Pacific

Journal of Mathematics

MAXIMAL OPERATORS FOR THE \boldsymbol{p}-LAPLACIAN FAMILY

Pablo Blanc, Juan P. Pinasco and Julio D. Rossi

MAXIMAL OPERATORS FOR THE \boldsymbol{p}-LAPLACIAN FAMILY

Pablo Blanc, Juan P. Pinasco and Julio D. Rossi

We prove existence and uniqueness of viscosity solutions for the problem:

$$
\max \left\{-\Delta_{p_{1}} u(x),-\Delta_{p_{2}} u(x)\right\}=f(x)
$$

in a bounded smooth domain $\Omega \subset \mathbb{R}^{N}$ with $u=g$ on $\partial \Omega$. Here $-\Delta_{p} u=(N+$ $p)^{-1}|D u|^{2-p} \operatorname{div}\left(|D u|^{p-2} D u\right)$ is the 1-homogeneous p-Laplacian and we assume that $2 \leq p_{1}, p_{2} \leq \infty$. This equation appears naturally when one considers a tug-of-war game in which one of the players (the one who seeks to maximize the payoff) can choose at every step which are the parameters of the game that regulate the probability of playing a usual tug-ofwar game (without noise) or playing at random. Moreover, the operator $\max \left\{-\Delta_{p_{1}} u(x),-\Delta_{p_{2}} u(x)\right\}$ provides a natural analogue with respect to p Laplacians to the Pucci maximal operator for uniformly elliptic operators.

We provide two different proofs of existence and uniqueness for this problem. The first one is based in pure PDE methods (in the framework of viscosity solutions) while the second one is more connected to probability and uses game theory.

1. Introduction

In this paper our goal is to show existence and uniqueness of viscosity solutions to the Dirichlet problem for the maximal operator associated with the family of p-Laplacian operators, $-\Delta_{p} u=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ with $2 \leq p \leq \infty$.

When one considers the family of uniformly elliptic second-order operators of the form $-\operatorname{tr}\left(A D^{2} u\right)$ and looks for maximal operators, one finds the so-called Pucci maximal operator, $P_{\lambda, \Lambda}^{+}\left(D^{2} u\right)=\max _{A \in \mathcal{A}}-\operatorname{tr}\left(A D^{2} u\right)$, where \mathcal{A} is the set of uniformly elliptic matrices with ellipticity constant between λ and Λ. This maximal operator plays a crucial role in the regularity theory for uniformly elliptic secondorder operators and has the following properties; see [Caffarelli and Cabré 1995]:
(1) (monotonicity) If $\lambda_{1} \leq \lambda_{2} \leq \Lambda_{2} \leq \Lambda_{1}$, then $P_{\lambda_{2}, \Lambda_{2}}^{+}\left(D^{2} u\right) \leq P_{\lambda_{1}, \Lambda_{1}}^{+}\left(D^{2} u\right)$.
(2) (positive homogeneity) If $\alpha \geq 0$, then $P_{\lambda, \Lambda}^{+}\left(\alpha D^{2} u\right)=\alpha P_{\lambda, \Lambda}^{+}\left(D^{2} u\right)$.

MSC2010: 35J70, 49N70, 91A15, 91A24.
Keywords: Dirichlet boundary conditions, dynamic programming principle, p-Laplacian, tug-of-war games.
(3) (subsolutions) If u verifies $P_{\lambda, \Lambda}^{+}\left(D^{2} u\right) \leq 0$ in the viscosity sense, then $-\operatorname{tr}\left(A D^{2} u\right) \leq 0$ for every matrix A with ellipticity constants λ and Λ (that is, a subsolution to the maximal operator is a subsolution for every elliptic operator in the class). Therefore, from the comparison principle we get that a solution to $P_{\lambda, \Lambda}^{+}\left(D^{2} u\right) \leq 0$ provides a lower bound for every solution of any elliptic operator in the class with the same boundary values.

If we try to reproduce these properties for the family of p-Laplacians, we are led to consider the operator $\max _{p_{1} \leq p \leq p_{2}}-\Delta_{p} u(x)$. As we will show in this paper, this operator has similar properties to the ones that hold for the Pucci maximal operator, but with respect to the p-Laplacian family.

Hence, it is natural to consider the Dirichlet problem for the partial differential equation

$$
\begin{equation*}
\max _{p_{1} \leq p \leq p_{2}}-\Delta_{p} u(x)=f(x) \tag{1-1}
\end{equation*}
$$

in a bounded smooth domain $\Omega \subset \mathbb{R}^{N}$ for $2 \leq p_{1}, p_{2} \leq \infty$. Here we have normalized the p-Laplacian and considered the operator

$$
\Delta_{p} u=\frac{\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)}{(N+p)|\nabla u|^{p-2}},
$$

which is called the 1 -homogeneous p-Laplacian. We will assume that $f \equiv 0$ or that f is strictly positive or negative in Ω. We will consider solutions u (along the whole paper we consider solutions in the viscosity sense, see [Crandall et al. 1992]) to this problem with $f \equiv 0$, as $p_{1}-p_{2}$-harmonic functions.

Note that, formally, the 1 -homogeneous p-Laplacian can be written as

$$
\Delta_{p} u=\frac{p-2}{N+p} \Delta_{\infty} u+\frac{1}{N+p} \Delta u,
$$

where Δu is the usual Laplacian and $\Delta_{\infty} u$ is the normalized ∞-Laplacian, that is,

$$
\Delta u=\sum_{i=1}^{N} u_{x_{i} x_{i}} \quad \text { and } \quad \Delta_{\infty} u=\frac{1}{|\nabla u|^{2}} \sum_{i, j=1}^{N} u_{x_{i}} u_{x_{i} x_{i}} u_{x_{j}} .
$$

Therefore, we can think about the 1 -homogeneous p-Laplacian as a convex combination of the Laplacian divided by $N+2$ and the ∞-Laplacian, in fact,

$$
\Delta_{p} u=\frac{p-2}{N+p} \Delta_{\infty} u+\frac{N+2}{N+p} \frac{\Delta u}{N+2}=\alpha \Delta_{\infty} u+\theta \Delta u
$$

with $\alpha=(p-2) /(N+p)$ and $\theta=1 /(N+p)$ (we reserve β for a different constant) for $2 \leq p<\infty$, and $\alpha=1$ and $\theta=0$ for $p=\infty$.

Since we are dealing with convex combinations, equation (1-1) becomes

$$
\begin{equation*}
\max _{p_{1} \leq p \leq p_{2}}-\Delta_{p} u(x)=\max \left\{-\Delta_{p_{1}} u(x),-\Delta_{p_{2}} u(x)\right\}=f(x), \tag{1-2}
\end{equation*}
$$

with $2 \leq p_{1}, p_{2} \leq \infty$.
Our main result concerning viscosity solutions to (1-2) reads as follows:
Theorem 1.1. Let Ω be a bounded domain such that the exterior ball condition holds when $p_{1} \leq N$ or $p_{2} \leq N$. Assume that $\inf _{\Omega} f>0, \sup _{\Omega} f<0$ or $f \equiv 0$. Then, given g a continuous function defined on $\partial \Omega$, there exists a unique viscosity solution $u \in C(\bar{\Omega})$ of (1-2) with $u=g$ in $\partial \Omega$.

Moreover, a comparison principle holds: if $u, v \in C(\bar{\Omega})$ are such that

$$
\max \left\{-\Delta_{p_{1}} u,-\Delta_{p_{2}} u\right\} \leq f \quad \text { and } \quad \max \left\{-\Delta_{p_{1}} v,-\Delta_{p_{2}} v\right\} \geq f
$$

are in Ω and $v \geq u$ on $\partial \Omega$, then $v \geq u$ in Ω.
In addition, we have a Hopf's lemma: let u be a supersolution to (1-2) and $x_{0} \in \partial \Omega$ be such that $u\left(x_{0}\right)>u(x)$ for all $x \in \Omega$, then we have

$$
\limsup _{t \rightarrow 0^{+}} \frac{u\left(x_{0}-t \nu\right)-u\left(x_{0}\right)}{t}<0,
$$

where v is exterior normal to $\partial \Omega$.
Remark 1.2. An analogous result holds for the equation $\min _{p_{1} \leq p \leq p_{2}}-\Delta_{p} u(x)=f$.
Remark 1.3. For the homogeneous case, $f \equiv 0$, we have that viscosity sub- and supersolutions to the 1 -homogeneous p-Laplacian,

$$
-\frac{p-2}{N+p} \Delta_{\infty} u-\frac{1}{N+p} \Delta u=0,
$$

coincide with viscosity sub and supersolutions to the usual ($p-1$)-homogeneous) p-Laplacian $-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0$; see [Manfredi et al. 2012b].

Therefore, for $f \equiv 0$ we are providing existence and uniqueness of viscosity solutions to $\max _{p_{1} \leq p \leq p_{2}}-\Delta_{p} u(x)=0$, with $\Delta_{p} u$ being the usual p-Laplacian that comes from calculus of variations.

Remark 1.4. This maximal operator for the p-Laplacian family has the following properties that are analogous to the ones described above for Pucci's operator:
(1) (monotonicity) If $p_{1,1} \leq p_{2,1} \leq p_{2,2} \leq p_{1,2}$ then

$$
\max _{p_{2,1} \leq p \leq p_{2,2}}-\Delta_{p} u \leq \max _{p_{1,1} \leq p \leq p_{1,2}}-\Delta_{p} u .
$$

(2) (positive homogeneity) If $\alpha \geq 0$, then

$$
\max _{p_{1} \leq p \leq p_{2}}-\Delta_{p}(\alpha u)=\alpha \max _{p_{1} \leq p \leq p_{2}}-\Delta_{p} u .
$$

(3) (subsolutions) A viscosity solution u to $\max _{p_{1} \leq p \leq p_{2}}-\Delta_{p} u(x) \leq 0$, is a viscosity solution to $-\Delta_{p} u(x) \leq 0$ for every $p_{1} \leq p \leq p_{2}$. Hence, from the comparison principle, we get that a solution to $\max _{p_{1} \leq p \leq p_{2}}-\Delta_{p} u(x) \leq 0$ provides a lower bound for every solution of any elliptic operator in the class with the same boundary values.

