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Abstract. In this paper we study the asymptotic behavior of some optimal

design problems related to nonlinear Steklov eigenvalues, under irregular (but

diffeomorphic) perturbations of the domain.

1. Introduction

Let Ω ⊂ Rn be a bounded domain with regular boundary, let α ∈ (0, 1) and
Γ ⊂ ∂Ω be a measurable set (a window) such that |Γ|n−1 = α|∂Ω|n−1, where
| · |d refers to the d−dimensional Hausdorff measure. The optimal Sobolev trace
constant is defined as

λ(Γ) := inf
v∈W 1,p

Γ (Ω)

∫
Ω
|∇v|p + |v|p dx∫
∂Ω
|v|p dS

,

where W 1,p
Γ (Ω) is the set of functions v ∈W 1,p(Ω) such that v|Γ = 0.

Observe that a minimizer for λ(Γ) always exists thanks to the compactness of
the embedding W 1,p(Ω) ⊂⊂ Lp(∂Ω) and that any minimizer u of λ(Γ) is a weak
solution of the following Steklov-type eigenvalue problem

−∆pu+ |u|p−2u = 0 in Ω

u = 0 on Γ

|∇u|p−2 ∂u
∂n = λ(Γ)|u|p−2u on ∂Ω \ Γ,

where n is the unit outer normal of ∂Ω. Moreover, λ(Γ) is the first (principal)
eigenvalue of this problem. See [9].

In [5], the authors study the following problem: minimize λ(Γ) among all admis-
sible windows, i.e.

(1.1) λ(α) = inf
Γ∈Σα

λ(Γ),

where Σα = {Γ ⊂ ∂Ω: measurable and |Γ|n−1 = α|∂Ω|n−1}.
In the above mentioned work the authors show the existence of an optimal win-

dow Γ0, i.e. some Γ0 ∈ Σα such that λ(α) = λ(Γ0). Moreover it is shown that if u0

is an eigenfunction associated to λ(Γ0) then {u0 = 0} ∩ ∂Ω = Γ0.
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We refer the interested reader to [5] and references therein for a motivation and
history of this problem. See also [6] for some related optimization problem.

In this work we study the behavior of this optimal windows when the domain Ω
is perturbed periodically by a sequence of domains Ωε and try to determine whether
they approximate Γ0 in some reasonable sense.

The interest in problems with oscillating boundary appears in the influence of
micro-structures of surfaces (porous medium, composites, micro-materials) over
the large scale behavior. The mathematical analysis of problems with oscillating
boundary was presented in [11].

Let us denote by λε(α) the constant (1.1) in the domain Ωε. We find that the
behavior of the constants λε(α) and of their corresponding optimal windows Γε
depend strongly on the amplitude of the oscillations. We distinguish three cases:
i.- Subcritical case: in this case the oscillations are very big and the trace constant
converges to zero. ii.- Supercritical case: in this case the oscillations are very small
and there are convergence to the unperturbed problem. iii.- Critical case: in this
case the amplitude compensates with the oscillations and this is reflected in the
appearance of a weight term.

The results presented here are new even in the linear eigenvalue problem that
corresponds to p = 2.

1.1. ε-Oscilations. In [5], the authors studied the asymptotic behavior of λε(α)
where the domains Ωε are regular perturbations of the original domain Ω. To be
precise, the authors apply the so-called Hadamard variations of domains method
and are able to compute the shape derivative of λ(α) with respect to these defor-
mations. See [5] for the details.

Here we follow a different path. Instead of considering regular perturbations we
analyze the case of periodic oscillatory deformations where the amplitude of these
oscillations converge to zero, and the period of these oscillations also converge to
zero.

We start by describing the type of perturbations that we are to consider. Let
Ω ⊂ Rn be bounded. Assume that the boundary is regular (C1 will be enough for
most of our arguments). For any x0 ∈ ∂Ω take U ⊂ Rn a neighborhood of x0 and
Φ: U ′ ⊂ Rn−1 → R, where U ′ is open and connected, such that

∂Ω ∩ U = {(x1, x
′) ∈ Rn : x′ ∈ U ′, x1 = Φ(x′)},

Ω ∩ U = {(x1, x
′) ∈ Rn : x′ ∈ U ′, x1 < Φ(x′)}.

That is, we describe locally the boundary of Ω by the graph of a smooth function
Φ.

In each of this neighborhoods we assume that the perturbation is given by a C1

periodic function as follows. Let f : Rn−1 → R be a C1 function, periodic with
period Y ′ = [0, 1]n−1.

Then the domains Ωε are given (locally) by

(1.2) Ωε ∩ U = {(x1, x
′) ∈ U : x′ ∈ U ′, x1 < Φ(x′) + εaf(x

′

ε )}
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Figure 1. The unperturbed domain Ω in dashed line and the
perturbed domain Ωε in solid line.

and therefore,

∂Ωε ∩ U = {(x1, x
′) ∈ RN : x′ ∈ U ′, x1 = Φ(x′) + εaf(x

′

ε )}.

See Figure 1.

By the results of [5], for every constant λε(α), there exists an optimal window
Γε and the corresponding eigenfunction uε ∈ W 1,p(Ωε) verifies that Γε = {uε =
0} ∩ ∂Ωε. Our goal is to study the behavior of these optimal windows Γε, their
eigenfunctions uε and of the constants λ(Γε) = λε(α) when ε ↓ 0.

Observe that these domains Ωε converge to Ω in practically any reasonable notion
of set convergence in Rn (for instance in the Hausdorff complementary topology,
the L1 norm of the characteristic functions, etc.).

As we mentioned in the introduction, the behavior strongly depends on the
amplitude of the oscillations measured in terms of the parameter a > 0.

Three cases appear:

• The subcritical case, that corresponds to large oscillations with respect to
the period (a < 1).
• The supercritical case, that corresponds to small oscillations with respect

to the period (a > 1).
• The critical case, that corresponds to the case where amplitude and oscil-

lations are of the same order (a = 1).

