two cases, depending on whether or not \mathbf{d} is balanced.

We thank Jorge Vitório Pereira, Ariel Molinuevo and Federico Quallbrunn for several conversations at various stages of this work.

2. Notation.

We shall use the following notations:
$\mathbb{C}^{n+1}=$ complex affine space of dimension $n+1$.
$\mathbb{P}^{n}=$ complex projective space of dimension n.
$S_{n}=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]=$ graded ring of polynomials with complex coefficients in $n+1$
variables.
When n is understood we denote $S_{n}=S$.
$S_{n}(d)=$ homogeneous elements of degree d in S_{n}.
When n is understood we denote $S_{n}(d)=S(d)$.
Recall that one has $S_{n}(d)=H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(d)\right)$.
$\Omega_{X}^{q}=$ sheaf of algebraic differential q-forms on an algebraic variety X.
$\Omega^{q}(X)=$ the set of rational q-forms on X (with X an irreducible variety).
It is a vector space over the field $\mathbb{C}(X)$ of rational functions of X.
$\Omega_{n}^{q}=H^{0}\left(\mathbb{C}^{n+1}, \Omega_{\mathbb{C}^{n+1}}^{q}\right)$.
A typical element of Ω_{n}^{1} is $\omega=\sum_{i=0}^{n} a_{i} d x_{i}$ with $a_{i} \in S_{n}$.
More generally, a typical element of Ω_{n}^{q} may be written in the usual way as $\sum_{|J|=q} a_{J} d x_{J}$ with $a_{J} \in S_{n}$ and $d x_{J}=d x_{j_{1}} \wedge \cdots \wedge d x_{j_{q}}$ where $J=\left\{j_{1}, \ldots, j_{q}\right\}$ with $j_{1}<\cdots<j_{q}$.
When n is understood we denote $\Omega_{n}^{q}=\Omega^{q}$.
Ω_{n}^{q} is a graded S_{n}-module with homogeneous piece of degree d defined by $\Omega_{n}^{q}(d)=\left\{\sum_{|J|=q} a_{J} d x_{J}, a_{J} \in S_{n}(d-q)\right\}$.
In particular, $d x_{i}$ is homogeneous of degree one.
The exterior derivative is an operator of degree zero, i. e. it preserves degree.
$H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right)=$ projective one-forms of degree d.
It follows from the Euler exact sequence that $\omega=\sum_{i} a_{i} d x_{i} \in \Omega_{n}^{1}(d)$ is projective if and only if it contracts to zero with the Euler or radial vector field $R=\sum_{i=0}^{n} x_{i} \frac{\partial}{\partial x_{i}}$, that is, if $\sum_{i} a_{i} x_{i}=0$.
$\mathbb{P}^{n}(d)=\mathbb{P}\left(H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right)\right)$.
$F_{n}(d)=\left\{\omega \in H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right) / \omega \wedge d \omega=0\right\}=$ the set of integrable projective one-forms in \mathbb{P}^{n} of degree d, and
$\mathcal{F}_{n}(d) \subset \mathbb{P}^{n}(d)$ the projectivization of $F_{n}(d)$.
$\mathbb{P}^{n}(\mathbf{d})=\mathbb{P} \Lambda(\mathbf{d}) \times \prod_{i=1}^{m} \mathbb{P} S_{n}\left(d_{i}\right)$.

3. LOGARITHMIC ONE-FORMS.

1. Definition. Fix natural numbers n, d and m. Let

$$
\mathbf{d}=\left(m ; d_{1}, \ldots, d_{m}\right)
$$

be a partition of d into m parts, that is, for $i=1, \ldots, m$ each d_{i} is a natural number and $\sum_{i=1}^{m} d_{i}=d$. Let us normalize so that $d_{i} \geq d_{i+1}$ for all $i<m$. We denote

$$
P(m, d)
$$

the set of all such partitions of d into m parts.
2. Definition. Fix $\mathbf{d}=\left(m ; d_{1}, \ldots, d_{m}\right) \in P(m, d)$. A differential one-form $\omega \in \Omega_{n}^{1}$ is logarithmic of type \mathbf{d} if

$$
\omega=\left(\prod_{j=1}^{m} F_{j}\right) \sum_{i=1}^{m} \lambda_{i} d F_{i} / F_{i}=\sum_{i=1}^{m} \lambda_{i}\left(\prod_{j \neq i} F_{j}\right) d F_{i}
$$

where $F_{i} \in S_{n}\left(d_{i}\right)$ is a non-zero homogeneous polynomial of degree d_{i} and the λ_{i} are complex numbers.
3. Definition. It will be convenient to use the following notation. For \mathbf{d} and $F_{i} \in S_{n}\left(d_{i}\right)$ as above,

$$
\begin{gathered}
\mathbf{F}=\left(F_{1}, \ldots, F_{m}\right), \quad F=\prod_{j=1}^{m} F_{j} \\
\hat{F}_{i}=\prod_{j \neq i} F_{j}=F / F_{i}, \quad \hat{F}_{i j}=\prod_{k \neq i, k \neq j} F_{k}=F / F_{i} F_{j}, \quad(i \neq j)
\end{gathered}
$$

or, more generally, for a subset $A \subset\{1, \ldots, m\}$ we write

$$
\hat{F}_{A}=\prod_{j \notin A} F_{j}
$$

Hence a logarithmic one-form may be written

$$
\begin{equation*}
\omega=F \sum_{i=1}^{m} \lambda_{i} d F_{i} / F_{i}=\sum_{i=1}^{m} \lambda_{i} \hat{F}_{i} d F_{i} \tag{3.1}
\end{equation*}
$$

We denote $\hat{d}_{i}=\sum_{j \neq i} d_{j}$ the degree of \hat{F}_{i} and, more generally, $\hat{d}_{A}=\sum_{j \notin A} d_{j}$ the degree of \hat{F}_{A}.
4. Proposition. For ω a logarithmic one-form as above,
a) ω is homogeneous of degree $d=\sum_{i=1}^{m} d_{i}$.
b) ω is integrable.
c) $<R, \omega>=\left(\sum_{i=1}^{m} d_{i} \lambda_{i}\right) F$. In particular, ω is projective if and only if

$$
\sum_{i=1}^{m} d_{i} \lambda_{i}=0
$$

Proof. a) Since the exterior derivative is of degree zero, each term in the sum $\sum_{i=1}^{m} \lambda_{i} \hat{F}_{i} d F_{i}$ is homogeneous of degree d, hence the claim.
b) For each polynomial G, the rational one-form $d G / G$ is closed. It follows that $\omega / F=\sum_{i=1}^{m} \lambda_{i} d F_{i} / F_{i}$ is closed, hence integrable. A short calculation shows that the product of a rational function with an integrable rational one-form is an integrable rational one-form. Therefore, $\omega=F \omega / F$ is integrable.
c) Euler's formula implies that $<R, d G>=e G$ for $G \in S_{n}(e)$. By linearity of contraction we have $<R, \omega>=<R, \sum_{i} \lambda_{i} \hat{F}_{i} d F_{i}>=\sum_{i} d_{i} \lambda_{i} \hat{F}_{i} F_{i}=\left(\sum_{i} d_{i} \lambda_{i}\right) F$.
5. Proposition. Suppose ω is logarithmic as in 3.1. Then,
a) $d \omega=(d F / F) \wedge \omega=\sum_{1 \leq i, j \leq m} \lambda_{j} \hat{F}_{i j} d F_{i} \wedge d F_{j}=\sum_{1 \leq i<j \leq m}\left(\lambda_{j}-\lambda_{i}\right) \hat{F}_{i j} d F_{i} \wedge d F_{j}$.
b) F is an integrating factor of $\omega: d(\omega / F)=0$, or, equivalently, $F d \omega-d F \wedge \omega=0$.
c) Each hypersurface $F_{i}=0$ is an algebraic leaf of ω, that is, $d F_{i} / F_{i} \wedge \omega$ is a regular 2-form (i. e. without poles). Hence $d F_{i} \wedge \omega=0$ on the hypersurface $F_{i}=0$.

Proof. These follow by straightforward calculations, left to the reader.

4. The logarithmic components and their parametrization.

As before, we fix natural numbers n, d and m and a partition $\mathbf{d}=\left(m ; d_{1}, \ldots, d_{m}\right)$ of d.

For a complex vector space V we denote $\mathbb{P} V=V-\{0\} / \mathbb{C}^{*}$ the corresponding projective space of one-dimensional subspaces of V. Let $\pi: V-\{0\} \rightarrow \mathbb{P} V$ be the canonical projection. If $X \subset V$ we call $\mathbb{P} X=\pi(X-\{0\}) \subset \mathbb{P} V$ the projectivization of X.

As in Section 2, we denote

$$
\mathbb{P}^{n}(d)=\mathbb{P} H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right)
$$

the projective space of sections of $\Omega_{\mathbb{P}^{n}}^{1}(d)$. This is the ambient projective space that contains the set of integrable forms $\mathcal{F}_{n}(d)$ and the logarithmic components that we will investigate.
6. Definition. Let $L_{n}(\mathbf{d}) \subset H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right)$ denote the set of all logarithmic projective one-forms of type \mathbf{d} in \mathbb{P}^{n}, and $\mathbb{P} L_{n}(\mathbf{d}) \subset \mathbb{P}^{n}(d)$ its projectivization. We denote

$$
\mathcal{L}_{n}(\mathbf{d}) \subset \mathbb{P}^{n}(d)
$$

the Zariski closure of $\mathbb{P} L_{n}(\mathbf{d})$.
If ω is a non-zero logarithmic form, the corresponding projective point $\pi(\omega)$ will be denoted simply by ω when the danger of confusion is small.

Let

$$
\Lambda(\mathbf{d})=\left\{\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{C}^{m} / \sum_{i=1}^{m} d_{i} \lambda_{i}=0\right\}
$$

which is a hyperplane in \mathbb{C}^{m}.
7. Definition. Consider the map

$$
\mu: V_{n}(\mathbf{d}):=\Lambda(\mathbf{d}) \times \prod_{i=1}^{m} S_{n}\left(d_{i}\right) \rightarrow H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right)
$$

such that

$$
\mu\left(\left(\lambda_{1}, \ldots, \lambda_{m}\right),\left(F_{1}, \ldots, F_{m}\right)\right)=\sum_{i=1}^{m} \lambda_{i} \hat{F}_{i} d F_{i}
$$

and

$$
\rho: \mathbb{P}^{n}(\mathbf{d}):=\mathbb{P} \Lambda(\mathbf{d}) \times \prod_{i=1}^{m} \mathbb{P} S_{n}\left(d_{i}\right) \longrightarrow \mathbb{P}^{n}(d)=\mathbb{P} H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right)
$$

such that

$$
\rho\left(\pi\left(\lambda_{1}, \ldots, \lambda_{m}\right),\left(\pi\left(F_{1}\right), \ldots, \pi\left(F_{m}\right)\right)\right)=\pi\left(\sum_{i=1}^{m} \lambda_{i} \hat{F}_{i} d F_{i}\right) .
$$

8. Remark. a) μ is a multi-linear map. By Proposition 4, the image of μ is $L_{n}(\mathbf{d})$.
b) The induced map ρ from a product of projective spaces into a projective space is only a rational map. Later we will determine the base locus $B(\rho)=\{(\pi(\lambda), \pi(F)) / \mu(\lambda, F)=0\}$ of ρ. Anyway, it is clear that the image of ρ is $\mathbb{P} L_{n}(\mathbf{d})$. Hence $\mathcal{L}_{n}(\mathbf{d})$ is the closure of the image of ρ. Therefore, $\mathcal{L}_{n}(\mathbf{d})$ is a projective irreducible variety.