We have two different approaches for this problem. The first one is based on PDE tools in the framework of viscosity solutions. The second one is related to probability theory (game theory) using the game that we describe below.

Let us introduce a game that we call unbalanced tug-of-war game with noise. It is a two-player (Players I and II) zero-sum stochastic game. The game is played in a bounded open set $\Omega \subset \mathbb{R}^{N}$. Fix an $\varepsilon>0$. At the initial time, the players place a token at a point $x_{0} \in \Omega$ and Player I chooses a coin between two possible ones. They toss the chosen coin which is biased with probabilities α_{i} and $\beta_{i}, \alpha_{i}+\beta_{i}=1$ and $0 \leq \alpha_{i}, \beta_{i} \leq 1, i=1,2$. Now, they play the tug-of-war with noise game described in [Manfredi et al. 2012b] with probabilities α_{i}, β_{i}. If they get heads (probability α_{i}), they toss a fair coin (with equal probability of heads and tails) and the winner of the toss moves the game position to any $x_{1} \in B_{\varepsilon}\left(x_{0}\right)$ of his choice. On the other hand, if they get tails (probability β_{i}) the game state moves according to the uniform probability density to a random point $x_{1} \in B_{\varepsilon}\left(x_{0}\right)$. Once the game position leaves Ω, let's say at the τ-th step, the game ends. The payoff is given by a running payoff function $f: \Omega \rightarrow \mathbb{R}$ and a final payoff function $g: \mathbb{R}^{N} \backslash \Omega \rightarrow \mathbb{R}$ (note that we only use the values of g in a strip of width ε around $\partial \Omega$). At the end Player II pays to Player I the amount given by the formula

$$
g\left(x_{\tau}\right)+\varepsilon^{2} \sum_{n=0}^{\tau-1} f\left(x_{n}\right) .
$$

Note that the positions of the game depend on the strategies adopted by Players I and II. From this procedure we get two extreme functions, $u_{\mathrm{I}}\left(x_{0}\right)$ (the value of the game for Player I) and $u_{\mathrm{II}}\left(x_{0}\right)$ (the value of the game for Player II), that are in a sense the best expected outcomes that each player may expect choosing a strategy when the game starts at x_{0}. When $u_{\mathrm{I}}\left(x_{0}\right)$ and $u_{\mathrm{II}}\left(x_{0}\right)$ coincide at every $x_{0} \in \Omega$ this function $u_{\varepsilon}:=u_{\mathrm{I}}=u_{\mathrm{II}}$ is called the value of the game.

Theorem 1.5. Assume that f is a Lipschitz function with $\sup _{\Omega} f<0$ or $\inf _{\Omega} f>0$ or $f \equiv 0$. The unbalanced tug-of-war game with noise with $\left\{\alpha_{1}, \alpha_{2}\right\} \neq\{0,1\}$ when $f \equiv 0$ has a value and that value satisfies the dynamic programming principle, given by
$u_{\varepsilon}(x)=\varepsilon^{2} f(x)+\max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\sup _{y \in B_{\varepsilon}(x)} u_{\varepsilon}(y)+\inf _{y \in B_{\varepsilon}(x)} u_{\varepsilon}(y)\right\}+\beta_{i} f_{B_{\varepsilon}(x)} u_{\varepsilon}(y) d y\right)$
for $x \in \Omega$, with $u_{\varepsilon}(x)=g(x)$ for $x \notin \Omega$.
Moreover, if g is Lipschitz and Ω satisfies the exterior ball condition, then there exists a uniformly continuous function u such that

$$
u_{\varepsilon} \rightarrow u \quad \text { uniformly in } \quad \bar{\Omega} .
$$

This limit u is a viscosity solution to

$$
\begin{cases}\max \left\{-\Delta_{p_{1}} u,-\Delta_{p_{2}} u\right\}=\bar{f} & \text { on } \Omega, \\ u=g & \text { on } \partial \Omega,\end{cases}
$$

where $\bar{f}=2 f$ and p_{1}, p_{2} are given by

$$
\alpha_{i}=\frac{p_{i}-2}{p_{i}+N}, \quad \beta_{i}=\frac{2+N}{p_{i}+N}, \quad i=1,2 .
$$

Remark 1.6. When f is strictly positive or negative, we have that the game ends almost surely (a.s.). The same is true (regardless of the strategies adopted by the players) when they play with some noise at every turn, that is, when the two β_{i} are positive. This fact simplifies the arguments used in the proofs.

When one of the α_{i} is 1 (and therefore the corresponding β_{i} is 0) the argument is more delicate; see Section 4.

Remark 1.7. The proof of Theorem 1.5 follows from the results in Sections 4 and 5. In Section 4 we establish that the game has a value and that the value is the unique function that satisfies the dynamic programming principle (DPP). In Section 5 we prove the convergence part of the theorem. In Proposition 4.4 we establish the existence of a function satisfying the DPP. In Theorem 4.6 we prove that the function satisfying the DPP is unique and coincides with the game value, in the case $\beta_{1}, \beta_{2}>0$, sup $f<0$ or inf $f>0$. The same result is obtained in the remaining cases in Theorems 4.8 and 4.9. Here is where we had to assume that $\left\{\alpha_{1}, \alpha_{2}\right\} \neq\{0,1\}$. Finally, the convergence is established in Corollaries 5.8 and 5.9.

Remark 1.8. Note that in the limit problem one only considers the values of g on $\partial \Omega$ while in the game one needs g to be defined in a bigger set. Given a Lipschitz function defined on $\partial \Omega$ we can just extend it to this larger set without affecting the Lipschitz constant. For simplicity but making an abuse of notation we also call such an extension g.

Remark 1.9. We also prove uniqueness of solutions to the DPP; see Section 4. That is, there exists a unique function verifying
$v(x)=\varepsilon^{2} f(x)+\max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\sup _{y \in B_{\varepsilon}(x)} v(y)+\inf _{y \in B_{\varepsilon}(x)} v(y)\right\}+\beta_{i} f_{B_{\varepsilon}(x)} v(y) d y\right)$,
for $x \in \Omega$, with $v(x)=g(x)$ for $x \notin \Omega$.

Remark 1.10. When Player II (the player who wants to minimize the expected outcome) has the choice of the probabilities α and β we end up with a solution to

$$
\begin{cases}\min \left\{-\Delta_{p_{1}} u,-\Delta_{p_{2}} u\right\}=f & \text { on } \Omega, \\ u=g & \text { on } \partial \Omega .\end{cases}
$$

Let us make some brief comments on related work. First, let us recall that Pucci operators are crucial in regularity theory for uniformly elliptic operators, due to their natural comparison with a nondivergence linear operator with measurable coefficients. We refer to [Busca et al. 2005; Caffarelli and Cabré 1995; Felmer et al. 2006; Quaas and Sirakov 2006].

On the other hand, concerning probabilistic ideas for PDEs, the fundamental works of Doob, Hunt, Kakutani, Kolmogorov and many others have shown the profound and powerful connection between the classical linear potential theory and the corresponding probability theory. The idea behind the classical interplay is that harmonic functions and martingales share a common origin in mean value properties. This approach turns out to be useful in the nonlinear theory as well, since p-harmonic functions verify an asymptotic mean value property; see, for example, [Manfredi et al. 2010; Hartenstine and Rudd 2013; Kawohl et al. 2012; Llorente 2014; 2015]. Concerning tug-of-war games and PDEs the story begins with [Peres et al. 2009; Peres and Sheffield 2008] and was extended in [Atar and Budhiraja 2010; Bjorland et al. 2012a; 2012b; Nyström and Parviainen 2014], etc. Remark that for the p-Laplacian it was proved in [Julin and Juutinen 2012; Juutinen et al. 2001] the equivalence between viscosity and weak solutions. This probability approach was used to obtain regularity properties of solutions; we refer to [Armstrong and Smart 2010; Luiro and Parviainen 2015; Luiro et al. 2013; Ruosteenoja 2016].

We finish the introduction with a comment on the main technical novelties contained in this manuscript. To obtain existence and uniqueness for our maximal PDE we first use ideas and techniques from viscosity solutions theory. This part follows the usual steps (the first one shows a comparison principle and then applies Perron's method, including the construction of barriers near the boundary), but here some extra care is needed to deal with points at which the gradient of a test function vanishes. Concerning the game theoretical approach we want to emphasize that when $p_{2}=\infty$ we don't know a priori that the game terminates almost surely and this fact introduces some extra difficulties. The argument that shows that there is a unique solution to the dynamic programming principle in this case is delicate; see Theorem 4.8. The proof of convergence of the values of the game as the size of the steps goes to zero is also different from previous results in the literature since here one has to take care of the strategy of the player who chooses the parameters of the game. In particular, the proof that when any of the two players pull in a fixed direction the expectation of the exit time is bounded above $C \varepsilon^{2}$ is more involved; see Lemma 5.2.

The paper is organized as follows: In Section 2 we prove the comparison principle and then existence and uniqueness for our problem using Perron's method; in Section 3 we introduce a precise description of the game; in Section 4 we show that the game has a value and that this value is the solution to the dynamic programming principle; and finally, in Section 5 we collect some properties of the value function of the game and show that these values converge to the unique viscosity solution of our problem.

