PRESENTATION COMPLEXES WITH THE FIXED POINT PROPERTY

IVÁN SADOFSCHI COSTA

ABSTRACT. We prove that there exists a compact two-dimensional polyhedron with the fixed point property and even Euler characteristic. This answers a question posed by R.H. Bing in 1969. We also settle another of Bing's questions.

1. INTRODUCTION

In his influential article "The elusive fixed point property" [3], R.H. Bing stated twelve questions. Since then eight of these questions have been answered [6]. In this paper we answer Questions 1 and 8.

Recall that a space X is said to have the *fixed point property* if every map $f : X \to X$ has a fixed point. Motivated by an example of W. Lopez [8], Bing stated in [3] the following question.

Question 1.1 (Bing's Question 1). Is there a compact two-dimensional polyhedron with the fixed point property which has even Euler characteristic?

This question was studied in [10]. In [2] it was shown that such a space cannot have abelian fundamental group. In Corollary 2.4 we show that the answer to Question 1.1 is affirmative. Bing's Question 8 [3] may be rephrased as follows.

Question 1.2 (Bing's Question 8). What is the lowest dimension for a compact polyhedron X with the fixed point property and such that a space Y without the fixed point property can be obtained by attaching a disk D to X along an arc?

The answer to this question is clearly greater than 1. A one-dimensional polyhedron X with the fixed point property is a tree, and then any space Y obtained by attaching a disk along an arc is a contractible polyhedron. According to C.L. Hagopian [6], Bing conjectured that the answer to Question 1.2 is 2. This is the content of Theorem 2.8.

Acknowledgment: I am grateful to Jonathan Barmak, without his advice and suggestions this paper would not have been possible.

2. BING GROUPS

If \mathcal{P} is a presentation, the presentation complex of \mathcal{P} will be denoted by $X_{\mathcal{P}}$. Presentation complexes are in fact polyhedra. If a finite group G is presented by a presentation \mathcal{P} with g generators and r relators, then r - g is at least the number of invariant factors of $H_2(G)$. If this lower bound is attained for \mathcal{P} , then the presentation is said to be *efficient*.

²⁰¹⁰ Mathematics Subject Classification. 55M20, 57M20, 57M05.

Key words and phrases. Fixed point property, two-dimensional complexes, Schur multiplier.

Definition 2.1. Let G be a finite group and $d_1 \mid \ldots \mid d_k$ be the invariant factors of $H_2(G)$. We say that G is a *Bing group* if for every endomorphism $\phi : G \to G$ we have $\operatorname{tr}(H_2(\phi) \otimes \mathbb{1}_{\mathbb{Z}_{d_1}}) \neq -1$ in \mathbb{Z}_{d_1} .

Theorem 2.2. If \mathcal{P} is an efficient presentation of a Bing group G then $X_{\mathcal{P}}$ has the fixed point property.

Proof. Let $X = X_{\mathcal{P}}$ and $f: X \to X$ be a map. There is a K(G, 1) space Y with $X = Y^2$. Now f extends to a map $\overline{f}: Y \to Y$. In the following commutative diagram, the horizontal arrows, induced by the inclusion $i: X \hookrightarrow Y$, are epimorphisms:

Let $d_1 \mid \ldots \mid d_k$ be the invariant factors of $H_2(G)$. Since \mathcal{P} is efficient, the rank of $H_2(X)$ equals the number of invariant factors of $H_2(Y)$. Therefore the horizontal arrows in the following commutative diagram are isomorphisms:

Now $\operatorname{tr}(f_* \otimes \mathbb{1}_{\mathbb{Z}_{d_1}}) = \operatorname{tr}(\overline{f}_* \otimes \mathbb{1}_{\mathbb{Z}_{d_1}}) \neq -1$ in \mathbb{Z}_{d_1} since G is a Bing group. Here we are using the natural isomorphism $H_2(BG) \approx H_2(G)$ of [9, Theorem 5.1.27]. Recall that every map $BG \to BG$ is induced, up to homotopy, by an endomorphism $G \to G$.

Finally we obtain $\operatorname{tr}(f_*) \neq -1$ in \mathbb{Z} , since tensoring with \mathbb{Z}_{d_1} reduces the trace modulo d_1 . So $L(f) \neq 0$ and, by the Lefschetz fixed point theorem, f has a fixed point. \Box

Proposition 2.3. The group G presented by

 $\mathcal{P} = \langle x, y \mid x^3, \, xyx^{-1}yxy^{-1}x^{-1}y^{-1}, \, x^{-1}y^{-4}x^{-1}y^2x^{-1}y^{-1} \rangle$

is a finite group of order 243. We have $H_2(G) = \mathbb{Z}_3$, so \mathcal{P} is efficient. Moreover G is a Bing group.

Proof. We will need the following GAP [5] program, that uses the packages HAP [4] and SONATA [1].

LoadPackage("HAP");; LoadPackage("SONATA");; F:=FreeGroup(2);; G:= F/[F.1^3, F.1*F.2*F.1^-1*F.2*F.1*F.2^-1*F.1^-1*F.2^-1, F.1^-1*F.2^-4*F.1^-1*F.2^2*F.1^-1*F.2^-1];; Order(G); G:=SmallGroup(IdGroup(G));; R:=ResolutionFiniteGroup(G,3);; Homology(TensorWithIntegers(R),2); Set(List(Endomorphisms(G),

f->Homology(TensorWithIntegers(EquivariantChainMap(R,R,f)),2)));

The program prints the order of G, a list with the invariant factors of $H_2(G)$ and a list with the endomorphisms of $H_2(G)$ that are induced by an endomorphism of G. The output is:

243
[3]
[[f1] -> [<identity ...>], [f1] -> [f1]]

Therefore |G| = 243 and $H_2(G) = \mathbb{Z}_3$. Since for every endomorphism $\phi : G \to G$ we have that $H_2(\phi)$ is either the zero map or the identity, G is a Bing group.