In the subcritical case, being the oscillations so big, the problem degenerates and
the immersion is lost in the limit. This is a fattening phenomena of the boundary
and it is reflected in the fact that the constants λ(Γε) converge to zero.

In the supercritical case, the oscillations are too small. Then, for small values
of ε the oscillations become imperceptible and that is reflected in the fact that the
problem converges to the unperturbed one when ε ↓ 0.
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Finally, the critical case is the most interesting. In this case, the oscillations
and the periods are balanced and an homogeneization phenomena appears at the
boundary. This homogenization is reflected in the appearance of a strange term
at the boundary for the limit problem in the spirit of Cioranescu-Murat [3]. This
phenomena have been observed in the work [8] where the pure eigenvalue problem
is addressed.

Taking into account the above perturbation of the domain Ω we get the result.

Theorem 1.1. Let Ω ⊂ Rn be an open, bounded set and assume that ∂Ω is of
class C1. Let {Ωε}ε>0 be the family of perturbed domains as described in (1.2). Let
λε(α) (0 < α < 1) be the best Sobolev trace constant on Ωε given by (1.1) in the
domain Ωε.

Then the following statements hold true:

(1) (Subcritical case) If a < 1 then limε→0 λε(α) = 0, moreover, we have the
following asymptotic behavior

(1.3) λε(α) ≤ Cε1−a,

where the constant C depends only on the function f used in the perturba-
tion.

(2) (Supercritical case) If a > 1 then limε→0 λε(α) = λ(α).
(3) (Critical case) If a = 1 then limε→0 λε(α) = λ∗(α), where λ∗(α) is defined

as
(1.4)

λ∗(α) := inf

{∫
Ω
|∇u|p + |u|pdx∫
∂Ω
|u|p dµ∗

: u ∈W 1,p(Ω), µ∗({u = 0} ∩ ∂Ω) ≥ αµ∗(∂Ω)

}
,

and the measure µ∗ is given by dµ∗ = mdS with the weight m defined by

(1.5) m(x) =

∫
Y

√
1 + |∇Φ(x′) +∇f(y)|2dy√

1 + |∇Φ(x′)|2
.

Nevertheless, our method is far more general and we are able to treat general
perturbations where the periodic perturbation described above is just an (impor-
tant) example. See Theorem 4.1 below. In particular, the perturbations considered
here also cover the regular deformations considered in [5].

Moreover, we go further and analyze the behavior of these optimal windows Γε
and of their corresponding eigenfunctions uε as ε ↓ 0. We found that, in the critical
and in the subcritical case (an also in the more general framework of Theorem 4.1)
these optimal windows converge (in a suitable sense) to an optimal window of the
corresponding limit problem and also the convergence of their eigenfunctions to the
eigenfunction of the limit problem. See Theorem 5.1.

1.2. Organization of the paper. After this introduction, the paper is organized
as follows. In Section 2, we study the qualitative properties of the change of vari-
ables that deforms the original domain Ω into the periodically perturbed one Ωε.
In Section 3 we analyze the subcritical perturbation (a < 1) in Theorem 1.1. In
Section 4 we prove one of the main theorems of the paper (Theorem 4.1) that
implies, for instance, the critical (a = 1) and the supercritical (a > 1) cases in
Theorem 1.1 and, moreover, the convergence of the corresponding eigenfunctions
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to the eigenfunction of the limit problem. Finally, in Section 5 we prove our second
main theorem (Theorem 5.1) on the convergence of optimal windows.

2. Estimates for the change of variables

In the analysis of the asymptotic behavior of the problem when ε ↓ 0, it is of
fundamental importance to understand the asymptotic behavior of the changes of
variables that take the perturbed domains Ωε into Ω.

Once these asymptotic behaviors are studied, the analysis is independent of the
particular form of the change of variables and only depends on this asymptotic
behavior.

Hence, given ε > 0 we define the transformation Tε : Ωε → Ω as

(2.1) (y1, y
′) = Tε(x1, x

′) = (x1 − εaf(x
′

ε )φε(x), x′),

where, as usual, x′ = (x2, . . . , xn) and φε ∈ C∞c (Rn) is supported on B√ε(∂Ω) =⋃
x∈∂ΩB

√
ε(x), φε ≡ 1 in ∂Ω, 0 ≤ φε ≤ 1, |∇φε| ≤ Cε−

1
2 .

We now compute the differential of Tε, DTε.

DTε =


1− εaf∂1φε −εa−1∂2fφε − εaf∂2φε · · · −εa−1∂nfφε − εaf∂nφε

0
... In−1×n−1

0

 .

Observe that

DTε(x) = In×n − εaf(x
′

ε )Aε(x)− εa−1φε(x)B(x
′

ε ),

where

Aε(x) :=


∇φε(x)

0
...
0

 , B(x′) :=


0 ∇f(x′)
0 0
...

...
0 0

 .

Finally, since ‖f‖∞ <∞ and ‖∇f‖∞ <∞ we have that

‖B‖∞ <∞.

Moreover, since ‖∇φε‖∞ ≤ Cε−
1
2 , we get

‖Aε‖∞ ≤ Cε−
1
2χ

supp(φε)

and therefore we obtain that, calling fε(x
′) = f(x

′

ε ),

‖εafεAε‖∞ ≤ Cεa−
1
2χ

supp(φε)
.

On the other hand, calling Bε(x
′) = B(x

′

ε ),

‖εa−1φεBε‖∞ ≤ Cεa−1χ
supp(φε)

.

Observe that when a ≥ 1, we have that given K ⊂ Ω compact, Tε = idRn on K
for ε > 0 small enough. In particular

DTε = In×n and JTε = 1
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on K for ε > 0 small, where JTε = |det(DTε)| is the Jacobian of Tε.