2. Existence and uniqueness

First, let us state the definition of a viscosity solution. We have to handle some technical difficulties as the 1-homogeneous ∞-Laplacian is not well-defined when the gradient vanishes. Observing that

$$
\Delta u=\operatorname{tr}\left(D^{2} u\right) \quad \text { and } \quad \Delta_{\infty} u=\frac{\nabla u}{|\nabla u|} D^{2} u \frac{\nabla u}{|\nabla u|},
$$

we can write (1-2) as $F\left(\nabla u, D^{2} u\right)=f$, where

$$
F(v, X)=\max _{i \in\{1,2\}}\left\{-\alpha_{i} \frac{v}{|v|} X \frac{v}{|v|}-\theta_{i} \operatorname{tr}(X)\right\}
$$

Note that F is degenerate elliptic, that is,

$$
F(v, X) \leq F(v, Y) \text { for } v \in \mathbb{R}^{N} \backslash\{0\} \text { and } X, Y \in S^{N} \text { provided } X \geq Y
$$

as is generally requested to work in the context of viscosity solutions.
This function $F: \mathbb{R}^{N} \times S^{N} \mapsto \mathbb{R}$ is not well-defined at $v=0$ (here S^{N} denotes the set of real symmetric $N \times N$ matrices). Therefore, we need to consider the lower semicontinuous F_{*} and upper semicontinuous F^{*} envelopes of F. These functions coincide with F for $v \neq 0$, and for $v=0$ are given by

$$
\begin{aligned}
& F^{*}(0, X)=\max _{i \in\{1,2\}}\left\{-\alpha_{i} \lambda_{\min }(X)-\theta_{i} \operatorname{tr}(X)\right\} \\
& F_{*}(0, X)=\max _{i \in\{1,2\}}\left\{-\alpha_{i} \lambda_{\max }(X)-\theta_{i} \operatorname{tr}(X)\right\}
\end{aligned}
$$

where $\lambda_{\min }(X)$ and $\lambda_{\max }(X)$ are the minimum and maximum eigenvalues of X, respectively.

Now we are ready to give the definition for a viscosity solution to our equation.
Definition 2.1. For $2 \leq p_{1}, p_{2} \leq \infty$ consider the equation

$$
\max \left\{-\Delta_{p_{1}} u,-\Delta_{p_{2}} u\right\}=f
$$

in Ω. Then we have the following definitions:
(1) A lower semicontinuous function u is a viscosity supersolution if for every $\phi \in C^{2}$ such that ϕ touches u at $x \in \Omega$ strictly from below, we have

$$
F^{*}\left(\nabla \phi(x), D^{2} \phi(x)\right) \geq f(x)
$$

(2) An upper semicontinuous function u is a subsolution if for every $\psi \in C^{2}$ such that ψ touches u at $x \in \Omega$ strictly from above, we have

$$
F_{*}\left(\nabla \psi(x), D^{2} \psi(x)\right) \leq f(x)
$$

(3) Finally, u is a viscosity solution if it is both a sub- and supersolution.

In the case $f \equiv 0$, the comparison holds for our equation as a consequence of the main result of [Koike and Kosugi 2015]. See also [Barles and Busca 2001]. Note that the comparison principle obtained in the former is slightly more general than the one obtained in the latter. We need this more general result here as our F is not necessarily continuous when the gradient vanishes. In [Koike and Kosugi 2015] a different notion of viscosity solution is considered. We remark that when a function is a viscosity sub- or supersolution in the sense of Definition 2.1 it is also that in the sense considered in [Koike and Kosugi 2015]. Therefore we can use the comparison result established there once we check their hypotheses.

Proposition 2.2. Let $u \in \operatorname{USC}(\Omega)$ and $v \in \operatorname{LSC}(\Omega)$ be, respectively, a viscosity subsolution and a viscosity supersolution of (1-2) with $f \equiv 0$. If $u \leq v$ on $\partial \Omega$, then $u \leq v$ in Ω.

Proof. We just apply the main result in [Koike and Kosugi 2015], referring to notations and details therein. To this end we need to check some conditions. First, let us show that F is elliptic. In fact, we have

$$
\begin{aligned}
F(v, X-\mu v \otimes v) & =\max _{i \in\{1,2\}}\left\{-\alpha_{i} \frac{v}{|v|}(X-\mu v \otimes v) \frac{v}{|v|}-\theta_{i} \operatorname{tr}(X-\mu v \otimes v)\right\} \\
& =\max _{i \in\{1,2\}}\left\{-\alpha_{i} \frac{v}{|v|} X \frac{v}{|v|}+\alpha_{i} \mu|v|^{2}-\theta_{i} \operatorname{tr}(X)+\theta_{i} \mu|v|^{2}\right\} \\
& =\max _{i \in\{1,2\}}\left\{-\alpha_{i} \frac{v}{|v|} X \frac{v}{|v|}-\theta_{i} \operatorname{tr}(X)+\theta_{i}\right\}+\mu|v|^{2} \\
& =F(v, X)+\mu|v|^{2}
\end{aligned}
$$

Moreover, F is invariant by rescaling in v and 1-homogeneous in X.
So, using the notation from [Koike and Kosugi 2015], we can take $\sigma_{0}(v)=|v|^{2}$, $\sigma_{1}(t)=t$ and $\rho \equiv 0$ that satisfy the conditions imposed in that paper, to obtain the comparison result.

Now we deal with the case where f is assumed to be nontrivial and does not change sign. In fact, we assume that inf $f>0$ or sup $f<0$. We follow similar ideas to the ones in [Lu and Wang 2008].

Lemma 2.3. If we have $u, v \in C(\bar{\Omega})$ such that

$$
\max \left\{-\Delta_{p_{1}} u,-\Delta_{p_{2}} u\right\} \leq f \quad \text { and } \quad \max \left\{-\Delta_{p_{1}} v,-\Delta_{p_{2}} v\right\} \geq g \text {, }
$$

where $g>f$ and $v \geq u$ in $\partial \Omega$, then we have $v \geq u$ in Ω.
Proof. By adding a constant if necessary we can assume that $u, v>0$. Arguing by contradiction we assume that

$$
\max _{\bar{\Omega}}(u-v)>0 \geq \max _{\partial \Omega}(u-v) .
$$

Now we double the variables and consider

$$
\sup _{x, y \in \Omega}\left\{u(x)-v(y)-(j / 2)|x-y|^{2}\right\} .
$$

For large j the supremum is attained at interior points x_{j}, y_{j} such that $x_{j} \rightarrow \hat{x}$, $y_{j} \rightarrow \hat{x}$, where \hat{x} is an interior point (that \hat{x} cannot be on the boundary can be obtained as in [Lindqvist and Lukkari 2010]).

Now, we observe that there exists a constant C such that $j\left|x_{j}-y_{j}\right| \leq C$. The theorem of sums (see Theorem 3.2 from [Crandall et al. 1992]) implies that there are symmetric matrices $\mathbb{X}_{j}, \mathbb{Y}_{j}$, with $\mathbb{X}_{j} \leq \mathbb{Y}_{j}$ such that $\left(j\left|x_{j}-y_{j}\right|, \mathbb{X}_{j}\right) \in \overline{J^{2,+}}(u)\left(x_{j}\right)$ and $\left(j\left|x_{j}-y_{j}\right|, \mathbb{Y}_{j}\right) \in \overline{J^{2,-}}(v)\left(y_{j}\right)$, where $\overline{J^{2,+}}(u)\left(x_{j}\right)$ and $\overline{J^{2,-}}(v)\left(y_{j}\right)$ are the closures of the super- and subjets of u and v respectively. Using the equations, assuming that $x_{j} \neq y_{j}$, we have

$$
\max _{i \in\{1,2\}}\left\{-\alpha_{i}\left\langle\mathbb{X}_{j} \frac{\left(x_{j}-y_{j}\right)}{\left|x_{j}-y_{j}\right|}, \frac{\left(x_{j}-y_{j}\right)}{\left|x_{j}-y_{j}\right|}\right\rangle-\theta_{i} \operatorname{tr}\left(\mathbb{X}_{j}\right)\right\} \leq f\left(y_{j}\right)
$$

and

$$
\max _{i \in\{1,2\}}\left\{-\alpha_{i}\left\langle\mathbb{Y}_{j} \frac{\left(x_{j}-y_{j}\right)}{\left|x_{j}-y_{j}\right|}, \frac{\left(x_{j}-y_{j}\right)}{\left|x_{j}-y_{j}\right|}\right\rangle-\theta_{i} \operatorname{tr}\left(\mathbb{Y}_{j}\right)\right\} \geq g\left(y_{j}\right) .
$$

Now we observe that, since $\mathbb{X}_{j} \leq \mathbb{Y}_{j}$ we get

$$
-\operatorname{tr}\left(\mathbb{X}_{j}\right) \geq-\operatorname{tr}\left(\mathbb{Y}_{j}\right)
$$

and

$$
-\left\langle\mathbb{X}_{j} \frac{\left(x_{j}-y_{j}\right)}{\left|x_{j}-y_{j}\right|}, \frac{\left(x_{j}-y_{j}\right)}{\left|x_{j}-y_{j}\right|}\right\rangle \geq-\left\langle\mathbb{Y}_{j} \frac{\left(x_{j}-y_{j}\right)}{\left|x_{j}-y_{j}\right|}, \frac{\left(x_{j}-y_{j}\right)}{\left|x_{j}-y_{j}\right|}\right\rangle .
$$

Hence

$$
\begin{aligned}
f\left(y_{j}\right) & \geq \max _{i \in\{1,2\}}\left\{-\alpha_{i}\left\langle\mathbb{X}_{j} \frac{\left(x_{j}-y_{j}\right)}{\left|x_{j}-y_{j}\right|}, \frac{\left(x_{j}-y_{j}\right)}{\left|x_{j}-y_{j}\right|}\right\rangle-\theta_{i} \operatorname{tr}\left(\mathbb{X}_{j}\right)\right\} \\
& \geq \max _{i \in\{1,2\}}\left\{-\alpha_{i}\left\langle\mathbb{Y}_{j} \frac{\left(x_{j}-y_{j}\right)}{\left|x_{j}-y_{j}\right|}, \frac{\left(x_{j}-y_{j}\right)}{\left|x_{j}-y_{j}\right|}\right\rangle-\theta_{i} \operatorname{tr}\left(\mathbb{Y}_{j}\right)\right\} \geq g\left(x_{j}\right) .
\end{aligned}
$$