5. Base locus.

Let $B(\mu)=\mu^{-1}(0)$. Then $B(\mu) \subset V_{n}(\mathbf{d})$ is an affine algebraic set, and we intend to describe its irreducible components.

Let us remark that the multilinearity of μ implies that $B(\mu)$ is stable under the natural action of $\left(\mathbb{C}^{*}\right)^{m+1}$ on $V_{n}(\mathbf{d})$.

From the multilinearity of μ it follows that $Z=\left\{(\lambda, \mathbf{F}) \in V_{n}(\mathbf{d}) / \lambda=0\right.$ or $F_{i}=$ 0 for some $i\}$ is contained in $B(\mu)$. We denote $B=B(\mu)-Z$ and

$$
B(\rho)=\pi(B) \subset \mathbb{P}^{n}(\mathbf{d})
$$

the base locus of ρ.
An example of a point in the base locus is the following. Suppose $d_{1}=\cdots=d_{m}$. It is then clear that if $F_{1}=\cdots=F_{m}$ then $(\lambda, \mathbf{F}) \in B(\mu)$. More generally, each string of equal d_{i} 's gives elements of $B(\mu)$: if $d_{i}=d_{j}$ for all $i, j \in A$, where $A \subset\{1, \ldots, m\}$, then taking $F_{i}=F_{j}$ for all $i, j \in A, \sum_{i \in A} d_{i} \lambda_{i}=0, \lambda_{j}=0$ for $j \notin A$, we obtain that $(\lambda, \mathbf{F}) \in B(\mu)$.

These examples generalize as follows: suppose our d_{i} 's may be written as

$$
\begin{equation*}
d_{i}=\sum_{j=1}^{m^{\prime}} e_{i j} d_{j}^{\prime}, \quad i=1, \ldots, m \tag{5.1}
\end{equation*}
$$

where $m^{\prime} \in \mathbb{N}, d_{j}^{\prime} \geq 1$ and $e_{i j} \geq 0$ are integers. Let $\lambda \in \Lambda_{n}(\mathbf{d})$ such that $\sum_{i=1}^{m} e_{i j} \lambda_{i}=0$ for $j=1, \ldots, m^{\prime}$, and take \mathbf{F} such that

$$
\begin{equation*}
F_{i}=\prod_{j=1}^{m^{\prime}} G_{j}^{e_{i j}} \tag{5.2}
\end{equation*}
$$

for some $G_{j} \in S_{n}\left(d_{j}^{\prime}\right), j=1, \ldots, m^{\prime}$. Then,

$$
\begin{equation*}
\sum_{i=1}^{m} \lambda_{i} d F_{i} / F_{i}=\sum_{i=1}^{m} \lambda_{i} \sum_{j=1}^{m^{\prime}} e_{i j} d G_{j} / G_{j}=\sum_{j=1}^{m^{\prime}}\left(\sum_{i=1}^{m} \lambda_{i} e_{i j}\right) d G_{j} / G_{j}=0 \tag{5.3}
\end{equation*}
$$

and we obtain elements in the base locus.
We will see now that this construction accounts for all the irreducible components of the base locus.
9. Definition. We denote $F(\mathbf{d})$ the collection of all decompositions of \mathbf{d} as in 5.1, that is, let
$F(\mathbf{d})=\left\{\left(m^{\prime}, e, \mathbf{d}^{\prime}\right) / m^{\prime} \in \mathbb{N}, e \in \mathbb{N}^{m \times m^{\prime}}, \mathbf{d}^{\prime} \in(\mathbb{N}-\{0\})^{m^{\prime}}, \mathbf{d}=e \mathbf{d}^{\prime}, e\right.$ without zero columns $\}$
In 5.1, for each i there exists j such that $e_{i j}>0$; that is, all rows of e are non-zero. This follows from $d_{i}>0$. If the j-th column of e is zero then in the decomposition 5.1 the terms $e_{i j} d_{j}^{\prime}$ are zero and do not contribute, so this zero column may be disregarded.
Let us remark that $F(\mathbf{d})$ is finite: we have, $d=\sum_{i} d_{i}=\sum_{i, j} e_{i j} d_{j}^{\prime} \geq \sum_{j} d_{j}^{\prime} \geq m^{\prime}$, hence m^{\prime} is bounded. Also, 5.1 implies $e_{i j} \leq d_{i} / d_{j}^{\prime} \leq d_{i}$, so all $e_{i j}$ are also bounded.
For $\varphi=\left(m^{\prime}, e, \mathbf{d}^{\prime}\right) \in F(\mathbf{d})$ denote the (Segre-Veronese) map

$$
\begin{aligned}
\nu_{\varphi}: \prod_{j=1}^{m^{\prime}} S_{n}\left(d_{j}^{\prime}\right) & \rightarrow \prod_{i=1}^{m} S_{n}\left(d_{i}\right) \\
\nu_{\varphi}\left(G_{1}, \ldots, G_{m^{\prime}}\right) & =\left(F_{1}, \ldots, F_{m}\right)
\end{aligned}
$$

such that $F_{i}=\prod_{j=1}^{m^{\prime}} G_{j}^{e_{i j}}$. Also, let

$$
\Lambda(e)=\{\lambda \in \Lambda(\mathbf{d}) / \lambda e=0\}
$$

which is a linear subspace of \mathbb{C}^{m} of dimension $m-\operatorname{rank}(e)$.
Notice that $\lambda e=0$ implies $\lambda \mathbf{d}=0$. For $\varphi \in F(\mathbf{d})$ let

$$
B_{\varphi}=\Lambda(e) \times \operatorname{im} \nu_{\varphi} \subset V_{n}(\mathbf{d})
$$

By the calculation 5.3 we know that $B_{\varphi} \subset B(\mu)$ for all $\varphi \in F(\mathbf{d})$.
Each B_{φ} is clearly irreducible. Next we will see, first, that $B(\mu)=Z \cup \bigcup_{\varphi \in F(\mathbf{d})} B_{\varphi}$. And, second, we will determine when there are inclusions among the B_{φ} 's, thus characterizing the irreducible components of the base locus.
Let us first recall from [14], Lemme 3.3.1, page 102, the following
10. Proposition. Let $F_{i} \in S_{n}\left(d_{i}\right), i=1, \ldots, m$, be irreducible distinct (modulo multiplicative constants) homogeneous polynomials. If $\lambda_{i} \in \mathbb{C}$ are such that

$$
\sum_{i=1}^{m} \lambda_{i} d F_{i} / F_{i}=0
$$

then $\lambda_{i}=0$ for all i. That is, the rational one-forms $d F_{1} / F_{1}, \ldots, d F_{m} / F_{m}$ are linearly independent over \mathbb{C}.
11. Corollary. Let $(\lambda, \mathbf{F}) \in V_{n}(\mathbf{d})$ with the F_{i} distinct and irreducible, and $\lambda \neq 0$. Then $(\lambda, \mathbf{F}) \notin B(\mu)$.
12. Proposition. With the notations above, we have $B(\mu)=Z \cup \bigcup_{\varphi \in F(\mathbf{d})} B_{\varphi}$.

Proof. Let $(\lambda, \mathbf{F}) \in B=B(\mu)-Z$. Write each F_{i} as a product of distinct irreducible homogeneous polynomials:

$$
F_{i}=\prod_{j=1}^{m^{\prime}} G_{j}^{e_{i j}}
$$

We allow some $e_{i j}=0$. Denote d_{j}^{\prime} the degree of G_{j}. Taking degree we obtain $\mathbf{d}=e \mathbf{d}^{\prime}$. Repeating the calculation of 5.3 we have

$$
\begin{equation*}
0=\sum_{i=1}^{m} \lambda_{i} d F_{i} / F_{i}=\sum_{i=1}^{m} \lambda_{i} \sum_{j=1}^{m^{\prime}} e_{i j} d G_{j} / G_{j}=\sum_{j=1}^{m^{\prime}}\left(\sum_{i=1}^{m} \lambda_{i} e_{i j}\right) d G_{j} / G_{j} \tag{5.4}
\end{equation*}
$$

Since the G_{j} are irreducible, Proposition 10 implies that $\sum_{i=1}^{m} \lambda_{i} e_{i j}=0$ for all $j=$ $1, \ldots, m^{\prime}$. Therefore, $(\lambda, \mathbf{F}) \in B_{\varphi}$ with $\varphi=\left(m^{\prime}, e, \mathbf{d}^{\prime}\right) \in F(\mathbf{d})$, as claimed.

Regarding possible inclusions among the B_{φ} 's, we make the following
13. Definition. For $\varphi_{1}=\left(m_{1}, e_{1}, \mathbf{d}_{1}\right), \varphi_{2}=\left(m_{2}, e_{2}, \mathbf{d}_{2}\right) \in F(\mathbf{d})$ we write $\varphi_{2} \leq \varphi_{1}$ if $\operatorname{rank}\left(e_{1}\right)=\operatorname{rank}\left(e_{2}\right)$ and there exists $e_{3} \in \mathbb{N}^{m_{1} \times m_{2}}$ such that $e_{2}=e_{1} e_{3}$.

Then we have
14. Proposition. For $\varphi_{1}, \varphi_{2} \in F(\mathbf{d}), B_{\varphi_{2}} \subset B_{\varphi_{1}}$ if and only if $\varphi_{2} \leq \varphi_{1}$.

Proof. Suppose $B_{\varphi_{2}} \subset B_{\varphi_{1}}$. Choose an element $(\lambda, \mathbf{F}) \in B_{\varphi_{2}}$, that is, $\lambda e_{2}=0$ and $F_{i}=\prod_{k=1}^{m_{2}} H_{k}^{e_{2 i k}}$ for all i, for some H_{k}. We may take this element so that the H_{k} 's are irreducible. By our hypothesis, $(\lambda, \mathbf{F}) \in B_{\varphi_{1}}$ and we also have $F_{i}=\prod_{j=1}^{m_{1}} G_{j}^{e_{1 i j}}$ for all i, for some G_{j}. By unique factorization and the irreducibility of the $H_{k}, G_{j}=\prod_{k=1}^{m_{2}} H_{k}^{e_{3 j k}}$ for some $e_{3 j k} \in \mathbb{N}$. A simple calculation now gives $e_{2}=e_{1} e_{3}$.

Also, the equality $e_{2}=e_{1} e_{3}$ just obtained easily implies $\Lambda\left(e_{1}\right) \subset \Lambda\left(e_{2}\right)$. Since we are assuming $B_{\varphi_{2}} \subset B_{\varphi_{1}}$, we also have $\Lambda\left(e_{2}\right) \subset \Lambda\left(e_{1}\right)$. Hence $\Lambda\left(e_{1}\right)=\Lambda\left(e_{2}\right)$, and therefore $\operatorname{rank}\left(e_{1}\right)=\operatorname{rank}\left(e_{2}\right)$.

Conversely, suppose $\varphi_{2} \leq \varphi_{1}$. Then $e_{2}=e_{1} e_{3}$ and $\operatorname{rank}\left(e_{1}\right)=\operatorname{rank}\left(e_{2}\right)$ imply, as before, that $\Lambda\left(e_{1}\right)=\Lambda\left(e_{2}\right)$. Also, the condition $e_{2}=e_{1} e_{3}$ easily implies that im $\nu_{\varphi_{2}} \subset$ $\operatorname{im} \nu_{\varphi_{1}}$. Hence $B_{\varphi_{2}} \subset B_{\varphi_{1}}$.
15. Corollary. The irreducible components of $B(\rho)$ are the $\pi\left(B_{\varphi}\right)$ for φ a maximal element of the finite ordered set $(F(\mathbf{d}), \leq)$.