Finally, in the case a > 1, Tε → idRn in C1 norm and, as a consequence, we get

DTε ⇒ In×n, JTε ⇒ 1 and JτTε ⇒ 1,

where JτTε = |DT−1
ε n|JTε is the tangential Jacobian of Tε, n is the outer unit

normal vector of Ω and “⇒” means uniform convergence. See [10] for more details
on the tangential Jacobian.

We need now to study the asymptotic behavior of the tangential Jacobian in the
case a = 1. In this case, for x ∈ ∂Ω taking into account that φε = 1 on ∂Ω we get
the following expression for the differential

DTε(x) = In×n −B(x
′

ε ) +O(ε
1
2 ).

The following lemma gives the precise asymptotic behavior of the tangential Jaco-
bian in this case.

Lemma 2.1. Given g ∈ L1(∂Ω) we have∫
∂Ω

gJτT
−1
ε dS →

∫
∂Ω

gmdS, when ε→ 0.

That is JτT
−1
ε

∗
⇀m weakly-* in L∞(∂Ω), where m is the function defined by (1.5).

Proof. Let g ∈ C(∂Ω) be arbitrary. We first analyze the convergence locally, so we
recall the construction of the perturbations. Then, let U ⊂ Rn be as in (1.2) and
assume that supp(g) ⊂ U . We then have that∫

∂Ω∩U
gJτT

−1
ε dS =

∫
∂Ωε∩U

(g ◦ Tε) dS

=

∫
U ′

(g ◦ Tε)(x′)
√

1 + |∇Φ(x′) +∇f(x
′

ε )|2 dx′.
(2.2)

But now∫
U ′

(g ◦ Tε)(x′)
√

1 + |∇Φ(x′) +∇f(x
′

ε )|2 dx′ =

∫
U ′

(g ◦ Tε)(x′)mε(x
′)
√

1 + |∇Φ(x′)|2 dx′,

where

mε(x
′) := m(x′, x

′

ε ), m(x′, y) :=

√
1 + |∇Φ(x′) +∇f(y)|2√

1 + |∇Φ(x′)|2
.

Using that f is periodic with period Y , it follows that m(x′, y) is periodic in y with
period Y and hence

mε
∗
⇀m weakly-* in L∞(Rn−1).

See [1].

On the other hand, since Tε ⇒ idRn it follows that (g ◦ Tε) ⇒ g uniformly on
compact sets, in particular, (g ◦ Tε)→ g in L1(U ′).

Combining all these facts, we arrive at∫
U ′

(g ◦ Tε)mε

√
1 + |∇Φ|2 dx′ →

∫
U ′
gm
√

1 + |∇Φ|2 dx′ =

∫
∂Ω

gmdS.

The case where g ∈ C(∂Ω) is arbitrary, follows by a standard arguments using
the partition of unity and is omitted.
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Finally, if g ∈ L1(∂Ω) a standard approximation argument gives the desired
result. �

Summing up we have proved the following result for the perturbation (2.1).

Theorem 2.2. Let {Tε}ε>0 be the transformation given by (2.1).Then the following
estimates hold:

(1) If a > 1, Tε → idRn in C1 norm as ε→ 0. In consequence

Tε ⇒ idRn , DTε ⇒ In×n, JTε ⇒ 1 and JτTε ⇒ 1.

(2) If a = 1, we have that for any compact set K ⊂ Ω there exists ε0 > 0 such
that

Tε|K = idK ,

for every 0 < ε < ε0. Moreover,

JτT
−1
ε

∗
⇀m weakly-* in L∞(∂Ω),

where m is the function given by (1.5).

3. Subcritical case (a < 1)

In this section we prove the result in the subcritical case. This is the simplest of
the three cases.

Proof. Let α ∈ (0, 1) and let us take Γ0 ⊂ ∂Ω as the closure of a relative open and
connected set such that |Γ0|n−1 > α|∂Ω|n−1.

Given δ > 0, consider the sets Uδ = Bδ(Γ0) defined as

Uδ := {x ∈ Rn : dist(x,Γ0) < δ}
and take Γ1 ⊂ ∂Ω \ U2δ such that |Γ1|n−1 > 0.

Let now φ ∈ C1(Ω̄) be such that φ ≡ 0 in Uδ, φ ≡ 1 in Ω \ U2δ and 0 ≤ φ ≤ 1,
|∇φ| ≤ Cδ−1 in U2δ \ Uδ.

Observe that if we denote by Γ0,ε ⊂ ∂Ωε to the portion of the boundary of Ωε
that comes from perturbing Γ0, one has that φ ≡ 0 in Γ0,ε for every ε > 0 small.
Moreover, is easy to see that |Γ0,ε|n−1 ≥ α|∂Ωε|n−1. Then, φ is admissible in the
characterization of λ(Γ0,ε). As a consequence, we get the following estimate:

λε(α) ≤ λ(Γ0,ε) ≤
∫

Ωε
|∇φ|p + |φ|p dx∫
∂Ωε
|φ|p dS

.

This quotient can be easily estimated. In fact,

(3.1)

∫
Ωε

|∇φ|p dx ≤ C|Ωε|n,
∫

Ωε

|φ|p dx ≤ |Ωε|n,

with C = C(δ).

On the other hand,

(3.2)

∫
∂Ωε

|φ|p dS ≥
∫
∂Ωε\Ū2δ

|φ|p dS = |∂Ωε \ Ū2δ|n−1 ≥ |Γ1,ε|n−1,

where Γ1,ε stands for the perturbed set obtained from Γ1 ⊂ ∂Ω \ Ū2δ.
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But,

|Γ1,ε|n−1 =

∫
U ′

√
1 +

∣∣∣∇Φ(x′) + εa−1∇f(x
′

ε )
∣∣∣2 dx′

= εa−1

∫
U ′

√
ε2(1−a) +

∣∣∣ε1−a∇Φ(x′) +∇f(x
′

ε )
∣∣∣2 dx′.