This gives a contradiction passing to the limit as $j \rightarrow \infty$.
When $x_{j}=y_{j}$ we obtain

$$
\max _{i \in\{1,2\}}\left\{-\alpha_{i} \lambda_{\max }\left(\mathbb{Y}_{j}\right)-\theta_{i} \operatorname{tr}\left(\mathbb{Y}_{j}\right)\right\} \leq f\left(y_{j}\right)
$$

and

$$
\max _{i \in\{1,2\}}\left\{-\alpha_{i} \lambda_{\min }\left(\mathbb{X}_{j}\right)-\theta_{i} \operatorname{tr}\left(\mathbb{X}_{j}\right)\right\} \geq g\left(x_{j}\right),
$$

which also lead to a contradiction since $\lambda_{\max }\left(\mathbb{Y}_{j}\right) \geq \lambda_{\max }\left(\mathbb{X}_{j}\right) \geq \lambda_{\min }\left(\mathbb{X}_{j}\right)$.
Hence we have obtained that $u \leq v$, as we wanted to prove.
Lemma 2.4. If $u, v \in C(\bar{\Omega})$ are such that

$$
\max \left\{-\Delta_{p_{1}} u,-\Delta_{p_{2}} u\right\} \leq f, \quad \text { and } \quad \max \left\{-\Delta_{p_{1}} v,-\Delta_{p_{2}} v\right\} \geq f
$$

in Ω with $\inf _{\Omega} f>0$ and $v \geq u$ on $\partial \Omega$, then we have $v \geq u$ in Ω.
Proof. By adding a constant if necessary we can assume that $u, v>0$. Let's consider $v_{\delta}=(1+\delta) v$, then

$$
\max \left\{-\Delta_{p_{1}} u,-\Delta_{p_{2}} u\right\} \leq f<(1+\delta) f \leq \max \left\{-\Delta_{p_{1}} v_{\delta},-\Delta_{p_{2}} v_{\delta}\right\}
$$

and $v_{\delta} \geq v \geq u$ in $\partial \Omega$. Then by the preceding lemma we conclude that and $v_{\delta} \geq u$ in Ω for all $\delta>0$. Making $\delta \rightarrow 0$, we get $v \geq u$ in Ω as we wanted to show.
Remark 2.5. The above lemma is also true when $\sup _{\Omega} f<0$. So, we have comparisons for the cases $\inf _{\Omega} f>0, \sup _{\Omega} f<0$ and $f \equiv 0$. From this comparison result we get uniqueness of solutions.

Now we deal with the existence of solutions. In the proof of this result we are only using that the exterior ball condition holds for Ω when $p_{1} \leq N$ or $p_{2} \leq N$.
Theorem 2.6. Assume that $\inf f>0$, sup $f<0$ or $f \equiv 0$. Then, given g a continuous function defined on $\partial \Omega$, there exists $u \in C(\bar{\Omega})$ which is a viscosity solution of (1-2) such that $u=g$ in $\partial \Omega$.
Proof. We consider the set

$$
\mathcal{A}=\left\{v \in C(\bar{\Omega}): \max \left\{-\Delta_{p_{1}} v,-\Delta_{p_{2}} v\right\} \geq f \text { in } \Omega \text { and } v \geq g \text { on } \partial \Omega\right\},
$$

where the inequality for the equation inside Ω is verified in the viscosity sense and the inequality on $\partial \Omega$ in the pointwise sense. Since $\Delta|x|^{2}=2 n$ and $\Delta_{\infty}|x|^{2}=2$, we have that $\max \left\{-\Delta_{p_{1}} v,-\Delta_{p_{2}} v\right\}>0$ for $v(x)=-|x|^{2}$. Hence we can choose K_{1} such that the operator applied to $-K_{1}|x|^{2}$ is grater than $\sup f$ and then we can choose K_{2} such that $K_{2}-K_{1}|x|^{2} \geq g(x)$ in $\partial \Omega$. We conclude that the function $K_{2}-K_{1}|x|^{2}$ is in \mathcal{A} for suitable K_{1}, K_{2}. Therefore the set \mathcal{A} is not empty.

We define

$$
u(x)=\inf _{v \in \mathcal{A}} v(x), \quad x \in \bar{\Omega}
$$

This infimum is finite since, as the comparison holds, we have $u(x) \geq-L_{2}+L_{1}|x|^{2}$ for all $u \in \mathcal{A}$ for large L_{1}, L_{2}. The function u, being the infimum of supersolutions, is a supersolution. We already know that u is upper semicontinuous, as it is the infimum of continuous functions. Let us see that it is indeed a solution. Suppose not, then there exists $\phi \in C^{2}$ such that ϕ touches u at $x_{0} \in \Omega$ strictly from above, but

$$
\max \left\{-\Delta_{p_{1}} \phi\left(x_{0}\right),-\Delta_{p_{2}} \phi\left(x_{0}\right)\right\}>f\left(x_{0}\right)
$$

Let us write
$\phi(x)=\phi\left(x_{0}\right)+\nabla \phi\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\frac{1}{2}\left\langle D^{2} \phi\left(x_{0}\right)\left(x-x_{0}\right), x-x_{0}\right\rangle+o\left(\left|x-x_{0}\right|^{2}\right)$.
We define $\hat{\phi}(x)=\phi(x)-\delta$ for a small positive number δ. Then $\hat{\phi}<u$ in a small neighborhood of x_{0}, contained in the set $\left\{x: \max \left\{-\Delta_{p_{1}} \phi(x),-\Delta_{p_{2}} \phi(x)\right\}>f(x)\right\}$, but $\hat{\phi} \geq u$ outside this neighborhood, if we take δ small enough.

Now we can consider $v=\min \{\hat{\phi}, u\}$. Since u is a viscosity supersolution in Ω and $\hat{\phi}$ also is a viscosity supersolution in the small neighborhood of x_{0}, it follows that v is a viscosity supersolution. Moreover, on $\partial \Omega, v=u \geq g$. This implies $v \in \mathcal{A}$, but $v=$ $\widehat{\phi}<u$ near x_{0}, which is a contradiction with the definition of u as the infimum in \mathcal{A}.

Finally, we want to prove that $u=g$ on $\partial \Omega$ and that boundary values are attained with continuity. To this end, we have to construct barriers for our operator. It is enough to prove that for every $x_{0} \in \partial \Omega$ and $\varepsilon>0$ there exists a supersolution such that $v \geq g$ on $\partial \Omega$ and $v\left(x_{0}\right) \leq g\left(x_{0}\right)+\varepsilon$, and that there exists a subsolution such that $v \leq g$ on $\partial \Omega$ and $v\left(x_{0}\right) \geq g\left(x_{0}\right)-\varepsilon$. We prove now the existence of the supersolution, and the subsolution can be obtained in a similar way.

Let us consider ϕ a radial function, $\phi(x)=\psi(r)$ with $\psi^{\prime}(r)>0$. Then

$$
\Delta_{\infty} \phi=\psi^{\prime \prime} \quad \text { and } \quad \Delta \phi=\psi^{\prime \prime}+\frac{N-1}{r} \psi^{\prime}
$$

and we get

$$
\begin{aligned}
\max _{i \in\{1,2\}}\left\{-\Delta_{p_{i}} \phi\right\} & =\max _{i \in\{1,2\}}\left\{-\alpha_{i} \Delta_{\infty} \phi-\theta_{i} \Delta \phi\right\} \\
& =\max _{i \in\{1,2\}}\left\{-\alpha_{i} \psi^{\prime \prime}-\theta_{i}\left(\psi^{\prime \prime}+\frac{N-1}{r} \psi^{\prime}\right)\right\} \\
& =\max _{i \in\{1,2\}}\left\{-\frac{p_{i}-2}{N+p_{i}} \psi^{\prime \prime}-\frac{1}{N+p_{i}}\left(\psi^{\prime \prime}+\frac{N-1}{r} \psi^{\prime}\right)\right\} \\
& =\max _{i \in\{1,2\}}\left\{-\frac{p_{i}-1}{N+p_{i}} \psi^{\prime \prime}-\frac{1}{N+p_{i}} \frac{N-1}{r} \psi^{\prime}\right\}
\end{aligned}
$$

We want this last expression to be greater than a positive constant.
To have a function of the form $\psi(r)=r^{\gamma}$ with $\gamma>0$ that fulfills this, we need

$$
\max _{i \in\{1,2\}}\left\{-\frac{p_{i}-1}{N+p_{i}} \gamma(\gamma-1)-\frac{N-1}{N+p_{i}} \gamma\right\} r^{\gamma-2} \geq c>0 .
$$

Hence we have to choose γ according to

$$
0<\gamma<1-\frac{N-1}{p_{i}-1} .
$$

We have that such γ exists if $N<p_{1}$ or $N<p_{2}$. We will require that $\min \left\{p_{1}, p_{2}\right\}>$ N, that is, $N<p_{1}, p_{2}$.

In this case we can consider $v(x)=K \phi\left(x-x_{0}\right)+g\left(x_{0}\right)+\varepsilon$ with K big enough. If $K c>\sup f$, then v is a supersolution. We have that $v\left(x_{0}\right)=g\left(x_{0}\right)+\varepsilon$, it remains to prove that $v \geq g$ on $\partial \Omega$. Since g is continuous at x_{0}, there exists $\delta>0$ such that $\left|g(x)-g\left(x_{0}\right)\right|<\varepsilon$ for every $x \in B_{\delta}\left(x_{0}\right)$. Then we have that $v \geq g$ on $\partial \Omega \cap B_{\delta}\left(x_{0}\right)$. Finally we can pick K such that $K \delta^{\gamma}+g\left(x_{0}\right)+\varepsilon>\sup g$, and we obtain $v \geq g$ on $\partial \Omega \cap B_{\delta}\left(x_{0}\right)^{c}$.

When $N \geq p_{1}$ or $N \geq p_{2}$, we can find (with similar computations) a barrier of the form $\psi(r)=-r^{\gamma}$ with $\gamma<0$. Note that this function is not well-defined at 0 . In this case, we have a barrier if the exterior ball condition holds. Given $x_{0} \in \partial \Omega$, there exist $\lambda>0$ and $y_{0} \in \Omega^{c}$ such that $\left|x_{0}-y_{0}\right|=\lambda$ and $B_{\lambda}\left(y_{0}\right) \subset \Omega^{c}$. We can consider $v(x)=K\left(\phi\left(x-y_{0}\right)-\phi\left(x_{0}-y_{0}\right)\right)+g\left(x_{0}\right)+\varepsilon$ and pick K in a similar way to above.