6. GENERIC INJECTIVITY.

Suppose $(\lambda, \mathbf{F}),\left(\lambda^{\prime}, \mathbf{F}^{\prime}\right) \in V_{n}(\mathbf{d})$ are such that $\mu(\lambda, \mathbf{F})=\mu\left(\lambda^{\prime}, \mathbf{F}^{\prime}\right) \neq 0$, that is,

$$
F \sum_{i=1}^{m} \lambda_{i} d F_{i} / F_{i}=\omega=F^{\prime} \sum_{i=1}^{m} \lambda_{i}^{\prime} d F_{i}^{\prime} / F_{i}^{\prime}
$$

Next we discuss conditions that imply that $(\lambda, \mathbf{F})=\left(\lambda^{\prime}, \mathbf{F}^{\prime}\right)$.
Let's observe that if the partition \mathbf{d} contains repeated $d_{i}{ }^{\prime} s$ then the generic injectivity may hold only up to order. More precisely, suppose $A \subset\{1, \ldots, m\}$ is such that $d_{i}=d_{j}$ for all $i, j \in A$. For each permutation $\sigma \in \mathbb{S}_{m}$ such that $\sigma(j)=j$ for $j \notin A$, clearly we have $\mu(\lambda, \mathbf{F})=\mu(\sigma . \lambda, \sigma . \mathbf{F})$ for all $(\lambda, \mathbf{F}) \in V_{n}(\mathbf{d})$. For $e \in \mathbb{N}$ let $A_{e}=\left\{i / d_{i}=e\right\}$. Then the non-empty A_{e} form a partition of $\{1, \ldots, m\}$. Let $\mathbb{S}(e)=\left\{\sigma \in \mathbb{S}_{m} / \sigma(j)=j, \forall j \notin A_{e}\right\}$ and $\mathbb{S}(\mathbf{d})=\prod_{e} \mathbb{S}(e)$. Then the subgroup $\mathbb{S}(\mathbf{d}) \subset \mathbb{S}_{m}$ acts on $V_{n}(\mathbf{d})$ and μ is constant on its orbits. By injectivity up to order we will of course mean injectivity of the induced map with domain $V_{n}(\mathbf{d}) / \mathbb{S}(\mathbf{d})$.
16. Proposition. The rational map

$$
\rho: \mathbb{P}^{n}(\mathbf{d}) \cdots \mathcal{L}_{n}(\mathbf{d}) \subset \mathbb{P}^{n}(d)
$$

as in Definition 7, is generically injective (up to order).
Proof. We will prove the existence of a non-empty Zariski open $U \subset X$ such that $\left.\rho\right|_{U}$ is injective morphism (up to order). It is easy to see, using that ρ is a dominant map of irreducible varieties, that the existence of such a U implies that there exists a non-empty Zariski open $V \subset \mathcal{L}_{n}(\mathbf{d})$ such that $\rho: \rho^{-1}(V) \rightarrow V$ is injective (up to order).

Consider the Zariski open $\mathbb{S}(\mathbf{d})$-stable $U \subset V_{n}(\mathbf{d})$ of points (λ, \mathbf{F}) such that the F_{i} are irreducible and all distinct. Hence, for $(\lambda, \mathbf{F}),\left(\lambda^{\prime}, \mathbf{F}^{\prime}\right) \in U$ distinct (up to order), $F=\prod_{i} F_{i} \neq F^{\prime}=\prod_{i} F_{i}^{\prime}$. Suppose $\mu(\lambda, \mathbf{F})=\omega=\mu\left(\lambda^{\prime}, \mathbf{F}^{\prime}\right) \neq 0$. Then ω has two integrating factors F and F^{\prime}, and therefore has a rational first integral $f=F / F^{\prime}$. It follows that ω has infinitely many algebraic leaves (the fibers of f).

On the other hand, if $\left(\lambda_{1}: \cdots: \lambda_{m}\right) \in \mathbb{P}^{m-1}(\mathbb{C})-\mathbb{P}^{m-1}(\mathbb{Q})$, Proposition (3.7.8) from [14] implies that ω has only finitely many algebraic leaves.

Let $U_{0}=\left\{(\lambda, \mathbf{F}) \in U / \lambda \in \mathbb{P}^{m-1}(\mathbb{C})-\mathbb{P}^{m-1}(\mathbb{Q})\right\}$.
Consider the restriction $\rho: U \rightarrow \mathcal{L}_{n}(\mathbf{d})$ and $\tilde{\rho}: U / \mathbb{S}(\mathbf{d}) \rightarrow \mathcal{L}_{n}(\mathbf{d})$ the induced map.
We obtain that if $\omega=\mu(\lambda, \mathbf{F})$ with $(\lambda, \mathbf{F}) \in U_{0}$ then $\tilde{\rho}^{-1}(\omega)=\{(\lambda, \mathbf{F})\}$.
This implies, first, that since ρ has a fiber of dimension zero, $\operatorname{dim}(U)=\operatorname{dim}\left(\mathcal{L}_{n}(\mathbf{d})\right)$ and the general fiber of ρ is finite. Also, since the (open analytic) set U_{0} is Zariski dense in U (because $\mathbb{C}-\mathbb{Q}$ is dense in \mathbb{C}), U_{0} is not contained in the branch divisor of $\tilde{\rho}$ and hence $\tilde{\rho}$ has degree one, and therefore is birational, as claimed.

7. Derivative of the parametrization.

With the notation of Definition 7, let

$$
(\lambda, \mathbf{F})=\left(\left(\lambda_{1}, \ldots, \lambda_{m}\right),\left(F_{1}, \ldots, F_{m}\right)\right) \in V_{n}(\mathbf{d})
$$

be a point in the vector space $V_{n}(\mathbf{d})$ domain of μ.
Let $\left(\lambda^{\prime}, \mathbf{F}^{\prime}\right)=\left(\left(\lambda_{1}^{\prime}, \ldots, \lambda_{m}^{\prime}\right),\left(F_{1}^{\prime}, \ldots, F_{m}^{\prime}\right)\right) \in V_{n}(\mathbf{d})$ represent a tangent vector

$$
(\lambda, \mathbf{F})+\epsilon\left(\lambda^{\prime}, \mathbf{F}^{\prime}\right), \quad \epsilon^{2}=0
$$

to $V_{n}(\mathbf{d})$ at (λ, \mathbf{F}).
From the multilinearity of μ we easily obtain the following formula for its derivative:

$$
\begin{gather*}
d \mu(\lambda, \mathbf{F}): V_{n}(\mathbf{d}) \rightarrow H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right) \\
d \mu(\lambda, \mathbf{F})\left(\lambda^{\prime}, \mathbf{F}^{\prime}\right)=\sum_{i} \lambda_{i}^{\prime} \hat{F}_{i} d F_{i}+\sum_{i \neq k} \lambda_{i} F_{k}^{\prime} \hat{F}_{i k} d F_{i}+\sum_{i} \lambda_{i} \hat{F}_{i} d F_{i}^{\prime} \tag{7.1}
\end{gather*}
$$

17. Remark. By Proposition 4 b), the image of μ is contained in the variety of integrable projective forms $F_{n}(d) \subset H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right)$. Hence for each $(\lambda, \mathbf{F}) \in V_{n}(\mathbf{d})$ we have an inclusion of vector spaces

$$
\begin{equation*}
\operatorname{im} d \mu(\lambda, \mathbf{F}) \subset T_{F_{n}(d)}(\omega)=\left\{\alpha \in H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right) / \omega \wedge d \alpha+\alpha \wedge d \omega=0\right\} \tag{7.2}
\end{equation*}
$$

where $\omega=\mu(\lambda, \mathbf{F})$ and $T_{F_{n}(d)}(\omega)$ denotes de tangent space of $F_{n}(d)$ at the point ω.
Our main task in Section 9 will be to show that this inclusion is actually an equality, for a sufficiently general $(\lambda, \mathbf{F}) \in V_{n}(\mathbf{d})$.
18. Definition. It is convenient now to introduce the following notation:
$\omega=\mu(\lambda, \mathbf{F})=\sum_{i=1}^{m} \lambda_{i} \hat{F}_{i} d F_{i}$ (a logarithmic one-form),
$\eta=\omega / F=\sum_{i=1}^{m} \lambda_{i} d F_{i} / F_{i}$ (the corresponding rational logarithmic one-form),
$\alpha=d \mu(\lambda, \mathbf{F})\left(\lambda^{\prime}, \mathbf{F}^{\prime}\right)=\sum_{i} \lambda_{i}^{\prime} \hat{F}_{i} d F_{i}+\sum_{i \neq k} \lambda_{i} F_{k}^{\prime} \hat{F}_{i k} d F_{i}+\sum_{i} \lambda_{i} \hat{F}_{i} d F_{i}^{\prime}$,
$\beta=\alpha / F=\sum_{i} \lambda_{i}^{\prime} d F_{i} / F_{i}+\sum_{i \neq k} \lambda_{i} F_{k}^{\prime} / F_{k} d F_{i} / F_{i}+\sum_{i} \lambda_{i} d F_{i}^{\prime} / F_{i}$.
19. Proposition. With the notations above, we have

$$
\beta=\eta^{\prime}+(G / F) \eta+d(H / F)
$$

where

$$
\begin{aligned}
& \eta^{\prime}=\sum_{i=1}^{m} \lambda_{i}^{\prime} d F_{i} / F_{i}, \\
& G=\sum_{i=1}^{m} \hat{F}_{i} F_{i}^{\prime} \in S_{n}(d), \text { and } \\
& H=\sum_{i=1}^{m} \lambda_{i} \hat{F}_{i} F_{i}^{\prime} \in S_{n}(d) .
\end{aligned}
$$

Proof. We add and substract to β the sum $\sum_{i} \lambda_{i} F^{\prime}{ }_{i} / F_{i}^{2} d F_{i}$. A straightforward calculation gives the proposed expression.

8. Singular ideals of Logarithmic one-Forms and their resolution.

For $\omega \in H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right)$ denote $S(\omega) \subset \mathbb{P}^{n}$ the scheme of zeros of ω and $\mathcal{I}=\mathcal{I}_{\omega} \subset \mathcal{O}_{\mathbb{P}^{n}}$ the corresponding ideal sheaf. Considering ω as a morphism $\mathcal{O}_{\mathbb{P}^{n}} \rightarrow \Omega_{\mathbb{P}^{n}}^{1}(d), \mathcal{I}$ is defined as the image of the dual morphism $T_{\mathbb{P}^{n}}(-d) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}$. Also, if $\omega=\sum_{i=0}^{n} a_{i} d x_{i}$ then \mathcal{I} corresponds to the homogeneous ideal generated by $a_{0}, \ldots, a_{n} \in S_{n}(d-1)$.

We keep the notation of Definitions 2 and 3.
Let $(\lambda, \mathbf{F}) \in V_{n}(\mathbf{d})$ and $\omega=F . \sum_{i=1}^{m} \lambda_{i} d F_{i} / F_{i}=\sum_{i=1}^{m} \lambda_{i} \hat{F}_{i} d F_{i}$ the corresponding logarithmic one-form.