Let us now estimate this last integral.∫
U ′

√
ε2(1−a) +

∣∣∣ε1−a∇Φ(x′) +∇f(x
′

ε )
∣∣∣2 dx′

=

∫
U ′

(√
ε2(1−a) +

∣∣∣ε1−a∇Φ(x′) +∇f(x
′

ε )
∣∣∣2 − |∇f(x

′

ε )|

)
+ |∇f(x

′

ε )| dx′.

If we now denote by ρε(x
′) =

√
ε2(1−a) +

∣∣∣ε1−a∇Φ(x′) +∇f(x
′

ε )
∣∣∣2 − |∇f(x

′

ε )|, it is

not difficult to see that |ρε(x′)| ≤ ε1−a(1 + |∇Φ(x′)|), from where it follows that∫
U ′

(√
ε2(1−a) +

∣∣∣ε1−a∇Φ(x′) +∇f(x
′

ε )
∣∣∣2 − |∇f(x

′

ε )|

)
dx′ → 0 when ε→ 0.

Finally, by the periodicity of f , we conclude that∫
U ′
|∇f(x

′

ε )| dx′ →
∫
Y

|∇f(y)| dy =: |∇f | > 0.

These estimates allow us to conclude that,

(3.3) |Γ1,ε|n−1 ≥ εa−1 |∇f |
2

,

for every ε > 0 small.

Now, from (3.1), (3.2) and (3.3), we obtain

λε(α) ≤ Cε1−a → 0 when ε→ 0

as we wanted to show. �

4. Supercritical and critical cases (a ≤ 1)

Now taking into account Theorem 2.2, we note that the supercritical and critical
cases in Theorem 1.1 are special cases of a more general result.

Indeed if Tε : Ωε → Ω is a family of perturbations which satisfies the following
condition:

(4.1)

{
Tε = idRn . on each compact set K ⊂ Ω for ε < ε0(K)

JτT
−1
ε

∗
⇀m, weakly* in L∞(∂Ω) when ε→ 0,

where m ∈ L∞(∂Ω) then we get the following general result.



SHAPE OPTIMIZATION 9

Theorem 4.1. Let {Tε}ε>0 be a family of perturbations that satisfies condition
(4.1). Then

λε(α)→ λ∗(α), when ε→ 0,

where λε(α) is given by (1.1) on Ωε and λ∗(α) is given by
(4.2)

λ∗(α) = inf

{∫
Ω
|∇u|p + |u|p dx∫
∂Ω
|u|p dµ∗

: u ∈W 1,p(Ω), µ∗({u = 0} ∩ ∂Ω) ≥ αµ∗(∂Ω)

}
.

Here the measure µ∗ is given by dµ∗ = mdS.

Moreover, if uε is an eigenfunction associated to λε(α) normalized as ‖uε‖Lp(∂Ωε) =

1, then the sequence {uε ◦T−1
ε }ε>0 ⊂W 1,p(Ω) is weakly pre compact and every ac-

cumulation point is an eigenfunction of λ∗(α).

Clearly, Theorem 4.1 implies the critical (a = 1) and supercritical (a > 1) cases
in Theorem 1.1. Also Theorem 4.1 implies Theorem 6.2 in [5].

Before starting the proof we need the following observations.

Let Ω1,Ω2 ⊂ Rn be open domains and suppose that there exists a diffeomorphism
T : Ω1 → Ω2. This diffeomorphism T induces the mapping

T : W 1,p(Ω2)→W 1,p(Ω1), T (u) = u ◦ T.
This mapping is linear, continuous and invertible, with T −1v = v ◦ T−1. Moreover
a direct application of the Change of Variables Theorem implies that

(4.3)

∫
Ω1

|T u|p dx ≤ ‖JT−1‖∞
∫

Ω2

|u|p dx

and ∫
Ω1

|∇(T u)|p dx ≤ ‖JT−1‖∞‖DT‖∞
∫

Ω2

|∇u|p dy.(4.4)

Then if we consider now the general pertubations Tε : Ωε → Ω which satisfies the
properties (4.1) we get the associated mappings Tε : W 1,p(Ω) → W 1,p(Ωε), which
are linear, invertible and, by (4.3) and (4.4), bi-continuous.

With this in mind we define the functions Qε : W 1,p(Ωε)→ R, Q : W 1,p(Ω)→ R
by

(4.5) Qε(u) =

∫
Ωε

|∇u|p + |u|pdx

and

(4.6) Q(v) =

∫
Ω

|∇v|p + |v|p dy.

We now consider the function Q̃ε : W 1,p(Ω)→ R defined by Q̃ε = Qε ◦ Tε.
We introduce the sets

(4.7)
Xε
α := {u ∈W 1,p(Ωε) : |{u = 0} ∩ ∂Ωε|n−1 ≥ α|∂Ωε|n−1 and ‖uε‖Lp(∂Ωε) = 1},

(4.8) X̃ε
α := Tε(Xε

α) = {v ∈W 1,p(Ω): v ◦ Tε ∈ Xε
α},

(4.9) X∗α := {v ∈W 1,p(Ω): µ∗({v = 0} ∩ ∂Ω) ≥ αµ∗(∂Ω) and ‖v‖Lp(dµ∗) = 1},
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where dµ∗ = mdS.

With the above notations, we can write

λε(α) = inf
u∈Xεα

Qε(u) = inf
v∈X̃εα

Q̃ε(v) and λ∗(α) = inf
v∈X∗α

Q(v).

In order to prove the convergence of these minima, we use the notion of Γ−conver-
gence. This notion was introduced by E. De Giorgi in the 60’s and is by now a
classical subject in dealing with variational problems. We refer the reader to the
books of A. Braides [2] and of G. Dal Maso [4].

For the sake of completeness, we recall the definition of Γ−convergence.