Now, we prove a version of the Hopf lemma for our equation. Note that since we deal with viscosity solutions, the normal derivative may not exist in a classical sense.
Lemma 2.7. Let $\Omega \subset \mathbb{R}^{N}$ be a domain with the interior ball condition and u a subsolution to (1-2) with $f \equiv 0$. Given $x_{0} \in \partial \Omega$ such that $u\left(x_{0}\right)>u(x)$ for all $x \in \Omega$, we have

$$
\limsup _{t \rightarrow 0^{+}} \frac{u\left(x_{0}-t v\right)-u\left(x_{0}\right)}{t}<0
$$

where v is exterior normal to $\partial \Omega$.
Proof. As the interior ball condition holds, we can assume there exists a ball centered at 0 , contained in Ω that has x_{0} in its boundary; that is, we have $B_{r}(0) \subset \Omega$ and $x_{0} \in \partial B_{r}(0)$. Let us consider $\phi(x)=1 /\left(|x|^{N-2}\right)-1 /\left(r^{N-2}\right)$ if $N>2$ and $\phi(x)=-\ln |x|+\ln (r)$ for $N=2$. It is easy to check that

$$
\Delta \phi=0, \quad \Delta_{\infty} \phi \geq 0, \quad \text { in } B_{r}(0) \backslash\{0\} .
$$

So we have

$$
\begin{array}{rlrl}
\max \left\{-\Delta_{p_{1}} \phi,-\Delta_{p_{2}} \phi\right\} & \leq 0 & & \text { in } B_{r}(0) \backslash\{0\}, \\
\phi \equiv 0 & & \text { on } \partial B_{r}(0) .
\end{array}
$$

As $u\left(x_{0}\right)>u(x)$ for all $x \in \Omega$, in particular on $\partial B_{r / 2}(0)$, then there exists $\varepsilon>0$ such that $u\left(x_{0}\right)-\varepsilon \phi \geq u$ on $\partial B_{r / 2}(0)$. Therefore, by the comparison principle, we get $u\left(x_{0}\right)-\varepsilon \phi \geq u$ in $B_{r}(0) \backslash B_{r / 2}(0)$ and the result follows.

3. Unbalanced tug-of-war games with noise

In this section we introduce the game that we call unbalanced tug-of-war game with noise. First, let us describe the game without entering in mathematical details. It is a two-player zero-sum stochastic game. The game is played over a bounded open set $\Omega \subset \mathbb{R}^{N}$. An $\varepsilon>0$ is given. Players I and II play as follows. At an initial time, they place a token at a point $x_{0} \in \Omega$ and Player I chooses a coin between two possible ones (each of the two coins have different probabilities of getting a head). We think of this as choosing $i \in\{1,2\}$. Now they play the tug-of-war with noise introduced in [Manfredi et al. 2012b] starting with the chosen coin. They toss the chosen coin, which is biased with probabilities α_{i} and β_{i}, where $\alpha_{i}+\beta_{i}=1$ and $0 \leq \alpha_{i}, \beta_{i} \leq 1$. If they get heads (probability α_{i}), they toss a fair coin (with the same probability for heads and tails) and the winner of the toss moves the game position to any $x_{1} \in B_{\varepsilon}\left(x_{0}\right)$ of his choice. On the other hand, if they get tails (probability β_{i}) the game state moves according to the uniform probability density to a random point $x_{1} \in B_{\varepsilon}\left(x_{0}\right)$. Note that Player I chooses the probability of playing the usual tug-of-war game or moving at random with the choice of the first coin between two possibilities. Then they continue playing from x_{1}. At each turn Player I may change the choice of coin.

This procedure yields a sequence of game states x_{0}, x_{1}, \ldots. Once the game position leaves Ω, let's say at the τ-th step, the game ends. At that time the token will be on the compact boundary strip around Ω of width ε that we denote

$$
\Gamma_{\varepsilon}=\left\{x \in \mathbb{R}^{n} \backslash \Omega: \operatorname{dist}(x, \partial \Omega) \leq \varepsilon\right\} .
$$

The payoff is given by a running payoff function $f: \Omega \rightarrow \mathbb{R}$ and a final payoff function $g: \Gamma_{\varepsilon} \rightarrow \mathbb{R}$. At the end, Player II pays Player I the amount given by $g\left(x_{\tau}\right)+\varepsilon^{2} \sum_{n=0}^{\tau-1} f\left(x_{n}\right)$, that is, Player I will have earned

$$
g\left(x_{\tau}\right)+\varepsilon^{2} \sum_{n=0}^{\tau-1} f\left(x_{n}\right)
$$

while Player II will have earned

$$
-g\left(x_{\tau}\right)-\varepsilon^{2} \sum_{n=0}^{\tau-1} f\left(x_{n}\right)
$$

We can think of this as Player II paying Player I $\varepsilon^{2} f\left(x_{i}\right)$ when the token leaves x_{i}, and $g\left(x_{\tau}\right)$ when the game ends.

A strategy S_{I} for Player I is a pair of collections of measurable mappings

$$
S_{\mathrm{I}}=\left(\left\{\gamma^{k}\right\}_{k=0}^{\infty},\left\{S_{\mathrm{I}}^{k}\right\}_{k=0}^{\infty}\right)
$$

such that, given a partial history $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$, Player I chooses coin 1 with probability

$$
\gamma^{k}\left(x_{0}, x_{1}, \ldots, x_{k}\right)=\gamma \in[0,1]
$$

and the next game position is

$$
S_{\mathrm{I}}^{k}\left(x_{0}, x_{1}, \ldots, x_{k}\right)=x_{k+1} \in B_{\varepsilon}\left(x_{k}\right)
$$

if Player I wins the toss. Similarly, Player II plays according to a strategy

$$
S_{\mathrm{II}}=\left\{S_{\mathrm{II}}^{k}\right\}_{k=0}^{\infty} .
$$

Then, the next game position $x_{k+1} \in B_{\varepsilon}\left(x_{k}\right)$, given a partial history $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$, is distributed according to the probability

$$
\begin{aligned}
& \pi_{S_{\mathrm{I}}, S_{\mathrm{II}}}\left(x_{0}, x_{1}, \ldots, x_{k}, A\right)= \\
& \quad \frac{\beta\left|A \cap B_{\varepsilon}\left(x_{k}\right)\right|}{\left|B_{\varepsilon}\left(x_{k}\right)\right|}+\frac{\alpha}{2} \delta_{S_{\mathrm{I}}^{k}\left(x_{0}, x_{1}, \ldots, x_{k}\right)}(A)+\frac{\alpha}{2} \delta_{S_{\Pi}^{k}\left(x_{0}, x_{1}, \ldots, x_{k}\right)}(A),
\end{aligned}
$$

where $\gamma=\gamma^{k}\left(x_{0}, x_{1} \ldots, x_{k}\right), \alpha=\alpha_{1} \gamma+\alpha_{2}(1-\gamma), \beta=\beta_{1} \gamma+\beta_{2}(1-\gamma)$ and A is any measurable set (note that α and β depend on S_{I} and $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$; we do not make this explicit to avoid overloading the notation). From now on, we shall omit k and simply denote the strategies by γ, S_{I} and S_{II}.

Let $\Omega_{\varepsilon}=\Omega \cup \Gamma_{\varepsilon} \subset \mathbb{R}^{n}$ be equipped with the natural topology, and the σ-algebra \mathcal{B} of the Lebesgue measurable sets. The space of all game sequences

$$
H^{\infty}=\left\{x_{0}\right\} \times \Omega_{\varepsilon} \times \Omega_{\varepsilon} \times \cdots,
$$

is a product space endowed with the product topology.
Let $\left\{\mathcal{F}_{k}\right\}_{k=0}^{\infty}$ denote the filtration of σ-algebras, $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots$ which are defined as follows: \mathcal{F}_{k} is the product σ-algebra generated by cylinder sets of the form $\left\{x_{0}\right\} \times A_{1} \times \cdots \times A_{k} \times \Omega_{\varepsilon} \times \Omega_{\varepsilon} \cdots$ with $A_{i} \in \mathcal{B}$. For

$$
\omega=\left(x_{0}, \omega_{1}, \ldots\right) \in H^{\infty},
$$

we define the coordinate processes

$$
X_{k}(\omega)=\omega_{k}, \quad X_{k}: H^{\infty} \rightarrow \mathbb{R}^{n}, \quad k=0,1, \ldots
$$

so that X_{k} is an \mathcal{F}_{k}-measurable random variable. Moreover, $\mathcal{F}_{\infty}=\sigma\left(\bigcup \mathcal{F}_{k}\right)$ is the smallest σ-algebra so that all X_{k} are \mathcal{F}_{∞}-measurable. To denote the time when the game state reaches Γ_{ε}, we define a random variable

$$
\tau(\omega)=\inf \left\{k: X_{k}(\omega) \in \Gamma_{\varepsilon}, k=0,1, \ldots\right\}
$$

which is a stopping time relative to the filtration $\left\{\mathcal{F}_{k}\right\}_{k=0}^{\infty}$.

A starting point x_{0} and the strategies S_{I} and S_{II} define (by Kolmogorov's extension theorem) a unique probability measure $\mathbb{P}_{S_{\mathrm{I}}, S_{\mathrm{II}}}^{x_{0}}$ in H^{∞} relative to the σ-algebra \mathcal{F}^{∞}. We denote by $\mathbb{E}_{S_{\mathrm{I}}, S_{\mathrm{II}}}^{x_{0}}$ the corresponding expectation.