We denote

$$
X_{i}=\left\{x \in \mathbb{P}^{n} / F_{i}(x)=0\right\}
$$

the hipersurface defined by F_{i}.
For $i \neq j$,

$$
X_{i j}=X_{i} \cap X_{j}=\left\{x \in \mathbb{P}^{n} / F_{i}(x)=F_{j}(x)=0\right\}
$$

and, more generally, for a subset $A \subset\{1, \ldots, m\}$,

$$
X_{A}=\bigcap_{i \in A} X_{i}
$$

For $1 \leq r \leq m$ we write

$$
X^{(r)}=\bigcup_{|A|=r} X_{A}
$$

and we shall use especially the following particular cases

$$
X^{(1)}=\bigcup_{i=1}^{m} X_{i}, \quad X^{(2)}=\bigcup_{i<j} X_{i j}, \quad X^{(3)}=\bigcup_{i<j<k} X_{i j k} .
$$

20. Remark. For our purposes we will be able to assume that the $F_{i} \in S_{n}\left(d_{i}\right)$ are general. We shall assume, more precisely, that each F_{i} is smooth irreducible and that $X^{(1)}$ is a normal crossings divisor. Hence, each X_{A} is a smooth complete intersection of codimension $|A|$, and thus the strata $X^{(r)}$ are of codimension r, singular only along $X^{(r+1)}$.

It is shown in [8] and [3] that for ω logarithmic as above, with all $\lambda_{i} \neq 0$,

$$
S(\omega)=X^{(2)} \cup P
$$

with $P \subset \mathbb{P}^{n}-X^{(1)}$ closed, and P is a finite set if ω is general. Let's revisit the argument, under the assumptions of Remark 20. First, since clearly \hat{F}_{i} vanishes on $X^{(2)}$ for all i, we have $X^{(2)} \subset S(\omega)$. Since $\omega=\lambda_{i} \hat{F}_{i} d F_{i}$ on X_{i}, we see that $\left(X^{(1)}-X^{(2)}\right) \cap S(\omega)=\emptyset$. As for the zeros of ω in the complement of $X^{(1)}$, they are the same as the zeros of $\eta=\omega / F=\sum_{i=1}^{m} \lambda_{i} d F_{i} / F_{i}$, which is a section of the locally free sheaf $E=\Omega_{\mathbb{P} n}^{1}\left(\log X^{(1)}\right)$ of rank n (see [9], [12], [15], [11]). Considering the F_{i} (hence the divisor $X^{(1)}$) as fixed, the space of global sections of E has dimension $m-1$, and these sections correspond
bijectively with the residues $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$, satisfying $\sum_{i} d_{i} \lambda_{i}=0$, as it follows from taking cohomology in the exact sequence ([9] or [11], p. 170):

$$
0 \rightarrow \Omega_{\mathbb{P}^{n}}^{1} \rightarrow E \rightarrow \oplus_{i=1}^{m} \mathcal{O}_{X_{i}} \rightarrow 0
$$

For general $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ as above, the corresponding section η of E has a finite set P of simple zeros. Further, the cardinality of P (see [8]) is the degree of the top Chern class $c_{n}(E)$, computable from the exact sequence above.

Coming back to the study of the resolution of the ideal \mathcal{I}_{ω}, let us denote

$$
\mathcal{J}^{(r)}=\mathcal{I}\left(X^{(r)}\right) \subset \mathcal{O}_{\mathbb{P}^{n}}
$$

the ideal sheaf of regular functions vanishing on $X^{(r)}$, and

$$
J^{(r)}=\bigoplus_{k \in \mathbb{Z}} H^{0}\left(\mathbb{P}^{n}, \mathcal{J}^{(r)}(k)\right) \subset S_{n}
$$

the corresponding saturated homogeneous ideal.
Our arguments to prove stability of logarithmic forms will rely on the following results regarding the ideals $J^{(2)}$.
21. Proposition. Under the hypothesis of Remark 20,
a) $J^{(2)}$ is generated by $\left\{\hat{F}_{i}, 1 \leq i \leq m\right\}$.
b) The relations among the generators of a) are generated by

$$
F_{j} \hat{F}_{j}-F_{i} \hat{F}_{i}, \quad 1 \leq i<j \leq m
$$

and also by the subset

$$
R_{j}=F_{j} \hat{F}_{j}-F_{1} \hat{F}_{1}, \quad 2 \leq j \leq m
$$

c) We have a resolution of $\mathcal{J}^{(2)}$

$$
0 \rightarrow \mathcal{O}(-d)^{m-1} \xrightarrow{\delta_{0}} \bigoplus_{1 \leq i \leq m} \mathcal{O}\left(-\hat{d}_{i}\right) \xrightarrow{\delta_{1}} \mathcal{J}^{(2)} \rightarrow 0
$$

where, denoting $\left\{e_{i}\right\}$ the respective canonical basis,

$$
\begin{gathered}
\delta_{0}\left(e_{j}\right)=F_{j} e_{j}-F_{1} e_{1} \text { for } 2 \leq j \leq m \\
\delta_{1}\left(e_{i}\right)=\hat{F}_{i} \text { for } 1 \leq i \leq m
\end{gathered}
$$

Proof. a) We are assuming that the F_{i} are generic. This implies in particular that each ideal $<F_{i}, F_{j}>$ is prime. Then, $J^{(2)}=\bigcap_{1 \leq i<j \leq m}<F_{i}, F_{j}>$. Let us denote $J=<\hat{F}_{1}, \ldots, \hat{F}_{m}>$. It is clear that $J \subset J^{(2)}$. We shall prove that $J^{(2)} \subset J$ by induction on m. The case $m=2$ is trivial. The inductive hypothesis, applied to F_{1}, \ldots, F_{m-1}, may be written as $\bigcap_{1 \leq i<j \leq m-1}<F_{i}, F_{j}>\subset<\hat{F}_{1 m}, \ldots, \hat{F}_{m-1 m}>$. Take an element $G \in \bigcap_{1 \leq i<j \leq m}<F_{i}, F_{j}>=\bigcap_{1 \leq i<j \leq m-1}<F_{i}, F_{j}>\cap \bigcap_{1 \leq i<m}<F_{i}, F_{m}>$. Using the inductive hypothesis, we may write $G=\sum_{i<m} a_{i} \hat{F}_{i m}$, and we also have $G \in<F_{i}, F_{m}>$ for $i<m$. Since $\hat{F}_{j m} \in<F_{i}, F_{m}>$ for $j \neq i$, it follows that $a_{i} \hat{F}_{i m} \in<F_{i}, F_{m}>$ for $i<m$.

Since $<F_{i}, F_{m}>$ is prime, we have $a_{i}=b_{i} F_{i}+c_{i} F_{m}$. Then, $G=\sum_{i<m}\left(b_{i} F_{i}+c_{i} F_{m}\right) \hat{F}_{i m}=$ $\sum_{i<m}\left(b_{i} \hat{F}_{m}+c_{i} \hat{F}_{i}\right) \in J$, as wanted.
b) and c) Using the relations R_{j} of b) we write down the complex in c). The proof will be complete if we show that this complex is exact. The surjectivity of δ_{1} follows from a). Looking at the matrix of δ_{0} it is easy to see that the determinant of the minor obtained by removing row j is precisely \hat{F}_{j}, for $j=1, \ldots, m$. Then this complex is the one associated to the maximal minors of a matrix of size $m \times m-1$. Since in our case, by a), the ideal of minors vanishes in codimension two, the complex is exact (see [1] (5), [10] (20.4)).
22. Remark. Let X be an algebraic variety, $\mathcal{J} \subset \mathcal{O}_{X}$ a sheaf of ideals, and E a locally free sheaf on X. Let $Y \subset X$ denote the subvariety corresponding to \mathcal{J}. Taking global sections on the exact sequence $0 \rightarrow E \otimes \mathcal{J} \rightarrow E \rightarrow E \otimes \mathcal{O}_{Y}=\left.E\right|_{Y} \rightarrow 0$ we obtain an identification of $H^{0}(X, E \otimes \mathcal{J})$ with the global sections of E vanishing on Y, that is, with the kernel of the restriction map $H^{0}(X, E) \rightarrow H^{0}\left(Y,\left.E\right|_{Y}\right)$.
23. Proposition. Let $\alpha \in \Omega_{n}^{1}(d)$ be a 1-form of degree d in \mathbb{C}^{n+1}. Denote $\tilde{X}^{(2)} \subset \mathbb{C}^{n+1}$ the cone over $X^{(2)}$.
a) α vanishes on $\tilde{X}^{(2)}$ if and only if it may be written as

$$
\alpha=\sum_{i=1}^{m} \hat{F}_{i} \alpha_{i}
$$

for some $\alpha_{i} \in \Omega_{n}^{1}\left(d_{i}\right)$.
b) α is projective (see Section 2) and vanishes on $X^{(2)}$ if and only if it may be written as

$$
\alpha=\sum_{i=1}^{m} \lambda_{i}^{\prime} \hat{F}_{i} d F_{i}+\sum_{i=1}^{m} \hat{F}_{i} \gamma_{i}
$$

where $\lambda_{i}^{\prime} \in \mathbb{C}, \sum_{i=1}^{m} d_{i} \lambda_{i}^{\prime}=0$ and $\gamma_{i} \in H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}\left(d_{i}\right)\right)$ are projective 1-forms of respective degrees d_{i}.

Proof. a) By Remark 22, we need to determine $H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d) \otimes \mathcal{J}^{(2)}\right)$. The stated result then follows from Proposition 21 c , by tensoring with $\Omega_{\mathbb{P}^{n}}^{1}(d)$ and taking global sections. b) Suppose α is also projective, that is, $\langle R, \alpha>=0$, where R is the radial vector field. From a) we have

$$
\sum_{i=1}^{m} \hat{F}_{i}<R, \alpha_{i}>=0
$$

This is a relation among the \hat{F}_{i} with coefficients $<R, \alpha_{i}>$ homogeneous of degrees d_{i}. By Proposition 21 c), by tensoring with $\mathcal{O}_{\mathbb{P}^{n}}(d)$ and taking global sections, this relation
is a linear combination of the relations R_{i} of Proposition 21 b), that is,

$$
\left(<R, \alpha_{1}>, \ldots,<R, \alpha_{m}>\right)=\sum_{2 \leq i \leq m} a_{i} R_{i} .
$$

This means that

$$
<R, \alpha_{1}>=\left(\sum_{j} a_{j}\right) F_{1}, \quad<R, \alpha_{i}>=-a_{i} F_{i}, \quad i=2, \ldots, m
$$

Hence a_{i} has degree zero, i. e. $a_{i} \in \mathbb{C}$, for all i. Define $\lambda_{i}^{\prime}=a_{i} / d_{i}$ for $i=2, \ldots, m$, $\lambda_{1}^{\prime}=-\left(\sum_{j} a_{j}\right) / d_{1}$ and $\gamma_{i}=\alpha_{i}-\lambda_{i}^{\prime} d F_{i}$. It follows that $<R, \gamma_{i}>=0$ and hence α may be written as stated.