Definition 4.2. Let (X, d) be a metric space and let Jε, J : X → (−∞,+∞]. We
say that Jε Γ−converges to J as ε→ 0 if

• (lim inf inequality) For every x ∈ X and for every sequence {xε}ε>0 ⊂ X
such that xε → x, we have

J(x) ≤ lim inf
ε→0

Jε(xε).

• (lim sup inequality) For every x ∈ X there exists {yε}ε>0 ⊂ X such that
yε → x and

J(x) ≥ lim sup
ε→0

Jε(yε).

We denote this convergence by J = Γ−limε→0 Jε.

This notion is extremely useful in dealing with convergence of minima as the
following theorem shows.

Theorem 4.3. Let (X, d) be a metric space and let Jε, J : X → (−∞,+∞] be such
that J = Γ−limε→0 Jε. Assume that for every ε > 0 there exists xε ∈ X such that
Jε(xε) = infX Jε. Moreover, assume that {xε}ε>0 is precompact in X. Then

• infX J = limε→0 infX Jε.
• If x is any accumulation point of the sequence {xε}ε>0, then J(x) = infX J .

The proof of this theorem is elementary and can be found in any of the above
mentioned books [2, 4].

We apply this theorem to the functions Jε, J : Lp(Ω)→ (−∞,+∞] given by

Jε(v) :=

{
Q̃ε(v) if v ∈ X̃ε

α

+∞ if not,
(4.10)

J(v) :=

{
Q(v) if v ∈ X∗α
+∞ if not.

(4.11)

We begin by showing the Γ−convergence of the functionals. For this we need
the following lemmas.

Lemma 4.4. Let (X,Σ, ν) be a measure space of finite measure and let {fk}k∈N, f
be Σ−measurable and nonnegative functions such that fk → f ν−a.e.
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Let {µk}k∈N and µ be absolutely continuous measures with respect to ν such that
µk(A)→ µ(A), for every A ∈ Σ.

Then

lim sup
k→∞

µk({fk = 0}) ≤ µ({f = 0}).

Remark 4.5. When µk = µ for every k ∈ N this is well known with a simple proof.
In this case, the difficulty appears since the measures vary. We do not know if this
result is known nor if the hypotheses are optimal. Nevertheless it will suffices for
our purposes.

Remark 4.6. By standard arguments, it can be shown that the condition µk(A)→
µ(A) for every A ∈ Σ is equivalent to the weak convergence of the densities of the
measures in L1(X, ν).

Proof of Lemma 4.4. Assume by contradiction that there exists δ > 0 such that,
for all k0 ∈ N there exists k ≥ k0 such that

µ({f = 0}) + δ < µk({fk = 0}).

Since {f = 0} =
⋂∞
j=1{f ≤

1
j } it follows that µ({f = 0}) = limj→∞ µ({f ≤ 1

j }).
Hence, there exists j0 ∈ N such that, for j ≥ j0,

µ({f ≤ 1
j }) +

δ

2
< µk({fk = 0}).

{f ≤ 1
j } ⊃

∞⋂
k0=1

⋃
k≥k0

{fk < 1
j },

so

µ

 ∞⋂
k0=1

⋃
k≥k0

{fk < 1
j }

 ≤ µ({f ≤ 1
j }).

But, since

lim
k0→∞

µ

 ⋃
k≥k0

{fk > 1
j }

 = µ

 ∞⋂
k0=1

⋃
k≥k0

{fk < 1
j }

 ,

there exists k0(δ) such that

µ

 ⋃
k≥k0

{fk < 1
j }

+
δ

4
< µk({fk = 0}).

Calling A = ∪i≥k0
{fi < 1

j }, by hypothesis we have that limk→∞ µk(A) = µ(A) and

therefore,

µk

 ⋃
i≥n0

{fi < 1
j }

+
δ

8
< µk({fk = 0}).

Finally observe that {fk > 1
j } ⊂

⋃
i≥n0
{fi < 1

j } and hence we can conclude that

µk({fk < 1
j }) +

δ

8
< µk({fk = 0}),

a contradiction. �



12 J. FERNÁNDEZ BONDER AND J. F. SPEDALETTI

Lemma 4.7. Let X̃ε
α, X

∗
α ⊂W 1,p(Ω) be the sets defined in (4.8) and (4.9) respec-

tively. Then, given vε ∈ X̃ε
α such that vε ⇀ v weakly in W 1,p(Ω), it follows that

v ∈ X∗α.

Reciprocally, for every v ∈ X∗α there exists a sequence {εk}k∈N such that εk ↓ 0

and vk ∈ X̃εk
α such that vk ⇀ v weakly in W 1,p(Ω). Moreover, the sequence can be

taken to converge strongly in W 1,p(Ω).

Remark 4.8. The result of the previous Lemma says that the sets X̃ε
α converges in

the sense of Mosco to the set X∗α. See [10].

Proof. Let v ∈ X∗α and set Γ = {v = 0} ∩ ∂Ω.

Given k ∈ N define ṽk := max{v − 1
k , 0}. Then, Γk = {ṽk = 0} ∩ ∂Ω verifies

that µ∗(Γk) > µ∗(Γ) (recall that the weight m is strictly positive). So, there exists
ρk > 0 such that

(4.12) µ∗(Γk) ≥ (1 + ρk)αµ∗(∂Ω).

It is straightforward to check that ṽk → v strongly in W 1,p(Ω) as k →∞.

Now let tk,ε > 0 be such that vk,ε := tk,εṽk verifies that ‖vk,ε ◦ Tε‖Lp(∂Ωε) =
1. It is easy to see that ṽk → v (k → ∞) strongly in Lp(∂Ω) implies that
limε↓0(limk→∞ tk,ε)→ 1. So, we have that vk,ε → v strongly in W 1,p(Ω) as k →∞
and ε ↓ 0.

It remains to check that, given k ∈ N there exists εk with εk ↓ 0 such that
vk := vk,εk ∈ X̃εk

α and for this we have only to check that

µεk(Γk) ≥ αµεk(∂Ω),

where Γk = {vk = 0} ∩ ∂Ω = {ṽk = 0} ∩ ∂Ω and dµε = JτTεdS.