Then, if S_{I} and $S_{\text {II }}$ denote the strategies adopted by Player I and II respectively, we define the expected payoff for Player I as

$$
V_{x_{0}, \mathrm{I}}\left(S_{\mathrm{I}}, S_{\mathrm{II}}\right)= \begin{cases}\mathbb{E}_{S_{\mathrm{I}}, S_{\mathrm{II}}}^{x_{0}}\left[g\left(X_{\tau}\right)+\varepsilon^{2} \sum_{n=1}^{\tau-1} f\left(x_{n}\right)\right] & \text { if the game ends a.s., } \\ -\infty & \text { otherwise }\end{cases}
$$

and then the expected payoff for Player II as

$$
V_{x_{0}, \mathrm{II}}\left(S_{\mathrm{I}}, S_{\mathrm{II}}\right)= \begin{cases}\mathbb{E}_{S_{\mathrm{I}}, S_{\mathrm{II}}}^{x_{0}}\left[g\left(X_{\tau}\right)+\varepsilon^{2} \sum_{n=1}^{\tau-1} f\left(x_{n}\right)\right] & \text { if the game ends a.s., } \\ +\infty & \text { otherwise. }\end{cases}
$$

Note that we penalize both players when the game doesn't end almost surely.
The value of the game for Player I is given by

$$
u_{\mathrm{I}}\left(x_{0}\right)=\sup _{S_{\mathrm{I}}} \inf _{S_{\mathrm{II}}} V_{x_{0}, \mathrm{I}}\left(S_{\mathrm{I}}, S_{\mathrm{II}}\right),
$$

while the value of the game for Player II is given by

$$
u_{\mathrm{II}}\left(x_{0}\right)=\inf _{S_{\mathrm{II}}} \sup _{S_{\mathrm{I}}} V_{x_{0}, \mathrm{II}}\left(S_{\mathrm{I}}, S_{\mathrm{II}}\right) .
$$

When $u_{\mathrm{I}}=u_{\text {II }}$ we say the game has a value $u:=u_{\mathrm{I}}=u_{\mathrm{II}}$. The values $u_{\mathrm{I}}\left(x_{0}\right)$ and $u_{\mathrm{II}}\left(x_{0}\right)$ are in a sense the best outcomes each player can expect when the game starts at x_{0}. For the measurability of the value functions we refer to [Maitra and Sudderth 1993; 1996].

Comment. It seems natural to consider a more general protocol to determine α in a prescribed closed set. It is clear that there are only two possible scenarios: At each turn, Player I wants to maximize the value of α and Player II wants to minimize it, or the converse. An expected value for α is obtained in each case assuming each player plays optimally. Depending on the value of α in each case, we are considering a game equivalent to the one that we described previously or another one where Player II gets the choice of the first coin, for certain values of α_{i}.

4. The game value function and the dynamic programming principle

In this section, we prove that the game has a value, that is, $u_{\mathrm{I}}=u_{\mathrm{II}}$ and that this value function satisfies the dynamic programming principle (DPP) given by
$u(x)= \begin{cases}\varepsilon^{2} f(x)+\max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\sup _{B_{\varepsilon}(x)} u+\inf _{B_{\varepsilon}(x)} u\right\}+\beta_{i} f_{B_{\varepsilon}(x)} u(y) d y\right), & x \in \Omega, \\ g(x), & x \in \Gamma_{\varepsilon} .\end{cases}$

Let's see intuitively why this holds. At each step we have that Player I chooses $i \in\{1,2\}$ and then we have three possibilities:

- With probability $\alpha_{i} / 2$, Player I moves the token, trying to maximize the expected outcome.
- With probability $\alpha_{i} / 2$, Player II moves the token, trying to minimize the expected outcome.
- With probability β_{i}, the token moves at random.

Since Player I chooses i trying to maximize the expected outcome we obtain a $\max _{i \in\{1,2\}}$ in the DPP. Finally, the expected payoff at x is given by $\varepsilon^{2} f(x)$ plus the expected payoff for the rest of the game.

Similar results are proved in [Antunović et al. 2012; Liu and Schikorra 2013; Luiro et al. 2013; Manfredi et al. 2012a; Peres et al. 2009; Ruosteenoja 2016]. Note that when $\alpha_{1}=\alpha_{2}$ (and hence $\beta_{1}=\beta_{2}$) Player I has no choice to make and we recover known results for tug-of-war games (with or without noise); see [Peres et al. 2009; Manfredi et al. 2012b]. We follow [Ruosteenoja 2016] where the idea is to prove the existence of a function satisfying the DPP and then that this function gives the game value. For the existence of a solution to the DPP we borrow some ideas from [Antunović et al. 2012], and for the uniqueness of such a solution and the existence of the value of the game we use martingales as in [Manfredi et al. 2012a]. However we will have two different cases: One, where the noise or the strict positivity (or negativity) of f assures us that the game ends almost surely, independently of the strategies adopted by the players. And another one where we have to handle the problem of getting strategies for the players to play almost optimally and to make sure that the game ends almost surely.

In what follows, $\Omega \subset \mathbb{R}^{N}$ is a bounded open set and $\varepsilon>0, g: \Gamma_{\varepsilon} \rightarrow \mathbb{R}$ and $f: \Omega \rightarrow \mathbb{R}$ are bounded Borel functions such that $f \equiv 0, \inf _{\Omega} f>0$ or $\sup _{\Omega} f<0$.

Definition 4.1. A function u is sub- $p_{1}-p_{2}$-harmonious if

$$
u(x) \leq \begin{cases}\varepsilon^{2} f(x)+\max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\sup _{B_{\varepsilon}(x)} u+\inf _{B_{\varepsilon}(x)} u\right\}+\beta_{i} f_{B_{\varepsilon}(x)} u(y) d y\right) & x \in \Omega, \\ g(x) & x \in \Gamma_{\varepsilon}\end{cases}
$$

Analogously, a function u is super- $p_{1}-p_{2}$-harmonious if
$u(x) \geq \begin{cases}\varepsilon^{2} f(x)+\max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\sup _{B_{\varepsilon}(x)} u+\inf _{B_{\varepsilon}(x)} u\right\}+\beta_{i} f_{B_{\varepsilon}(x)} u(y) d y\right), & x \in \Omega, \\ g(x), & x \in \Gamma_{\varepsilon} .\end{cases}$
Finally, u is $p_{1}-p_{2}$-harmonious if it is both sub- and super- $p_{1}-p_{2}$-harmonious (i.e., the equality holds).

Figure 1. The partition considered in the proof of Lemma 4.2.

Here α_{i} and β_{i} are given by

$$
\alpha_{i}=\frac{p_{i}-2}{p_{i}+N} \quad \text { and } \quad \beta_{i}=\frac{N+2}{p_{i}+N}, \quad i=1,2
$$

Our next task is to prove uniform bounds for these functions.
Lemma 4.2. Sub-p $p_{1}-p_{2}$-harmonious functions are uniformly bounded from above.
Proof. We will consider the space partitioned along the x_{N} axis in strips of width $\varepsilon / 2$. To this end we define

$$
D=\frac{\left|\left\{y \in B_{\varepsilon}: y_{N}<-\varepsilon / 2\right\}\right|}{\left|B_{\varepsilon}\right|}=\frac{\left|\left\{y \in B_{1}: y_{N}<-1 / 2\right\}\right|}{\left|B_{1}\right|} \quad \text { and } \quad C=1-D .
$$

The constant D gives the fraction of the ball $B_{\varepsilon}(x)$ covered by the shadowed section in Figure $1,\left\{y \in B_{\varepsilon}: y_{N}<x_{N}-\varepsilon / 2\right\}$, and C the fraction occupied by its complement.

Given $x \in \Omega$, let us consider $t \in \mathbb{R}$ such that $x_{N}<t \varepsilon / 2+\varepsilon / 2$. We get

$$
\left\{y \in B_{\varepsilon}(x): y_{N}<x_{N}-\frac{\varepsilon}{2}\right\} \subset\left\{z \in \mathbb{R}^{N}: z_{N}<t \frac{\varepsilon}{2}\right\} .
$$

Now, given u a sub- $p_{1}-p_{2}$-subharmonious function, we have that

$$
u(x) \leq \varepsilon^{2} f(x)+\max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\sup _{B_{\varepsilon}(x)} u+\inf _{B_{\varepsilon}(x)} u\right\}+\beta_{i} f_{B_{\varepsilon}(x)} u(y) d y\right)
$$

Now we can bound the terms in the right-hand side considering the partition given above, see Figure 1. We have

$$
\begin{aligned}
& \sup _{B_{\varepsilon}(x)} u \\
& \inf _{B_{\varepsilon}(x)} u \leq \sup _{\Omega_{\varepsilon}} u, \\
& \sup _{\left\{y \in B_{\varepsilon}(x): y_{N}<x_{N}-\varepsilon / 2\right\}} u \leq \sup _{\Omega_{\varepsilon} \cap\left\{z_{N}<t \varepsilon / 2\right\}} u,
\end{aligned}
$$

and

$$
\begin{aligned}
f_{B_{\varepsilon}(x)} u(y) d y \leq & \left|\left\{y \in B_{\varepsilon}(x): y_{N} \geq x_{N}-\frac{\varepsilon}{2}\right\}\right| \sup _{\left\{y \in B_{\varepsilon}(x): y_{N} \geq x_{N}-\varepsilon / 2\right\}} u \\
& +\left|\left\{y \in B_{\varepsilon}(x): y_{N}<x_{N}-\frac{\varepsilon}{2}\right\}\right| \sup _{\left\{y \in B_{\varepsilon}(x): y_{N}<x_{N}-\varepsilon / 2\right\}} u \\
\leq & C \sup _{\Omega_{\varepsilon}} u+D \sup _{\Omega_{\varepsilon} \cap\left\{z_{N}<t \varepsilon / 2\right\}} u .
\end{aligned}
$$