9. Surjectivity of the derivative and main Theorem.

As in Remark 17 we denote the derivative of μ at the point $\mu(\lambda, \mathbf{F})$

$$
\begin{equation*}
d \mu(\lambda, \mathbf{F}): V_{n}(\mathbf{d}) \rightarrow T(\omega) \tag{9.1}
\end{equation*}
$$

where $\omega=\mu(\lambda, \mathbf{F})$ and

$$
\begin{equation*}
T(\omega)=T_{F_{n}(d)}(\omega)=\left\{\alpha \in H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right) / \omega \wedge d \alpha+\alpha \wedge d \omega=0\right\} \tag{9.2}
\end{equation*}
$$

denotes the Zariski tangent space of $F_{n}(d)$ at the point ω.
Our main objective is to prove the following:
24. Theorem. Let n, d, m and $\mathbf{d} \in P(m, d)$ be as in Definition 1. Suppose $n \geq 3$. Then the derivative $d \mu(\lambda, \mathbf{F}): V_{n}(\mathbf{d}) \rightarrow T(\omega)$ is surjective for $(\lambda, \mathbf{F}) \in V_{n}(\mathbf{d})$ general.

Proof. The proof will be obtained through various steps, including several Propositions of independent interest.
25. Theorem. If $n \geq 3$, the set of logaritmic forms $\mathcal{L}_{n}(\mathbf{d}) \subset \mathcal{F}_{n}(d)$, as in Definition 6 , is an irreducible component of $\mathcal{F}_{n}(d)$. Furthermore, the scheme $\mathcal{F}_{n}(d)$ is reduced generically along $\mathcal{L}_{n}(\mathbf{d})$.

Proof. Follows from Theorem 24 by the same arguments as in [6] or [7].

Let us now start with several steps towards the proof of Theorem 24.
26. Remark. A typical element α in the image of $d \mu(\lambda, \mathbf{F})$ as in 7.1

$$
\alpha=\sum_{i} \lambda_{i}^{\prime} \hat{F}_{i} d F_{i}+\sum_{i \neq j} \lambda_{i} F_{j}^{\prime} \hat{F}_{i j} d F_{i}+\sum_{i} \lambda_{i} \hat{F}_{i} d F_{i}^{\prime}
$$

may be written

$$
\alpha=\sum_{i} \hat{F}_{i}\left(\lambda_{i}^{\prime} d F_{i}+\lambda_{i} d F_{i}^{\prime}\right)+\sum_{i \neq j} \lambda_{i} F_{j}^{\prime} \hat{F}_{i j} d F_{i}
$$

or

$$
\alpha=\sum_{i} \hat{F}_{i}\left(\lambda_{i}^{\prime} d F_{i}+\lambda_{i} d F_{i}^{\prime}\right)+\sum_{i<j} \hat{F}_{i j}\left(\lambda_{i} F_{j}^{\prime} d F_{i}+\lambda_{j} F_{i}^{\prime} d F_{j}\right)
$$

Let us observe that the first sum is zero on $X^{(2)}$ (hence on $X^{(3)}$) and the second sum is zero on $X^{(3)}$. The idea of our proofs, leading to Theorem 24, will be based on this observation.

Our strategy to characterize the elements $\alpha \in T(\omega)$ will be this: first we shall determine $\left.\alpha\right|_{X^{(3)}}$, next we shall determine $\left.\alpha\right|_{X^{(2)}}$, and finally we show that α may be written as in 7.1 for some λ^{\prime} and \mathbf{F}^{\prime}, and therefore α belongs to the image of $d \mu(\lambda, \mathbf{F})$.

In order to carry out this plan, let us start with some Propositions, some of them of independent interest.
27. Proposition. For $\omega \in F_{n}(d)$ and $\alpha \in H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(d)\right)$, the following conditions are equivalent:
a) $\omega \wedge d \alpha+\alpha \wedge d \omega=0$, that is, $\alpha \in T(\omega)$.
b) $d \omega \wedge d \alpha=0$.

Further, for ω logarithmic, $\eta=\omega / F$ and $\beta=\alpha / F$,
c) $\eta \wedge d \beta=0$.
d) $d(\eta \wedge \beta)=0$.

Proof. From a) one obtains b) by applying exterior derivative. Conversely, from b) one obtains a) by contracting with the radial vector field. The equivalence with c) follows from Proposition 5 by a straightforward calculation. The equivalence of c) and d) follows from the fact that η is closed.
28. Proposition. Let $\omega=\mu(\lambda, \mathbf{F})$ be a logarithmic form and $\alpha \in T(\omega)$. Assume that $X^{(1)}$ is normal crossings, with smooth irreducible components X_{i}, as in Remark 20. Then $\left.\alpha\right|_{X^{(3)}}=0$, that is, $\alpha(x)=0$ for all $x \in X^{(3)}$.

Proof. Let us denote, for $1 \leq i<j \leq m$,

$$
U_{i j}:=X_{i j}-X^{(3)}=\left\{x \in \mathbb{P}^{n} / F_{i}(x)=F_{j}(x)=0, F_{k}(x) \neq 0 \text { for } k \notin\{i, j\}\right\}
$$

and, similarly, for $1 \leq i<j<k \leq m$,

$$
U_{i j k}:=X_{i j k}-X^{(4)}
$$

Since the set of zeros of α is closed, it is enough to see that α is zero on $X^{(3)}-X^{(4)}$, which is the disjoint union of the $U_{i j k}$. Notice that $d F_{i}, d F_{j}, d F_{k}$ are linearly independent on $U_{i j k}$ because of the normal-crossings hypothesis. Since clearly $\left.\omega\right|_{X^{(2)}}=0$, the relation $\omega \wedge d \alpha+\alpha \wedge d \omega=0$ reduces to $\alpha(x) \wedge d \omega(x)=0$ for each $x \in X^{(2)}$. We may assume that $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$ without losing generality. Then it follows from Proposition 5 a) that

$$
\begin{equation*}
\alpha \wedge d F_{i} \wedge d F_{j}=0 \tag{9.3}
\end{equation*}
$$

on $U_{i j}$, and hence on its closure $X_{i j}$. This means that

$$
\begin{equation*}
\alpha(x) \in \mathbb{C} \cdot d F_{i}(x)+\mathbb{C} \cdot d F_{j}(x) \subset \Omega_{\mathbb{P}^{n}}^{1}(x) \tag{9.4}
\end{equation*}
$$

for $x \in X_{i j}$. Therefore, for $x \in U_{i j k}$ we have

$$
\alpha(x) \in\left(\mathbb{C} \cdot d F_{i}(x)+\mathbb{C} \cdot d F_{j}(x)\right) \cap\left(\mathbb{C} \cdot d F_{i}(x)+\mathbb{C} \cdot d F_{k}(x)\right) \cap\left(\mathbb{C} \cdot d F_{j}(x)+\mathbb{C} \cdot d F_{k}(x)\right) .
$$

Due to the normal crossings hypothesis this last intersection of two-dimensional subspaces is zero, hence $\alpha(x)=0$ for $x \in U_{i j k}$, as wanted.
29. Proposition. With the notation and hypothesis of Proposition 28, for each ordered pair (i, j) with $1 \leq i, j \leq m$ and $i \neq j$, there exists $A_{i j} \in S_{n}\left(d_{j}\right)$ such that

$$
\alpha=\hat{F}_{i j}\left(A_{i j} d F_{i}+A_{j i} d F_{j}\right) \text { on } X_{i j} .
$$

Proof. This will follow easily combining that $X_{i j}$ is a smooth complete intersection of codimension two in a proyective space, and the fact that $\left.\alpha\right|_{X^{(3)}}=0$ that we just proved.

Suppose $J=<A, B>$ is the ideal generated by general homogenous polynomials A and B of respective degrees a and b. Let $Y \subset \mathbb{P}^{n}$ be the set of zeroes of J. We have an exact sequence ([13], II.8)

$$
0 \rightarrow J / J^{2}=\left.\mathcal{O}_{Y}(-a) \oplus \mathcal{O}_{Y}(-b) \xrightarrow{\delta} \Omega_{\mathbb{P}^{n}}^{1}\right|_{Y} \rightarrow \Omega_{Y}^{1} \rightarrow 0
$$

Tensoring with $\mathcal{O}_{Y}(d)$ and taking global sections we obtain that an element $\left.\alpha\right|_{Y} \in$ $H^{0}\left(Y,\left.\Omega_{\mathbb{P}^{n}}^{1}(d)\right|_{Y}\right)$ which belongs to the image of $H^{0}(\delta)$, may be written as $A^{\prime} d A+B^{\prime} d B$ for $A^{\prime} \in H^{0}\left(Y, \mathcal{O}_{Y}(d-a)\right)$ and $B^{\prime} \in H^{0}\left(Y, \mathcal{O}_{Y}(d-b)\right)$. By [13], Ex. III (5.5), A^{\prime} and B^{\prime} are represented by homogeneous polynomials of respective degrees $d-a$ and $d-b$.

For each $(i, j),\left.\alpha\right|_{X_{i j}}$ belongs to the image of the corresponding $H^{0}(\delta)$, by 9.4 . Hence, we know that $\alpha=A_{i j}^{\prime} d F_{i}+A_{j i}^{\prime} d F_{j}$ on $X_{i j}$, for homogeneous polynomials $A_{i j}^{\prime}$ of degree $d-d_{i}$. Now, $\left.\alpha\right|_{X^{(3)}}=0$ by Proposition 28, and in particular $\alpha=0$ on $X_{i j k}$ for all k. Since $d F_{i}$ and $d F_{j}$ are linearly independent at all points of $X_{i j k}$ by the normal crossings hypothesis, it follows that $A_{i j}^{\prime}$ and $A_{j i}^{\prime}$ are divisible by $\hat{F}_{i j}$ and we obtain the claim.
30. Corollary. With the notation of Proposition 29, define

$$
\alpha^{\prime}=\sum_{i<j} \hat{F}_{i j}\left(A_{i j} d F_{i}+A_{j i} d F_{j}\right) \in \Omega_{n}^{1}(d)
$$

Then $\left.\alpha^{\prime}\right|_{\tilde{X}^{(2)}}=\left.\alpha\right|_{\tilde{X}^{(2)}}$.
(But notice that α^{\prime} may not satisfy 7.2; see the Proof of Corollary 35).
Proof. Follows from Proposition 29 since $\hat{F}_{i j}$ vanishes on $X_{h k}$ if $\{h, k\} \neq\{i, j\}$.
31. Corollary. We keep the notation of Proposition 29. Then any $\alpha \in T(\omega)$ may be written as

$$
\begin{aligned}
\alpha & =\sum_{i<j} \hat{F}_{i j}\left(A_{i j} d F_{i}+A_{j i} d F_{j}\right)+\sum_{i} \hat{F}_{i} \alpha_{i} \\
& =\sum_{i \neq j} \hat{F}_{i j} A_{i j} d F_{i}+\sum_{i} \hat{F}_{i} \alpha_{i}
\end{aligned}
$$

for some $\alpha_{i} \in \Omega_{n}^{1}\left(d_{i}\right)$.
Proof. For $\alpha \in T(\omega)$, take α^{\prime} as in Corollary 30. Then $\alpha-\alpha^{\prime} \in \Omega_{n}^{1}(d)$ vanishes on $\tilde{X}^{(2)}$ and hence, by Proposition 23 a), may be written as $\sum_{i=1}^{m} \hat{F}_{i} \alpha_{i}$ for some $\alpha_{i} \in \Omega_{n}^{1}\left(d_{i}\right)$.