But, since µε(A) → µ∗(A) for every dS−measurable set A ⊂ ∂Ω, we have that
there exists εk such that

(4.13) µεk(Γk) ≥ (1 + ρk)−
1
2µ∗(Γk) and µ∗(∂Ω) ≥ (1 + ρk)−

1
2µεk(∂Ω).

Combining (4.12) and (4.13) we arrive at

µεk(Γk) ≥ (1 + ρk)−
1
2µ∗(Γk)

≥ (1 + ρk)
1
2αµ∗(∂Ω)

≥ αµεk(∂Ω).

Now, we need to see that if vε ∈ X̃ε
α is such that vε ⇀ v, then v ∈ X∗α. But this

is an immediate consequence of Lemma 4.4.

In fact, Lemma 4.4 is applied to the functions vε, v ∈W 1,p(Ω) ⊂ Lp(∂Ω) (recall
that we can assume that vε → v dS−a.e.on ∂Ω) and the measures

dµε = JτT
−1
ε dS, dµ∗ = mdS, dν = dS.
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As a consequence, we get

µ∗({v = 0} ∩ ∂Ω) ≥ lim sup
ε→0

µε({vε = 0} ∩ ∂Ω) = lim sup
ε→0

∫
{vε=0}∩∂Ω

JτT
−1
ε dS

= lim sup
ε→0

|{vε ◦ Tε = 0} ∩ ∂Ωε|n−1

≥ lim sup
ε→0

α|∂Ωε|n−1 = αµ∗(∂Ω).

This finishes the proof. �

Unfortunately, we are not able to prove the Γ−convergence of the functionals in
its full generality. In fact we can only prove Γ−convergence for the supercritical
case, that in this general setting will be in the case where Tε → idRn in the C1

topology.

For the more general setting of (4.1), we can prove a weaker version of Γ−convergence
under which Theorem 4.3 still holds. Namely

Proposition 4.9. Let Jε, J : Lp(Ω) → (−∞,+∞] be the functionals defined by
(4.10)-(4.11). Assume that the transformations Tε verify (4.1). Then:

• for every sequence {vε}ε>0 ⊂ Lp(Ω) of minimizers of {Jε}ε>0 such that
vε → v in Lp(Ω), we have that

J(v) ≤ lim inf
ε→0

Jε(vε).

• Moreover, for every v ∈ Lp(Ω), there exists vk ∈ Lp(Ω) and εk ↓ 0 such
that vk → v in Lp(Ω) and

J(v) ≥ lim sup
k→∞

Jεk(vk).

Remark 4.10. Observe that the only difference with respect to Γ−convergence is
that we do not prove the liminf inequality for every sequence {vε}ε>0, but only
for sequences of minimizers. It is straightforward to check that the conclusions of
Theorem 4.3 still hold under this weaker assumption.

Proof. We will divide the proof into two parts.

lim inf inequality: Let vε ∈ X̃ε
α be such that Q̃ε(vε) = infX̃εα

Q̃ε and assume that

vε → v in Lp(Ω) as ε ↓ 0 for some v ∈ X∗α. We can assume that

(4.14) lim inf
ε→0

Q̃ε(vε) < +∞,

otherwise there is nothing to prove. It is immediate to see that (4.3) and (4.4)
imply that

‖vε‖W 1,p(Ω) = Q(vε) ≤ CQ̃ε(vε)
and so, by (4.14) we conclude that {vε}ε>0 is bounded on W 1,p(Ω) and since vε → v
in Lp(Ω) it easily follows that vε ⇀ v weakly in W 1,p(Ω).

Since vε → v strongly in Lp(Ω) and JTε → 1 a.e. in Ω and are uniformly
bounded it follows that

(4.15)

∫
Ω

|vε|pJT−1
ε dx→

∫
Ω

|v|p dx, as ε ↓ 0.
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Taking into account the expressions of Q̃ε(vε) and Q(v), it remains to show that

(4.16) lim inf
ε→0

∫
Ω

|∇vε(DTε ◦ T−1
ε )|pJT−1

ε dx ≥
∫

Ω

|∇v|p dx.

We first show that ∇vε → ∇v a.e. in Ω. To this end we need the fact that the
sequence {vε}ε>0 is a sequence of minimizers for Q̃ε and therefore they verify the

Euler-Lagrange equation associated to the functional Q̃ε. That is∫
Ω

(
|∇vε(DTε ◦ T−1

ε )|p−2∇vε(DTε ◦ T−1
ε ) · ∇ψ+|vε|p−2vεψ

)
JT−1

ε dx

= λε(α)

∫
∂Ω

|vε|p−2vεψJτT
−1
ε dS,

for every ψ ∈W 1,p
Γ (Ω).

Take now K ⊂ Ω a compact set, let δ = 1
2d(K, ∂Ω) and write Kδ = {x ∈

Ω: d(x,K) < δ}. Therefore K ⊂ Kδ ⊂⊂ Ω and if ε is small enough, we have that
Tε = idRn on Kδ.

Observe now that if ψ0 ∈W 1,p
Γ (Ω) is such that supp(ψ0) ⊂ Kδ, then∫

Ω

|∇vε|p−2∇vε∇ψ0 + |vε|p−2vεψ0 dx = 0.

So consider η ∈ C∞c (Ω) be such that η = 1 in K, supp(η) ⊂ Kδ and 0 ≤ η ≤ 1
in Kδ \K.

Therefore, for ψε = η(vε − v), we have∫
Ω

|∇vε|p−2∇vε∇ψε + |vε|p−2vεψε dx = 0,

that is
(4.17)∫

Ω

|∇vε|p−2∇vε(vε − v)∇η + |∇vε|p−2∇vε∇(vε − v)η + |vε|p−2vεη(vε − v) dx = 0.