Hence, we obtain

$$
\begin{aligned}
& u(x) \leq \varepsilon^{2} \sup _{\Omega} f+\max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\sup _{\Omega_{\varepsilon}} u+\sup _{\Omega_{\varepsilon} \cap\left\{z_{N}<t \varepsilon / 2\right\}} u\right\}\right. \\
& \left.+\beta_{i}\left\{C \sup _{\Omega_{\varepsilon}} u+D \sup _{\Omega_{\varepsilon} \cap\left\{z_{N}<t \varepsilon / 2\right\}} u\right\}\right) \\
& =\varepsilon^{2} \sup _{\Omega} f+\max _{i \in\{1,2\}}\left(\left\{\frac{\alpha_{i}}{2}+\beta_{i} C\right\} \sup _{\Omega_{\varepsilon}} u\right. \\
& \left.+\left\{\frac{\alpha_{i}}{2}+\beta_{i} D\right\} \sup _{\Omega_{\varepsilon} \cap\left\{z_{n}<t \varepsilon / 2\right\}} u\right) \\
& =\varepsilon^{2} \sup _{\Omega} f+\max _{i \in\{1,2\}}\left\{\frac{\alpha_{i}}{2}+\beta_{i} C\right\} \sup _{\Omega_{\varepsilon}} u \\
& +\min _{i \in\{1,2\}}\left\{\frac{\alpha_{i}}{2}+\beta_{i} D\right\} \sup _{\Omega_{\varepsilon} \cap\left\{z_{N}<t \varepsilon / 2\right\}} u \\
& =\varepsilon^{2} \sup _{\Omega} f+K \sup _{\Omega_{\varepsilon}} u+(1-K) \sup _{\Omega_{\varepsilon} \cap\left\{z_{N}<t \varepsilon / 2\right\}} u,
\end{aligned}
$$

where $K=\max _{i \in\{1,2\}}\left\{\alpha_{i} / 2+\beta_{i} C\right\}$. We conclude that $\sup _{\Omega_{\varepsilon} \cap\left\{z_{N}<(t+1) \varepsilon / 2\right\}} u_{k} \leq \varepsilon^{2} \sup _{\Omega} f+K \sup _{\Omega_{\varepsilon}} u_{k}+(1-K) \sup _{\Omega_{\varepsilon} \cap\left\{z_{N}<t \varepsilon / 2\right\}} u_{k}$. Then, inductively, we get

$$
\begin{aligned}
& \sup _{\Omega_{\varepsilon} \cap\left\{z_{N}<(t+n) \varepsilon / 2\right\}} u \leq\left(\varepsilon^{2} \sup _{\Omega} f+K \sup _{\Omega_{\varepsilon}} u\right) \\
& \times \sum_{i=0}^{n-1}(1-K)^{i}+(1-K)^{n} \sup _{\Omega_{\varepsilon} \cap\left\{z_{N}<t \varepsilon / 2\right\}} u .
\end{aligned}
$$

We assume without loss of generality that $\Omega \subset\left\{x \in \mathbb{R}^{N}: 0<x_{N}<R\right\}$ for some $R>0$. Now, we apply the formula for $t=0$ and n such that $n \varepsilon / 2>R$, and get

$$
\begin{aligned}
\sup _{\Omega_{\varepsilon}} u & \leq\left(\varepsilon^{2} \sup _{\Omega} f+K \sup _{\Omega_{\varepsilon}} u\right) \sum_{i=0}^{n-1}(1-K)^{i}+(1-K)^{n} \sup _{\Gamma_{\varepsilon}} g \\
& =\left(\varepsilon^{2} \sup _{\Omega} f+K \sup _{\Omega_{\varepsilon}} u\right) \frac{1-(1-K)^{n}}{1-(1-K)}+(1-K)^{n} \sup _{\Gamma_{\varepsilon}} g \\
& =\frac{1-(1-K)^{n}}{K} \varepsilon^{2} \sup _{\Omega} f+\left(1-(1-K)^{n}\right) \sup _{\Omega_{\varepsilon}} u+(1-K)^{n} \sup _{\Gamma_{\varepsilon}} g .
\end{aligned}
$$

Hence, we obtain

$$
(1-K)^{n} \sup _{\Omega_{\varepsilon}} u \leq \frac{1-(1-K)^{n}}{K} \varepsilon^{2} \sup _{\Omega} f+(1-K)^{n} \sup _{\Gamma_{\varepsilon}} g \text {, }
$$

that gives the desired upper bound,

$$
\sup _{\Omega_{\varepsilon}} u \leq \frac{1-(1-K)^{n}}{K(1-K)^{n}} \varepsilon^{2} \sup _{\Omega} f+\sup _{\Gamma_{\varepsilon}} g .
$$

Analogously, there holds that super- $p_{1}-p_{2}$-harmonious functions are uniformly bounded from below.

Now with these results we can show that there exists a $p_{1}-p_{2}$-harmonious function as in [Liu and Schikorra 2015] applying Perron's Method. Remark that when f and g are bounded we can easily obtain the existence of sub- $p_{1}-p_{2}$-harmonious and super- $p_{1}-p_{2}$-harmonious functions.

We prefer a constructive argument (since we will use this construction again in what follows). Let $u_{k}: \Omega_{\varepsilon} \rightarrow \mathbb{R}$ be a sequence of functions such that $u_{k}=g$ on Γ_{ε} for all $k \in \mathbb{N}$, then u_{0} is sub- $p_{1}-p_{2}$-harmonious and

$$
u_{k+1}(x)=\varepsilon^{2} f(x)+\max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\sup _{B_{\varepsilon}(x)} u_{k}+\inf _{B_{\varepsilon}(x)} u_{k}\right\}+\beta_{i} f_{B_{\varepsilon}(x)} u_{k}(y) d y\right),
$$

for $x \in \Omega$.
Now, our main task is to show that this sequence converges uniformly. To this end, let us prove an auxiliary lemma where we borrow some ideas from [Antunović et al. 2012].

Lemma 4.3. Let $x \in \Omega, n \in \mathbb{N}$ and fix λ_{i} for $i=1, \ldots, 4$, such that

$$
u_{n+1}(x)-u_{n}(x) \geq \lambda_{1}, \quad\left\|u_{n}-u_{n-1}\right\|_{\infty} \leq \lambda_{2}, \quad f_{B_{\varepsilon}(x)} u_{n}-u_{n-1} \leq \lambda_{3},
$$

$\lambda_{3}<\lambda_{1}$, and $\lambda_{4}>0$. Then, for $\alpha:=\max \left\{\alpha_{1}, \alpha_{2}\right\}>0$, there exists $y \in B_{\varepsilon}(x)$ such that

$$
\inf _{B_{\varepsilon}(x)} u_{n} \geq u_{n-1}(y)+\frac{2 \lambda_{1}}{\alpha}-\lambda_{2}-\frac{2(1-\alpha) \lambda_{3}}{\alpha}-\lambda_{4} .
$$

Proof. Given $u_{n+1}(x)-u_{n}(x) \geq \lambda_{1}$, by the recursive definition, we have

$$
\begin{aligned}
\lambda_{1} \leq & \varepsilon^{2} f(x)+\max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\sup _{B_{\varepsilon}(x)} u_{n}+\inf _{B_{\varepsilon}(x)} u_{n}\right\}+\beta_{i} f_{B_{\varepsilon}(x)} u_{n}(y) d y\right) \\
& -\varepsilon^{2} f(x)-\max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\sup _{B_{\varepsilon}(x)} u_{n-1}+\inf _{B_{\varepsilon}(x)} u_{n-1}\right\}+\beta_{i} f_{B_{\varepsilon}(x)} u_{n-1}(y) d y\right) .
\end{aligned}
$$

Since $\max \{a, b\}-\max \{c, d\} \leq \max \{a-c, b-d\}$, we get

$$
\begin{aligned}
& \lambda_{1} \leq \max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\sup _{B_{\varepsilon}(x)} u_{n}+\inf _{B_{\varepsilon}(x)} u_{n}-\sup _{B_{\varepsilon}(x)} u_{n-1}-\inf _{B_{\varepsilon}(x)} u_{n-1}\right\}\right. \\
&\left.+\beta_{i} f_{B_{\varepsilon}(x)} u_{n}(y)-u_{n-1}(y) d y\right) .
\end{aligned}
$$

Using that $f_{B_{\varepsilon}(x)} u_{n}-u_{n-1} \leq \lambda_{3}$ we get

$$
\max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\sup _{B_{\varepsilon}(x)} u_{n}+\inf _{B_{\varepsilon}(x)} u_{n}-\sup _{B_{\varepsilon}(x)} u_{n-1}-\inf _{B_{\varepsilon}(x)} u_{n-1}\right\}+\beta_{i} \lambda_{3}\right) \geq \lambda_{1} .
$$

Now $\lambda_{3}<\lambda_{1}$ implies

$$
\frac{\alpha}{2}\left\{\sup _{B_{\varepsilon}(x)} u_{n}+\inf _{B_{\varepsilon}(x)} u_{n}-\sup _{B_{\varepsilon}(x)} u_{n-1}-\inf _{B_{\varepsilon}(x)} u_{n-1}\right\}+(1-\alpha) \lambda_{3} \geq \lambda_{1} .
$$

We bound the difference between the suprema using $\left\|u_{n}-u_{n-1}\right\|_{\infty} \leq \lambda_{2}$ and we obtain

$$
\frac{\alpha}{2}\left\{\inf _{B_{\varepsilon}(x)} u_{n}-\inf _{B_{\varepsilon}(x)} u_{n-1}\right\}+\frac{\alpha \lambda_{2}}{2}+(1-\alpha) \lambda_{3} \geq \lambda_{1},
$$

that is,

$$
\inf _{B_{\varepsilon}(x)} u_{n} \geq \inf _{B_{\varepsilon}(x)} u_{n-1}+\frac{2 \lambda_{1}}{\alpha}-\lambda_{2}-\frac{2(1-\alpha) \lambda_{3}}{\alpha} .
$$

Finally we can choose $y \in B_{\varepsilon}(x)$ such that

$$
u_{n-1}(y) \leq \inf _{B_{\varepsilon}(x)} u_{n-1}+\lambda_{4},
$$

which gives the desired inequality.
Now we are ready to prove the uniform convergence and, therefore, the existence of a $p_{1}-p_{2}$-harmonious function.
Proposition 4.4. The sequence u_{k} converges uniformly and the limit is a solution to the DPP.