We would like to obtain further information on the $A_{i j}$'s and the α_{i} 's. For this, we will use again that α satisfies $\omega \wedge d \alpha+\alpha \wedge d \omega=0$ as in 7.2.
32. Proposition. Suppose $n \geq 3$. With notation as in Corollary 31, for each $j=$ $1, \ldots, m$ there exists $F_{j}^{\prime} \in S_{n}\left(d_{j}\right)$ such that

$$
A_{i j}=\lambda_{i} F_{j}^{\prime} \quad \text { on } X_{i j}
$$

for all (i, j) with $1 \leq i, j \leq m$ and $i \neq j$.
Proof. The calculation is nicer working with the equivalent condition $d \beta \wedge \eta=0$, where $\beta=\alpha / F$ and $\eta=\omega / F$, see Proposition 27 c). We have:

$$
\begin{gathered}
\beta=\sum_{i \neq j} \frac{A_{i j}}{F_{j}} \frac{d F_{i}}{F_{i}}+\sum_{i} \frac{\alpha_{i}}{F_{i}} \\
d \beta=\sum_{i \neq j} d\left(\frac{A_{i j}}{F_{j}}\right) \wedge \frac{d F_{i}}{F_{i}}+\sum_{i} d\left(\frac{\alpha_{i}}{F_{i}}\right) \\
d \beta \wedge \eta=\sum_{i \neq j, k} \lambda_{k} d\left(\frac{A_{i j}}{F_{j}}\right) \wedge \frac{d F_{i}}{F_{i}} \wedge \frac{d F_{k}}{F_{k}}+\sum_{i, k} \lambda_{k} d\left(\frac{\alpha_{i}}{F_{i}}\right) \wedge \frac{d F_{k}}{F_{k}}= \\
\sum_{i \neq j \neq k} \lambda_{k} d\left(\frac{A_{i j}}{F_{j}}\right) \wedge \frac{d F_{i}}{F_{i}} \wedge \frac{d F_{k}}{F_{k}}++\sum_{i \neq j} \lambda_{j} d\left(\frac{A_{i j}}{F_{j}}\right) \wedge \frac{d F_{i}}{F_{i}} \wedge \frac{d F_{j}}{F_{j}}+ \\
\sum_{i \neq k} \lambda_{k} d\left(\frac{\alpha_{i}}{F_{i}}\right) \wedge \frac{d F_{k}}{F_{k}}+\sum_{k} \lambda_{k} d\left(\frac{\alpha_{k}}{F_{k}}\right) \wedge \frac{d F_{k}}{F_{k}}=0
\end{gathered}
$$

Let's replace

$$
d\left(\frac{A_{i j}}{F_{j}}\right)=\frac{d A_{i j}}{F_{j}}-\frac{A_{i j}}{F_{j}} \frac{d F_{j}}{F_{j}}, \quad d\left(\frac{\alpha_{i}}{F_{i}}\right)=\frac{d \alpha_{i}}{F_{i}}-\frac{d F_{i}}{F_{i}} \wedge \frac{\alpha_{i}}{F_{i}}
$$

and multiply by F^{2}. After some straightforward calculation we obtain:

$$
\begin{array}{r}
F \sum_{i \neq j \neq k} \lambda_{k} \hat{F}_{i j k} d A_{i j} \wedge d F_{i} \wedge d F_{k}+\sum_{i \neq k} \lambda_{k} \hat{F}_{k} \hat{F}_{i k} d A_{i k} \wedge d F_{i} \wedge d F_{k}+ \\
\sum_{i \neq j \neq k} \lambda_{k} \hat{F}_{j} \hat{F}_{i j k} A_{i j} d F_{i} \wedge d F_{j} \wedge d F_{k}+ \\
F \sum_{j \neq k} \lambda_{k} \hat{F}_{j k} d \alpha_{j} \wedge d F_{k}+\sum_{k} \lambda_{k} \hat{F}_{k}^{2} d \alpha_{k} \wedge d F_{k}+ \\
\sum_{j \neq k} \lambda_{k} \hat{F}_{j} \hat{F}_{j k} \alpha_{j} \wedge d F_{j} \wedge d F_{k}=0
\end{array}
$$

Now we choose r such that $1 \leq r \leq m$ and restrict to X_{r}, that is, we reduce modulo F_{r}. We get:

$$
\begin{array}{r}
\hat{F}_{r}\left(\sum_{i \neq r} \lambda_{r} \hat{F}_{i r} d A_{i r} \wedge d F_{i} \wedge d F_{r}+\sum_{i \neq k \neq r} \lambda_{k} \hat{F}_{i r k} A_{i r} d F_{i} \wedge d F_{r} \wedge d F_{k}+\right. \\
\left.\lambda_{r} \hat{F}_{r} d \alpha_{r} \wedge d F_{r}+\sum_{k \neq r} \lambda_{k} \hat{F}_{r k} \alpha_{r} \wedge d F_{r} \wedge d F_{k}\right)=0 \tag{9.5}
\end{array}
$$

Since \hat{F}_{r} is not zero on the irreducible variety X_{r}, we may cancel this factor out.
Next, choose s such that $1 \leq s \leq m, s \neq r$, and further restrict to $X_{r} \cap X_{s}=X_{r s}$ to obtain:

$$
\begin{align*}
& \lambda_{r} \hat{F}_{s r} d A_{s r} \wedge d F_{s} \wedge d F_{r}+\sum_{k \neq r \neq s} \lambda_{k} \hat{F}_{s r k} A_{s r} d F_{s} \wedge d F_{r} \wedge d F_{k}+ \\
& \sum_{i \neq r \neq s} \lambda_{s} \hat{F}_{i r s} A_{i r} d F_{i} \wedge d F_{r} \wedge d F_{s}+\lambda_{s} \hat{F}_{r s} \alpha_{r} \wedge d F_{r} \wedge d F_{s}=0 \tag{9.6}
\end{align*}
$$

And, once more, choose t such that $1 \leq t \leq m, t \neq s \neq r$. Restricting to $X_{r} \cap X_{s} \cap X_{t}=$ $X_{r s t}$ we get:

$$
\hat{F}_{r s t}\left(\lambda_{t} A_{s r}-\lambda_{s} A_{t r}\right) d F_{r} \wedge d F_{s} \wedge d F_{t}=0
$$

By the genericity of the F_{i} 's, $X_{r s t}$ is irreducible, and we may cancel out the factor $\hat{F}_{r s t} \neq 0$. By the normal crossing hypothesis we may also cancel out $d F_{r} \wedge d F_{s} \wedge d F_{t} \neq 0$.
Therefore,

$$
\begin{equation*}
A_{s r} / \lambda_{s}=A_{t r} / \lambda_{t} \quad \text { on } X_{r s t} \tag{9.7}
\end{equation*}
$$

for all distinct $1 \leq r, s, t \leq m$.
Let us fix $r, 1 \leq r \leq m$. We consider the natural restriction maps

$$
S_{n}\left(d_{r}\right)=H^{0}\left(\mathbb{P}^{n}, \mathcal{O}\left(d_{r}\right)\right) \rightarrow H^{0}\left(X_{r}, \mathcal{O}\left(d_{r}\right)\right) \rightarrow H^{0}\left(X_{r s}, \mathcal{O}\left(d_{r}\right)\right) \rightarrow H^{0}\left(X_{r s t}, \mathcal{O}\left(d_{r}\right)\right)
$$

For $s=1, \ldots, m, s \neq r$, the polynomials $A_{s r} / \lambda_{s} \in S_{n}\left(d_{r}\right)$ (all of the same degree d_{r}) define, by restriction to the hypersurfaces $X_{r s} \subset X_{r}$, sections $A_{s r} / \lambda_{s} \in H^{0}\left(X_{r s}, \mathcal{O}\left(d_{r}\right)\right)$. By 9.7 these sections coincide on the pairwise intersections $X_{r s} \cap X_{r t}=X_{r s t}$. Hence
this collection defines a section of $\mathcal{O}\left(d_{r}\right)$ on the (reducible) variety $D_{r}=\cup_{s \neq r} X_{r s} \subset X_{r}$. By Lemma 33 below, with $X=X_{r}$ and $D=D_{r}$, there exists $F_{r}^{\prime} \in S_{n}\left(d_{r}\right)$, such that $A_{s r} / \lambda_{s}=F_{r}^{\prime}$ on $X_{r s}$, for each $s \neq r$, as claimed.
33. Lemma. Let $n \geq 3$, and let $X \subset \mathbb{P}^{n}$ be a smooth irreducible hypersurface of degree e . For $m \geq 1$ and $i=1, \ldots, m$ let $D_{i} \subset X$ be smooth irreducible distinct hypersurfaces. We consider the (reducible) hypersurface $D=\cup_{1 \leq i \leq m} D_{i} \subset X$. Then the natural restriction map

$$
H^{0}(X, \mathcal{O}(e)) \rightarrow H^{0}(D, \mathcal{O}(e))
$$

is surjective.
Proof. In the exact sequence $0 \rightarrow \mathcal{O}_{X}(-D) \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{D} \rightarrow 0$ we tensor by $\mathcal{O}_{X}(e)$ and take cohomology. Since $\mathcal{O}_{X}(-D)(e)=\mathcal{O}_{X}(-d)(e)=\mathcal{O}_{X}(e-d)$ for some d, and $H^{1}\left(X, \mathcal{O}_{X}(e-d)\right)=0$ (see e. g. [13], Exercise III, (5.5)), we obtain the claim.
34. Corollary. Let $n \geq 3$. Any $\alpha \in T(\omega)$ may be written as

$$
\alpha=\sum_{i \neq j} \lambda_{i} \hat{F}_{i j} F_{j}^{\prime} d F_{i}+\sum_{i} \hat{F}_{i} \alpha_{i}
$$

for some $F_{i}^{\prime} \in S_{n}\left(d_{i}\right)$ and $\alpha_{i} \in \Omega_{n}^{1}\left(d_{i}\right)$.
Proof. Follows from Corollary 31 and Proposition 32.
35. Corollary. Let $n \geq 3$. Any $\alpha \in T(\omega)$ may be written as

$$
\alpha=\bar{\alpha}+\sum_{i} \hat{F}_{i} \gamma_{i}
$$

where $\bar{\alpha}$ belongs to the image of $d \mu(\lambda, \mathbf{F}), \gamma_{i} \in \Omega_{n}^{1}\left(d_{i}\right)$ and $\sum_{i} \hat{F}_{i} \gamma_{i} \in T(\omega)$.
Proof. Using Corollary 34, then adding and substracting $\sum_{i} \lambda_{i} \hat{F}_{i} d F_{i}^{\prime}$, we have:

$$
\begin{aligned}
\alpha & =\sum_{i \neq j} \lambda_{i} \hat{F}_{i j} F_{j}^{\prime} d F_{i}+\sum_{i} \hat{F}_{i} \alpha_{i} \\
& =\sum_{i \neq j} \lambda_{i} \hat{F}_{i j} F_{j}^{\prime} d F_{i}+\sum_{i} \lambda_{i} \hat{F}_{i} d F_{i}^{\prime}+\sum_{i} \hat{F}_{i}\left(\alpha_{i}-\lambda_{i} d F_{i}^{\prime}\right) \\
& =d \mu(\lambda, \mathbf{F})\left(0, \mathbf{F}^{\prime}\right)+\sum_{i} \hat{F}_{i} \gamma_{i}
\end{aligned}
$$

taking $\gamma_{i}=\alpha_{i}-\lambda_{i} d F_{i}^{\prime}$. Since $\alpha, \bar{\alpha} \in T(\omega)$, we have $\alpha-\bar{\alpha}=\sum_{i} \hat{F}_{i} \gamma_{i} \in T(\omega)$, as claimed.
36. Remark. Corollary 35 implies that to prove Theorem 24 we are reduced to showing that any $\alpha \in T(\omega)$ of the form $\alpha=\sum_{i} \hat{F}_{i} \gamma_{i}$, with $\gamma_{i} \in \Omega_{n}^{1}\left(d_{i}\right)$, belongs to the image of $d \mu(\lambda, \mathbf{F})$.