By Theorem 2.2 and Proposition 2.3 we have:

Corollary 2.4. The complex $X_{\mathcal{P}}$ associated to the presentation

$$\mathcal{P} = \langle x, y \mid x^3, \, xyx^{-1}yxy^{-1}x^{-1}y^{-1}, \, x^{-1}y^{-4}x^{-1}y^2x^{-1}y^{-1} \rangle$$

has the fixed point property. Moreover $\chi(X_{\mathcal{P}}) = 2$.

Corollary 2.5. There are compact 2-dimensional polyhedra with the fixed point property and Euler characteristic equal to any positive integer n.

Proof. For n = 1 this is immediate. For n > 1 take a wedge of n - 1 copies of the space $X_{\mathcal{P}}$ of Corollary 2.4.

To prove Theorem 2.8 we will need another efficient Bing group:

Proposition 2.6. The group H presented by $\mathcal{Q} = \langle x, y \mid x^4, y^4, (xy)^2, (x^{-1}y)^2 \rangle$ is a finite group of order 16. We have $H_2(H) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, so \mathcal{Q} is efficient. Moreover H is a Bing group.

Proof. As above we will use a GAP program.

```
LoadPackage("HAP");;
LoadPackage("SONATA");;
F:=FreeGroup(2);;
H:= F/[F.1^4, F.2^4, (F.1*F.2)^2, (F.1^-1*F.2)^2];;
Order(H);
H:=SmallGroup(IdGroup(H));;
R:=ResolutionFiniteGroup(H,3);;
Homology(TensorWithIntegers(R),2);
Set(List(Endomorphisms(H),
f->Homology(TensorWithIntegers(EquivariantChainMap(R,R,f)),2)));
```

The program produces the following output:

16
[2, 2]
[[f1, f2] -> [<identity ...>, <identity ...>],
[f1, f2] -> [f1, f2],[f1, f2] -> [f1⁻¹*f2⁻¹, f2⁻¹]]

This proves that |H| = 16, $H_2(H) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ and that H is a Bing group.

We recall the following theorem:

I. SADOFSCHI COSTA

Theorem 2.7 (Jiang,[7, Theorem 7.1]). In the category of compact connected polyhedra without global separating points, the fixed point property is a homotopy type invariant.

Moreover, if $X \simeq Y$ are compact connected polyhedra such that Y lacks the fixed point property and X does not have global separating points, then X lacks the fixed point property.

The following shows that the answer to Question 1.2 is 2:

Theorem 2.8. There is a compact 2-dimensional polyhedron Y without the fixed point property and such that the polyhedron X, obtained from Y by an elementary collapse of dimension 2, has the fixed point property.

Proof. Let \mathcal{P} and \mathcal{Q} be the presentations of Propositions 2.3 and 2.6. By Theorem 2.2, $X_{\mathcal{P}}$ and $X_{\mathcal{Q}}$ have the fixed point property, so $X = X_{\mathcal{P}} \vee X_{\mathcal{Q}}$ also has the fixed point property. Since neither $X_{\mathcal{P}}$ nor $X_{\mathcal{Q}}$ have global separating points, by adding a 2-simplex, we can turn X into a polyhedron Y, without global separating points and such that, by collapsing that 2-simplex, we obtain X. We have $H_2(\pi_1(Y)) = H_2(\pi_1(X_{\mathcal{P}}) * \pi_1(X_{\mathcal{Q}})) = H_2(\pi_1(X_{\mathcal{P}})) \oplus H_2(\pi_1(X_{\mathcal{Q}})) = \mathbb{Z}_2 \oplus \mathbb{Z}_6$ and $\operatorname{rk}(H_2(Y)) = 3$. By [2, Proposition 3.3] and Theorem 2.7, Y does not have the fixed point property.

References

- E. Aichinger, F. Binder, J. Ecker, P. Mayr, and C. Nbauer. SONATA system of near-rings and their applications. GAP package, Version 2.6; 2012. (http://www.algebra.uni-linz.ac.at/Sonata/).
- [2] J.A. Barmak, I. Sadofschi Costa. On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra. arXiv:1412.8737
- [3] R.H. Bing. The elusive fixed point property. Amer. Math. Monthly 76 (1969), 119-132.
- [4] G. Ellis. HAP Homological Algebra Programming. GAP package, Version 1.10.15; 2013. (http://hamilton.nuigalway.ie/Hap/www/).
- [5] The GAP Group. GAP Groups, Algorithms, and Programming. Version 4.7.6; 2014. (http://www.gap-system.org).
- [6] C.L. Hagopian. An update on the elusive fixed-point property. Open Problems in Topology. II, edited by E. Pearl, Elsevier B. V. 2007, 263-277.
- [7] B. Jiang. On the least number of fixed points. American J. Math. 102 (1980), 749-763.
- [8] W. Lopez. An example in the fixed point theory of polyhedra. Bull. Amer. Math. Soc. 73 (1967), 922-924.
- [9] J. Rosenberg. Algebraic K-theory and its applications. Graduate Texts in Mathematics 147. Springer-Verlag, 1994.
- [10] R. Waggoner. A method of combining fixed points. Proc. Amer. Math. Soc. 51 (1975), 191-197.

DEPARTAMENTO DE MATEMÁTICA, FCEYN-UNIVERSIDAD DE BUENOS AIRES, BUENOS AIRES, AR-GENTINA

E-mail address: ivansadofschi@gmail.com