Since vε ⇀ v weakly in W 1,p(Ω) we have that ‖∇vε‖Lp(Ω) ≤ C, so by Hölder’s
inequality,

(4.18)

∣∣∣∣∫
Ω

|∇vε|p−2∇vε(vε − v)∇η dx
∣∣∣∣ ≤ ‖∇η‖∞C‖vε − v‖Lp(Ω).

On the other hand, since ‖vε‖Lp(Ω) ≤ C, again by Hölder’s inequality,

(4.19)

∣∣∣∣∫
Ω

|vε|p−2vεη(vε − v) dx

∣∣∣∣ ≤ ‖η‖∞C‖vε − v‖Lp(Ω).

From (4.17), (4.18) and (4.19) we obtain

(4.20) lim
ε→0

∫
Kδ

|∇vε|p−2∇vε∇(vε − v)η dx = 0.

Moreover, since vε ⇀ v weakly in W 1,p(Ω) we get

(4.21) lim
ε→0

∫
Kδ

|∇v|p−2∇v∇(vε − v)η dx = 0.
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Combining (4.20) and (4.21) we arrive at

lim
ε→0

∫
Kδ

(|∇vε|p−2∇vε − |∇v|p−2∇v)∇(vε − v)η dx = 0.

But now, it is a well known fact (see e.g. [12]) that the integrand is nonnegative
and therefore (|∇vε|p−2∇vε − |∇v|p−2∇v)∇(vε − v) → 0 a.e. in K. From this,
we can easily conclude that ∇vε → ∇v a.e. in K. Since K is arbitrary in Ω we
conclude the pointwise convergence of the gradients a.e. in Ω.

From the pointwise convergence of the gradient the conclusion of the liminf
inequality follows easily. In fact, since JTε → 1 and DTε → I a.e. in Ω we have

|∇vε(DTε ◦ T−1
ε )|pJT−1

ε → |∇v|p a.e. in Ω.

This last fact, together with Fatou’s Lemma imply (4.16).

lim sup inequality: Given v ∈ X∗α, let vk ∈ X̃εk
α be such that vk → v strongly in

W 1,p(Ω). Observe that such a sequence exists by Lemma 4.7.

Now this and our hypotheses on Tε easily imply that

lim
k→∞

Q̃εk(vk) = Q(v).

The proof is completed. �

Now, the proof of Theorem 4.1 follows as a simple corollary.

Proof of Theorem 4.1. The proof is now a trivial consequence of Proposition 4.9
and Theorem 4.3. �

5. Convergence of optimal windows

In this section we analyze the behavior of a sequence of optimal windows {Γε}ε>0.
Recall that an optimal window is a set Γε ⊂ Ωε such that |Γε|n−1 = α|∂Ωε|n−1 and
λε(Γε) = λε(α) for 0 < α < 1.

We will see that, as a consequence of the convergence of the constants λε(α)→
λ∗(α) we will deduce the convergence of these optimal windows to an optimal
window of the limit problem in a suitable sense.

Theorem 5.1. Under the same assumptions and notations of Theorem 4.1, if
Γε ⊂ Ωε is an optimal window associated to λε(α) then, up to a subsequence,
it converges, as ε ↓ 0, to an optimal window of the limit problem λ∗(α) in the
following sense: Let us define the Radon measures {νε}ε>0 as

dνε = χ
Γε
dS.

Then, the family is pre compact in the weak topology of measures and every accu-
mulation point of {νε}ε>0 is of the form

dν∗ = χ
Γ∗mdS,

where Γ∗ is an optimal windows for the problem (4.2).

In order to show the convergence of optimal windows we need a couple of lemmas.
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Lemma 5.2. Let (X,Σ, ν) be a measure space of finite measure and let {fn}n∈N, f
be ν−measurable nonnegative functions such that fn → f ν−a.e.

Let {µn}n∈N and µ be nonnegative measures, absolutely continuous with respect
to ν such that µn(A)→ µ(A), for every A ∈ Σ.

Then, if limn→∞ µn({fn = 0}) = µ({f = 0}), given ε > 0 there exists j0 ∈ N
such that, for every j ≥ j0,

lim sup
n→∞

µn({0 < fn ≤ 1
j }) < ε.

Proof. Let ε > 0. Since χ
{0<f≤ 1

j
}
→ 0 ν−a.e. when j → ∞, we have that there

exists j0 ∈ N such that

(5.1) µ({0 < f ≤ 1
j }) < ε, for every j ≥ j0.

Since fn → f ν−a.e., we have that

{f ≤ 1
j } ⊃

⋂
n0∈N

⋃
k≥n0

{fk ≤ 1
j },

from where

µ({f ≤ 1
j }) ≥ lim

n0→∞
µ

 ⋃
k≥n0

{fk ≤ 1
j }

 .

Hence, given δ > 0, there exists n0 ∈ N such that

(5.2) µ({f ≤ 1
j }) + δ ≥ µ

 ⋃
k≥n0

{fk ≤ 1
j }

 .

By our hypothesis on the convergence of the measures,

lim
n→∞

µn

 ⋃
k≥n0

{fk ≤ 1
j }

 = µ

 ⋃
k≥n0

{fk ≤ 1
j }

 ,

from where

(5.3) µ

 ⋃
k≥n0

{fk ≤ 1
j }

+ δ ≥ µn

 ⋃
k≥n0

{fk ≤ 1
j }

 ≥ µn({fn ≤ 1
j }),

for any n large enough.

Using (5.2) and (5.3) we obtain

µ({f ≤ 1
j }) + 2δ ≥ lim sup

n→∞
µn({fn ≤ 1

j })

and since δ > 0 is arbitrary, it follows that

(5.4) lim sup
n→∞

µn({fn ≤ 1
j }) ≤ µ({f ≤ 1

j }).

Now, the lemma follows from (5.1) and (5.4) by using the hypothesis

lim
n→∞

µn({fn = 0}) = µ({f = 0}).