To this end, let us first prove the following
37. Proposition. Let $\alpha \in T(\omega)$ be of the form

$$
\begin{equation*}
\alpha=\sum_{j}\left(\hat{F}_{j}\right)^{e} \gamma_{j} \tag{9.8}
\end{equation*}
$$

with $e \in \mathbb{N}, e \geq 1$, and $\gamma_{j} \in \Omega_{n}^{1}\left(d-e \hat{d}_{j}\right)$. Then, for $1 \leq i, j \leq m, i \neq j$, there exist $\lambda_{j}^{\prime} \in \mathbb{C}, D_{i j} \in S_{n}\left(d_{j}-e \hat{d}_{j}\right)$ and $\epsilon_{j} \in \Omega_{n}^{1}\left(d_{j}-e \hat{d}_{j}\right)$, such that

$$
\gamma_{j}=\lambda_{j}^{\prime} d F_{j}+\sum_{i \neq j} \hat{F}_{i j} D_{i j} d F_{i}+\hat{F}_{j} \epsilon_{j}
$$

for $j=1, \ldots, m$. In case $e \geq 2$, all $\lambda_{j}^{\prime}=0$.
Proof. Let us use once more that α satisfies $7.2 \omega \wedge d \alpha+\alpha \wedge d \omega=0$. We may apply to our present α the calculation in the Proof of Proposition 32, with $A_{i j}=0$ and $\alpha_{j}=\left(\hat{F}_{j}\right)^{e-1} \gamma_{j}$, for all i, j. Then it follows from equation 9.6 that

$$
\gamma_{j} \wedge d F_{i} \wedge d F_{j}=0 \quad \text { on } X_{i j}, \text { for all } i \neq j
$$

since $\lambda_{j} \neq 0$, and $\hat{F}_{i j} \neq 0$ on $X_{i j}$. Then,

$$
\gamma_{j}=B_{i j} d F_{i}+C_{i j} d F_{j} \quad \text { on } X_{i j}
$$

for some $B_{i j} \in S_{n}\left(d-e \hat{d}_{j}-d_{i}\right)$ and $C_{i j} \in S_{n}\left((1-e) \hat{d}_{j}\right)$. Notice that $C_{i j} \in S_{n}(0)=\mathbb{C}$ if $e=1$, and $C_{i j}=0$ if $e \geq 2$, since $(1-e) \hat{d}_{j}<0$.
Now we fix j and vary $i \neq j$. On $X_{i j} \cap X_{k j}=X_{i j k}$ we have $B_{i j} d F_{i}+C_{i j} d F_{j}=$ $B_{k j} d F_{k}+C_{k j} d F_{j}$. From the normal crossings hypothesis we obtain, for all $i \neq k$:
a) $B_{i j}=B_{k j}=0$ on $X_{i j k}$, and
b) $C_{i j}=C_{k j}$

From b), $C_{i j}$ does not depend on i and we may denote $C_{i j}=\lambda_{j}^{\prime}$. As noticed above, $C_{i j}=\lambda_{j}^{\prime}=0$ in case $e \geq 2$.
On the other hand, a) implies that $B_{i j}=\hat{F}_{i j} D_{i j}$ on $X_{i j}$ for some $D_{i j} \in S_{n}\left(d_{j}-e \hat{d}_{j}\right)$. Therefore,

$$
\gamma_{j}=\lambda_{j}^{\prime} d F_{j}+\hat{F}_{i j} D_{i j} d F_{i} \quad \text { on } X_{i j}
$$

for all j and all $i \neq j$. Let $\gamma_{j}^{\prime}=\gamma_{j}-\left(\lambda_{j}^{\prime} d F_{j}+\sum_{i \neq j} \hat{F}_{i j} D_{i j} d F_{i}\right) \in \Omega_{n}^{1}\left(d-e \hat{d}_{j}\right)$. Then γ_{j}^{\prime} is zero on $D_{j}=\cup_{i \neq j} X_{i j} \subset X_{j}$, hence there exists $\epsilon_{j} \in \Omega_{n}^{1}\left(d_{j}-e \hat{d}_{j}\right)$ such that $\gamma_{j}^{\prime}=\hat{F}_{j} \epsilon_{j}$ on X_{j}. Denoting $J_{j} \cong \mathcal{O}\left(-d_{j}\right)$ the ideal sheaf of X_{j}, we have $H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}\left(d_{j}\right)\left(J_{j}\right)\right) \cong$ $H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}\right)=0$. Therefore the equality $\gamma_{j}^{\prime}=\hat{F}_{j} \epsilon_{j}$ holds in \mathbb{P}^{n}, and this implies our claim.
38. Corollary. If $\alpha \in T(\omega)$ is divisible by $\left(\hat{F}_{1}\right)^{e}$, that is, $\alpha=\left(\hat{F}_{1}\right)^{e} \gamma_{1}$ for some $\gamma_{1} \in$ $\Omega_{n}^{1}\left(d-e \hat{d}_{1}\right)$, then there exist $\lambda_{1}^{\prime} \in \mathbb{C}, D_{i} \in S_{n}\left(d_{1}-e \hat{d}_{1}\right)$, for $i>1$, and $\epsilon_{1} \in \Omega_{n}^{1}\left(d_{1}-e \hat{d}_{1}\right)$, such that

$$
\alpha=\left(\hat{F}_{1}\right)^{e}\left(\lambda_{1}^{\prime} d F_{1}+\sum_{i>1} \hat{F}_{i 1} D_{i} d F_{i}+\hat{F}_{1} \epsilon_{1}\right) .
$$

In case $e \geq 2, \lambda_{1}^{\prime}=0$.
Proof. It follows immediately from Proposition 37 applied to the case $\gamma_{j}=0$ for $j>$ 1.

9.1. End of the proof: balanced case.

39. Definition. Let $\mathbf{d}=\left(m ; d_{1}, \ldots, d_{m}\right) \in P(m, d)$. We say that \mathbf{d} is balanced if $d_{i}<\sum_{j \neq i} d_{j}=\hat{d}_{i}$ for all $i=1, \ldots, m$. Equivalently, if $2 d_{i}<d$ for all i.

Notice that if \mathbf{d} is not balanced then there exists a unique i such that $2 d_{i} \geq d$. Since we normalized \mathbf{d} so that $d_{1} \geq d_{2} \geq \cdots \geq d_{m}$ (see Definition 1), it follows that \mathbf{d} is balanced if and only if $2 d_{1}<d$.
40. Theorem. Suppose $\mathbf{d} \in P(m, d)$ is balanced. Let $(\lambda, \mathbf{F}) \in V_{n}(\mathbf{d})$ be general and $\omega=\mu(\lambda, \mathbf{F})$. Then, for any $\alpha \in T(\omega)$ such that $\alpha=\sum_{i} \hat{F}_{i} \gamma_{i}$, with $\gamma_{i} \in \Omega_{n}^{1}\left(d_{i}\right)$, there exists $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{m}^{\prime}\right) \in \mathbb{C}^{m}$, with $\sum_{i=1}^{m} d_{i} \lambda_{i}^{\prime}=0$, such that

$$
\alpha=\sum_{i=1}^{m} \lambda_{i}^{\prime} \hat{F}_{i} d F_{i} .
$$

In particular,

$$
\alpha=d \mu(\lambda, \mathbf{F})\left(\lambda^{\prime}, 0\right)
$$

belongs to the image of $d \mu(\lambda, \mathbf{F})$.
Proof. We apply Proposition 37 with $e=1$. Since \mathbf{d} is balanced, $d_{j}-\hat{d}_{j}<0$ for all j and then $D_{i j}=0$ and $\epsilon_{j}=0$ for all i, j. Hence $\gamma_{j}=\lambda_{j}^{\prime} d F_{j}$ for all j, as claimed.

It follows from Remark 36 that the proof of Theorem 24 is now complete, if \mathbf{d} is balanced.
9.2. End of the proof: general case. When d is not balanced, Theorem 40 is not true; we may have an $\alpha \in T(\omega)$ such that $\left.\alpha\right|_{X^{(2)}}=0$ but α is not logarithmic as in Theorem 40. For example, take $F_{1}^{\prime}=G_{1} \hat{F}_{1}$ where G_{1} is any homogeneous polynomial of degree $d_{1}-\hat{d}_{1}>0$, and $F_{j}^{\prime}=0$ for $j>1$. Then $\alpha=d \mu(\lambda, \mathbf{F})\left(0, F^{\prime}\right)$ satisfies this condition, as it easily follows from 7.1. Notice that this α is divisible by \hat{F}_{1}.

In Theorem 42 we will see that any $\alpha \in T(\omega)$ such that $\left.\alpha\right|_{X^{(2)}}=0$ may be written in a special form that still implies it belongs to the image of $d \mu(\lambda, \mathbf{F})$.
41. Definition. Let $\mathbf{d} \in P(m, d)$. We define

$$
r(\mathbf{d})=\max \left\{e \in \mathbb{N} / d_{1} \geq e \hat{d}_{1}\right\}=\left[d_{1} / \hat{d}_{1}\right]
$$

the integer part of d_{1} / \hat{d}_{1}.
Notice that \mathbf{d} is balanced when $r(\mathbf{d})=0$.
42. Theorem. Fix $\mathbf{d} \in P(m, d)$. Let $(\lambda, \mathbf{F}) \in V_{n}(\mathbf{d})$ be general and $\omega=\mu(\lambda, \mathbf{F})$. Then, any $\alpha \in T(\omega)$ such that $\alpha=\sum_{i} \hat{F}_{i} \gamma_{i}$, with $\gamma_{i} \in \Omega_{n}^{1}\left(d_{i}\right)$, may be written as

$$
\alpha=d \mu(\lambda, \mathbf{F})\left(\lambda^{\prime}, \mathbf{F}^{\prime}\right)
$$

where $\lambda^{\prime} \in \mathbb{C}^{m}$ is such that $\sum_{i=1}^{m} d_{i} \lambda_{i}^{\prime}=0, F_{j}^{\prime}=0$ for $j>1$, and

$$
F_{1}^{\prime}=\sum_{e=1}^{r(\mathbf{d})} G_{e} \hat{F}_{1}^{e}
$$

where G_{e} are homogeneous polynomials of respective degrees $d_{1}-e \hat{d}_{1}$, for $e=1, \ldots, r(\mathbf{d})$.
Proof. By Proposition 37 with $e=1$,

$$
\begin{equation*}
\alpha=\sum_{j} \lambda_{j}^{\prime} \hat{F}_{j} d F_{j}+\sum_{i \neq j} \hat{F}_{i j} \hat{F}_{j} D_{i j} d F_{i}+\sum_{j} \hat{F}_{j} \hat{F}_{j} \epsilon_{j} . \tag{9.9}
\end{equation*}
$$