The proof is completed. �
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Lemma 5.3. Let (X,Σ, ν) be a measure space of finite measure and let {fn}n∈N, f
be ν−measurable nonnegative functions such that fn → f ν−a.e.

Let {µn}n∈N and µ be nonnegative measures, absolutely continuous with respect
to ν such that µn(A)→ µ(A), for every A ∈ Σ.

Then, if limn→∞ µn({fn = 0}) = µ({f = 0}), it follows that

lim
n→∞

µn({fn = 0}∆{f = 0}) = 0.

Proof. By Egoroff’s Theorem, we have that, given δ > 0, there exists a measurable
set Cδ ⊂ X such that

fn ⇒ f, uniformly when n→∞ in X \ Cδ
with

µ(Cδ) < δ.

Observe that, as µn(A)→ µ(A) for every A measurable, we can assume that

µn(Cδ) < δ,

for every n large enough.

Define now the set Eδ = X \ Cδ and using this uniform convergence on the set
Eδ, we have

{fn = 0} ∩ Eδ ⊂ {f ≤ δ} ∩ Eδ,
for ε small enough.

We then have that

{f = 0} \ {fn = 0} ⊂ (({f ≤ δ} \ {fn = 0}) ∩ Eδ) ∪ Cδ,

from where

µn({f = 0} \ {fn = 0}) ≤ µn({f ≤ δ})− µn({fn = 0}) + δ.

Taking the limit as n→∞, we obtain

lim sup
n→∞

µn({f = 0} \ {fn = 0}) ≤ µ({f ≤ δ})− µ({f = 0}) + δ,

and now making δ → 0 we can conclude

lim
n→∞

µn({f = 0} \ {fn = 0}) = 0.

On the other hand, given j ∈ N, there exists nj ∈ N such that

{f = 0} ∩ Ej ⊂ {fnj < 1
j } ∩ Ej ,

where ν(X \ Ej) ≤ 1
j .

Now, reasoning as in the previous case,

lim sup
j→∞

µnj ({fnj = 0} \ {f = 0}) ≤ lim sup
j→∞

(
µnj ({fnj < 1

j })
)
− µ({f = 0}).

But, from Lemma 5.2, it follows that

µnj ({fnj < 1
j }) = µnj ({fnj = 0}) + µnj ({0 < fnj <

1
j })→ µ({f = 0}).

This completes the proof. �
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Remark 5.4. When the sequence of measures µn is constant, this Lemma was proved
in [7, Lemma 3.1].

With the help of Lemma 5.3 we can now prove Theorem 5.1

Proof of Theorem 5.1. Let uε ∈W 1,p(Ωε) be an extremal for λε(α). We can assume
that uε ∈ Xε

α. Then, by [5, Theorem 3.6], we have that {uε = 0} ∩ Ωε = Γε is an
optimal window for λε(α) and hence it verifies |Γε|n−1 = α|Ωε|n−1.

Consider now the rescaled functions vε := uε ◦ T−1
ε . Then vε is an extremal of

Q̃ε in the set X̃ε
α.

By Theorem 4.1, we can assume that there exists v ∈W 1,p(Ω) such that vε ⇀ v
weakly in W 1,p(Ω), v ∈ X∗α and v is an extremal for λ∗(α). In particular

µ∗({v = 0} ∩ ∂Ω) = αµ∗(∂Ω).

On the other hand,

|{uε = 0} ∩ ∂Ωε|n−1 =

∫
∂Ωε

χ{uε=0} dS =

∫
∂Ω

χ{vε=0}JτT
−1
ε dS.

So, if we denote by µε to the measure dµε = JτT
−1
ε dS on ∂Ω, we have that

µε({vε = 0} ∩ ∂Ω) = α|∂Ωε|n−1 = αµε(∂Ω),

and since JτT
−1
ε

∗
⇀m weakly-* in L∞(∂Ω), it holds that

µε(A)→ µ∗(A),

for every A ⊂ ∂Ω measurable. In particular, µε(∂Ω)→ µ∗(∂Ω).

All of this discussion leads us to conclude that

µε({vε = 0} ∩ ∂Ω)→ µ∗({v = 0} ∩ ∂Ω).

Now we are in a position of applying Lemma 5.3 and conclude that

µε([{vε = 0}4{v = 0}] ∩ ∂Ω)→ 0.

Now, let Γε be an optimal window and let uε ∈ Xε
α an associated extremal. Let

vε = uε ◦ T−1
ε the rescaled extremal as was previously described. Again, we can

assume that vε → v a.e. in ∂Ω where v ∈ X∗α is an extremal associated to λ∗(α).

Let f ∈ Cb(Rn), then∫
fdνε −

∫
fdν∗ =

∫
∂Ωε

fχ{uε=0} dS −
∫
∂Ω

fχ{v=0}mdS

=

∫
∂Ω

(f ◦ T−1
ε )χ{vε=0} dµε −

∫
∂Ω

fχ{v=0} dµ
∗

=

∫
∂Ω

(χ{vε=0} − χ{v=0})(f ◦ T
−1
ε ) dµε

+

∫
∂Ω

χ{v=0} [(f ◦ T
−1
ε )− f ] dµε

+

∫
∂Ω

χ{v=0}f(dµε − dµ∗)

=Aε +Bε + Cε.
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Each of these terms can be easily shown to converge to zero. In fact

|Aε| ≤ ‖f‖∞µε([{vε = 0}4{v = 0}] ∩ ∂Ω)→ 0,

by Lemma 5.3. On the other hand,

|Bε| ≤ ‖(f ◦ T−1
ε )− f‖L∞(∂Ω)µε(∂Ω)→ 0,

since µε(∂Ω) is convergent (hence bounded) and f ◦ T−1
ε ⇒ f on compact sets.

Finally, using that µε ⇀ µ∗ weakly in the sense of measures it follow that

|Cε| → 0.

This completes the proof of the theorem. �
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