In the current unbalanced case, $d_{1}-\hat{d}_{1} \geq 0$ and $d_{i}-\hat{d}_{i}<0$ for $i>1$, as in Definition 9.2. Hence $D_{i j}=0$ and $\epsilon_{j}=0$ for $j>1$. Also, since $\sum_{j} \lambda_{j}^{\prime} \hat{F}_{j} d F_{j}=d \mu(\lambda, \mathbf{F})\left(\lambda^{\prime}, 0\right)$, it is enough to consider

$$
\begin{equation*}
\alpha=\alpha^{(1)}=\sum_{i>1} \hat{F}_{i 1} \hat{F}_{1} D_{i 1} d F_{i}+\hat{F}_{1} \hat{F}_{1} \epsilon_{1}=\hat{F}_{1}\left(\sum_{i>1} \hat{F}_{i 1} D_{i 1} d F_{i}+\hat{F}_{1} \epsilon_{1}\right) \tag{9.10}
\end{equation*}
$$

which is divisible by \hat{F}_{1} (the last term is actually divisible by $\hat{F}_{1}{ }^{2}$).
What we shall do is to express $\alpha^{(1)}$ as the sum of an element of the image of $d \mu(\lambda, \mathbf{F})$ (of the claimed shape) plus an $\alpha^{(2)} \in T(\omega)$ divisible by $\hat{F}_{1}{ }^{2}$. Next we repeat the argument and express $\alpha^{(2)}$ as the sum of another element of the image of $d \mu(\lambda, \mathbf{F})$ plus an $\alpha^{(3)} \in$ $T(\omega)$ divisible by $\hat{F}_{1}{ }^{3}$. After at most $r(\mathbf{d})$ iterations this process ends, since $\alpha^{(r(d)+1)}=0$ by degree reason, and hence we obtain the claimed expression for the original α.
The essential step is to pass from $\alpha^{(e)}$ to $\alpha^{(e+1)}$, for $1 \leq e \leq r(\mathbf{d})$.
To carry out this step, let us assume that α is divisible by $\hat{F}_{1}{ }^{e}$, that is,

$$
\begin{equation*}
\alpha=\alpha^{(e)}=\hat{F}_{1}^{e}\left(\sum_{i>1} \hat{F}_{i 1} D_{i 1} d F_{i}+\hat{F}_{1} \epsilon_{1}\right) . \tag{9.11}
\end{equation*}
$$

as in Corollary 38.
Now we apply to α the calculation in the Proof of Proposition 32 with

$$
A_{i j}=\hat{F}_{1}{ }^{e} D_{i j}, \quad \alpha_{j}=\hat{F}_{1}{ }^{e} \epsilon_{j},
$$

that is:

$$
A_{i 1}=\hat{F}_{1}^{e} D_{i 1} \quad \text { for } i>1, \quad \alpha_{1}=\hat{F}_{1}^{e} \epsilon_{1}
$$

$$
A_{i j}=0, \quad \alpha_{j}=0 \quad \text { for } j>1 .
$$

From equation 9.5 with $r=1$ we get

$$
\begin{aligned}
& \hat{F}_{1}\left(\sum_{i \neq 1} \lambda_{1} \hat{F}_{i 1} d\left(\hat{F}_{1}^{e} D_{i 1}\right)\right. \wedge d F_{i} \wedge d F_{1}+\sum_{i \neq k \neq 1} \lambda_{k} \hat{F}_{i 1 k} \hat{F}_{1}^{e} D_{i 1} d F_{i} \wedge d F_{1} \wedge d F_{k}+ \\
&\left.\lambda_{1} \hat{F}_{1} d\left(\hat{F}_{1}^{e} \epsilon_{1}\right) \wedge d F_{1}+\sum_{k \neq 1} \lambda_{k} \hat{F}_{1 k} \hat{F}_{1}^{e} \epsilon_{1} \wedge d F_{1} \wedge d F_{k}\right)=0(9.12)
\end{aligned}
$$

We have $d\left(\hat{F}_{1}{ }^{e} D_{i 1}\right)=e \hat{F}_{1}{ }^{e-1} D_{i 1} d \hat{F}_{1}+\hat{F}_{1}{ }^{e} d D_{i 1}$. Also, $d \hat{F}_{1} \wedge d F_{i}=\left(\sum_{j \neq 1} \hat{F}_{j 1} d F_{j}\right) \wedge$ $d F_{i}=\sum_{j \neq 1, j \neq i} \hat{F}_{j 1} d F_{j} \wedge d F_{i}$, so that $\hat{F}_{i 1} d \hat{F}_{1} \wedge d F_{i}=\sum_{j \neq 1, j \neq i} \hat{F}_{i 1} \hat{F}_{j 1} d F_{j} \wedge d F_{i}=$ $\hat{F}_{1} \sum_{j \neq 1, j \neq i} \hat{F}_{i j 1} d F_{j} \wedge d F_{i}$. Replacing these into 9.12 , we obtain, on X_{1} :

$$
\begin{array}{r}
\hat{F}_{1}^{e+1}\left(\sum_{i \neq j \neq 1} e \lambda_{1} \hat{F}_{i j 1} D_{i 1} d F_{j} \wedge d F_{i} \wedge d F_{1}+\sum_{i \neq 1} \lambda_{1} \hat{F}_{i 1} d D_{i 1} \wedge d F_{i} \wedge d F_{1}+\right. \\
\sum_{i \neq j \neq 1} \lambda_{j} \hat{F}_{i j 1} D_{i 1} d F_{i} \wedge d F_{1} \wedge d F_{j}+e \lambda_{1} d \hat{F}_{1} \wedge \epsilon_{1} \wedge d F_{1}+\lambda_{1} \hat{F}_{1} d \epsilon_{1} \wedge d F_{1}+ \\
\left.\sum_{i \neq 1} \lambda_{i} \hat{F}_{1 i} \epsilon_{1} \wedge d F_{1} \wedge d F_{i}\right)=0 \tag{9.13}
\end{array}
$$

Now we cancel the factor $\hat{F}_{1}{ }^{e+1}$ on X_{1} and then restrict to $X_{1 s t}$ for $1, s, t$ distinct. After straightforward calculation we obtain, on $X_{1 s t}$:

$$
\left(e \lambda_{1}+\lambda_{s}\right) D_{t 1}=\left(e \lambda_{1}+\lambda_{t}\right) D_{s 1}
$$

Then the collection $\left\{D_{s 1} /\left(e \lambda_{1}+\lambda_{s}\right) \in S_{n}\left(d_{1}-e \hat{d}_{1}\right)\right\}_{s \neq 1}$ defines a section of $\mathcal{O}\left(d_{1}-e \hat{d}_{1}\right)$ on $\cup_{s \neq 1} X_{1 s} \subset X_{1}$. Hence, there exists $G_{e} \in S_{n}\left(d_{1}-e \hat{d}_{1}\right)$ such that

$$
D_{s 1}=\left(e \lambda_{1}+\lambda_{s}\right) G_{e}
$$

on $X_{1 s}$ for all $s \neq 1$. Then, with the notation of 9.11,

$$
\sum_{i>1} \hat{F}_{i 1} D_{i 1} d F_{i}+\hat{F}_{1} \epsilon_{1}-\sum_{i>1} \hat{F}_{i 1}\left(e \lambda_{1}+\lambda_{i}\right) G_{e} d F_{i}=0
$$

on $\cup_{s \neq 1} X_{1 s} \subset X_{1}$, and hence is divisible by \hat{F}_{1}. We obtain

$$
\begin{equation*}
\alpha=\hat{F}_{1}^{e} \sum_{i>1} \hat{F}_{i 1}\left(e \lambda_{1}+\lambda_{i}\right) G_{e} d F_{i}+\hat{F}_{1}^{e+1} \bar{\epsilon}_{1} \tag{9.14}
\end{equation*}
$$

for some $\bar{\epsilon}_{1} \in \Omega_{n}^{1}\left(d_{1}-e \hat{d}_{1}\right)$.
Denote $\mathbf{F}^{\prime}=\left(\hat{F}_{1}^{e} G_{e}, 0, \ldots, 0\right)$. Combining 9.14 with

$$
d \mu(\lambda, \mathbf{F})\left(0, \mathbf{F}^{\prime}\right)=\sum_{i>1} \lambda_{i} F_{1}^{e} G_{e} \hat{F}_{i 1} d F_{i}+\lambda_{1} \hat{F}_{1} d\left(\hat{F}_{1}^{e} G_{e}\right)
$$

(see 7.1), one immediately obtains

$$
\alpha=d \mu(\lambda, \mathbf{F})\left(0, \mathbf{F}^{\prime}\right)+\alpha^{(e+1)}
$$

with $\alpha^{(e+1)}=\hat{F}_{1}^{e+1}\left(\bar{\epsilon}_{1}-\lambda_{1} d G_{e}\right)$. Now, $\alpha^{(e+1)} \in T(\omega)$ because α and $d \mu(\lambda, \mathbf{F})\left(0, \mathbf{F}^{\prime}\right)$ belong to $T(\omega)$. Since $\alpha^{(e+1)}$ is divisible by \hat{F}_{1}^{e+1}, by Corollary 38 , it may be written as in 9.11 with exponent $e+1$. Hence we may apply again the previous procedure to $\alpha^{(e+1)}$. This proves the essential iterative step and implies our statement.

It follows from Remark 36 that the proof of Theorem 24 is now complete, for any \mathbf{d}.

References

[1] M. Artin, Lectures on Deformations of Singularities. Tata Institute of Fundamental Research, (1976).
[2] O. Calvo-Andrade, Irreducible components of the space of foliations, Mathematische Annalen 299, (1994).
[3] F. Catanese, S. Hosten, A. Kethan and B. Sturmfels, The maximum likelihood degree. American Journal of Mathematics 128, (2006).
[4] C. Camacho and A. Lins Neto, The topology of integrable differential forms near a singularity. Publications Mathématiques de IInstitute des Hautes Études Scientifiques 55, (1982).
[5] D. Cerveau and A. Lins Neto, Irreducible components of the space of holomorphic foliations of degree two in $C P(n)$. Annals of Mathematics 143, (1996).
[6] F. Cukierman and J. V. Pereira, Stability of holomorphic foliations with split tangent sheaf. American Journal of Mathematics 130 (2), (2008).
[7] F. Cukierman, J. V. Pereira and I. Vainsencher, "Stability of foliations induced by rational maps". Annales de la Faculte des Sciences de Toulouse, Ser. 6, 18 no. 4 (2009), p. 685-715.
[8] F. Cukierman, M. Soares and I. Vainsencher, Singularities of logarithmic foliations. Compositio Mathematica 142, (2006).
[9] P. Deligne, Equations différentielles a points singuliers réguliers, Springer Lecture Notes in Mathematics 163, (1970).
[10] D. Eisenbud, Commutative Algebra, with a view toward algebraic geometry. Springer, (1995).
[11] H. Esnault and E. Vieweg, Lectures on vanishing theorems, Springer Lecture Notes in Mathematics 163, (1970).
[12] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, (1978).
[13] R. Hartshorne, Algebraic geometry, Springer, (1977).
[14] J. P. Jouanolou, Équations de Pfaff algébriques, Springer Lecture Notes in Mathematics 708, (1978).
[15] Ch. Peters and J. Steenbrink, Mixed Hodge structures, Springer (2007).

Universidad de Buenos Aires and CONICET.
Departamento de Matemática, FCEN.
Ciudad Universitaria.
(1428) Buenos Aires.

ARGENTINA.
Fernando Cukierman, fcukier@dm.uba.ar Javier Gargiulo Acea, jngargiulo@gmail.com César Massri, cmassri@dm.uba.ar

[^0]: 2010 Mathematics Subject Classification. 14Mxx, 37F75, 32S65, 32G13.