Proof. Since u_{0} is sub- $p_{1}-p_{2}$-harmonious we have $u_{1} \geq u_{0}$. In addition, if $u_{k} \geq u_{k-1}$, by the recursive definition, we have $u_{k+1} \geq u_{k}$. Then, by induction, we obtain that the sequence of functions is an increasing sequence. Replacing $u_{k} \leq u_{k+1}$ in the recursive definition we can see that u_{k} is a sub- $p_{1}-p_{2}$-harmonious function for all k. This gives us a uniform bound for u_{k} (independent of k). Hence, the u_{k} converge pointwise to a bounded Borel function u.

In the case $\alpha_{1}=\alpha_{2}=0$ we can pass to the limit on the recursion because of Fatou's lemma. Hence we assume $\alpha:=\max \left\{\alpha_{1}, \alpha_{2}\right\}>0$.

Now we show that the convergence is uniform. Suppose not. Observe that if $\left\|u_{n+1}-u_{n}\right\|_{\infty} \rightarrow 0$ we can extract a uniformly Cauchy subsequence, thus this
subsequence converges uniformly to a limit u. This implies that the u_{k} converge uniformly to u, because of the monotonicity. By the recursive definition we have $\left\|u_{n+1}-u_{n}\right\|_{\infty} \geq\left\|u_{n}-u_{n-1}\right\|_{\infty} \geq 0$. Then, as we are assuming the convergence is not uniform, we have

$$
\left\|u_{n+1}-u_{n}\right\|_{\infty} \rightarrow M \quad \text { and } \quad\left\|u_{n+1}-u_{n}\right\|_{\infty} \geq M
$$

for some $M>0$.
Let us observe that by Fatou's lemma it follows that

$$
\lim _{n \rightarrow \infty} \int_{\Omega} u(y)-u_{n}(y) d y=0
$$

so we can bound $f_{B_{\varepsilon}(x)} u_{n+1}-u_{n}$ uniformly on x.
Given $\delta>0$, let $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$,

$$
\left\|u_{n+1}-u_{n}\right\|_{\infty} \leq M+\delta \quad \text { and } \quad f_{B_{\varepsilon}(x)} u_{n+1}-u_{n}<\delta,
$$

for all $x \in \Omega$. We fix $k \geq 0$. Let $x_{0} \in \Omega$ such that

$$
u_{n_{0}+k}\left(x_{0}\right)-u_{n_{0}+k-1}\left(x_{0}\right) \geq M-\delta .
$$

Now we apply Lemma 4.3 for $\lambda_{1}=M-\delta, \lambda_{2}=M+\delta, \lambda_{3}=\delta$ and $\lambda_{4}=\delta$ and we get

$$
\begin{aligned}
u_{n_{0}+k-1}\left(x_{0}\right), u_{n_{0}+k-1}\left(x_{1}\right) & \geq \inf _{B_{\varepsilon}\left(x_{0}\right)} u_{n_{0}+k-1} \\
& \geq u_{n_{0}+k-2}\left(x_{1}\right)+\frac{2(M-\delta)}{\alpha}-(M+\delta)-\frac{2(1-\alpha)}{\alpha}-\delta \\
& =u_{n_{0}+k-2}\left(x_{1}\right)+M\left(\frac{2}{\alpha}-1\right)-\delta \frac{4}{\alpha} \\
& \geq u_{n_{0}+k-2}\left(x_{1}\right)+M-\delta \frac{4}{\alpha}
\end{aligned}
$$

for some $x_{1} \in B_{\varepsilon}\left(x_{0}\right)$. Let us define $\xi=4 / \alpha$. If we repeat the argument for x_{1}, but now with $\lambda_{1}=M-\delta \xi$, we obtain

$$
u_{n_{0}+k-2}\left(x_{1}\right), u_{n_{0}+k-2}\left(x_{2}\right) \geq u_{n_{0}+k-3}\left(x_{2}\right)+M-\delta\left(\xi^{2}+\xi\right) .
$$

Inductively, we obtain a sequence $x_{l}, 1 \leq l \leq k-1$ such that

$$
u_{n_{0}+k-l}\left(x_{l-1}\right), u_{n_{0}+k-l}\left(x_{l}\right) \geq u_{n_{0}+k-l-1}\left(x_{l}\right)+M-\delta \sum_{t=1}^{l} \xi^{t}
$$

In Lemma 4.3 we require $\lambda_{3}<\lambda_{1}$, so we need $k(\delta)$ to satisfy

$$
M-\delta \sum_{t=1}^{l} \xi^{t}>\delta
$$

that is,

$$
M>\delta \sum_{t=0}^{l} \xi^{t}
$$

for $1 \leq l \leq k-1$. As the right-hand side term grows with l, it is enough to check it for $l=k-1$. Since

$$
\sum_{t=1}^{l} \xi^{t}=\xi \frac{\xi^{l}-1}{\xi-1} \leq \xi^{l+1}-1 \leq \xi^{l+1}
$$

we obtain

$$
u_{n_{0}+k-l}\left(x_{l-1}\right) \geq u_{n_{0}+k-l-1}\left(x_{l}\right)+M-\delta \xi^{l+1}
$$

Adding these inequalities for $1 \leq l \leq k-1$, and $u_{n_{0}+k}\left(x_{0}\right)-u_{n_{0}+k-1}\left(x_{0}\right) \geq M-\delta$ we get

$$
u_{n_{0}+k}\left(x_{0}\right) \geq u_{n_{0}}\left(x_{k-1}\right)+k M-\delta \sum_{l=0}^{k-1} \xi^{l+1}
$$

From the last inequality and the condition for $k(\delta)$, since

$$
\sum_{l=0}^{k-1} \xi^{l+1}=\sum_{l=1}^{k} \xi^{l} \leq \xi^{k+1}
$$

we have

$$
u_{n_{0}+k}\left(x_{0}\right) \geq u_{n_{0}}\left(x_{k-1}\right)+k M-\delta \xi^{k+1}
$$

for all k such that $M>\delta \xi^{k+1}$. For $k+1=\lfloor\log (M / \delta) / \log \xi\rfloor$ this gives

$$
u_{n_{0}+k}\left(x_{0}\right) \geq u_{n_{0}}\left(x_{k-1}\right)+\left(\frac{\log (M / \delta)}{\log \xi}-3\right) M
$$

which is a contradiction since

$$
\lim _{\delta \rightarrow 0^{+}} \frac{\log (M / \delta)}{\log \xi}=\infty
$$

and the sequence u_{n} is bounded. We have that $u_{n} \rightarrow u$ uniformly, therefore the result follows by passing to the limit in the recursive definition of u_{n}. In fact, that the uniform limit of the sequence u_{n} is a solution to the DPP is immediate since from the uniform convergence we can pass to the limit as $n \rightarrow \infty$ in all the terms of the DPP formula.

Now we want to prove that this solution to the DPP, u, is unique and that it gives the value of the game. To this end we have to take special care of the fact that the game ends (or not) almost surely. First, we deal with the case $\beta_{1}, \beta_{2}>0$, $\sup _{\Omega} f<0$ or $\inf _{\Omega} f>0$. We apply a martingale argument to handle these cases. In other cases we also use the construction of the sequence u_{k}.

Lemma 4.5. Assume that $\beta_{1}, \beta_{2}>0$, sup $f<0$ or $\inf f>0$. Then, if the function v is a $p_{1-}-p_{2}$-harmonious function for g_{v} and f_{v} such that $g_{v} \leq g_{u_{\mathrm{I}}}$ and $f_{v} \leq f_{u_{\mathrm{I}}}$, then $v \leq u_{\mathrm{I}}$.

Proof. By choosing a strategy according to the points where the maximal values of v are attained, we show that Player I can obtain a certain process which is a submartingale. The optional stopping theorem then implies that the expectation of the process under this strategy is bounded by v. Moreover, this process provides a lower bound for u_{I}.

Player II follows any strategy and Player I follows a strategy S_{I}^{0} such that at $x_{k-1} \in \Omega$ he chooses γ to be 1 if

$$
\begin{aligned}
& \frac{\alpha_{1}}{2}\left\{\sup _{y \in B_{\varepsilon}(x)} u(y)+\inf _{y \in B_{\varepsilon}(x)} u(y)\right\}+\beta_{1} f_{B_{\varepsilon}(x)} u(y) d y \\
& \quad>\frac{\alpha_{2}}{2}\left\{\sup _{y \in B_{\varepsilon}(x)} u(y)+\inf _{y \in B_{\varepsilon}(x)} u(y)\right\}+\beta_{2} f_{B_{\varepsilon}(x)} u(y) d y
\end{aligned}
$$

and 0 otherwise, and he chooses to step to a point that almost maximizes v, that is, to a point $x_{k} \in B_{\varepsilon}\left(x_{k-1}\right)$ such that

$$
v\left(x_{k}\right) \geq \sup _{B_{\varepsilon}\left(x_{k-1}\right)} v-\eta 2^{-k}
$$

for some fixed $\eta>0$. We start from the point x_{0}. It follows that

$$
\begin{aligned}
& \mathbb{E}_{S_{\mathrm{I}}, S_{\mathrm{II}}^{0}}^{x_{0}}\left[v\left(x_{k}\right)+\varepsilon^{2} \sum_{n=0}^{k-1} f\left(x_{n}\right)-\eta 2^{-k}: x_{0}, \ldots, x_{k-1}\right] \\
& \geq \\
& \max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\inf _{B_{\varepsilon}\left(x_{k-1}\right)} v-\eta 2^{-k}+\sup _{B_{\varepsilon}\left(x_{k-1}\right)} v\right\}+\beta_{i} f_{B_{\varepsilon}\left(x_{k-1}\right)} v d y\right) \\
& \quad+\varepsilon^{2} \sum_{n=0}^{k-1} f\left(x_{n}\right)-\eta 2^{-k} \\
& \geq v\left(x_{k-1}\right)-\varepsilon^{2} f\left(x_{k-1}\right)-\eta 2^{-k}+\varepsilon^{2} \sum_{n=0}^{k-1} f\left(x_{n}\right)-\eta 2^{-k} \\
& = \\
& =v\left(x_{k-1}\right)+\varepsilon^{2} \sum_{n=0}^{k-2} f\left(x_{n}\right)-\eta 2^{-k+1}
\end{aligned}
$$

where we have estimated the strategy of Player II by inf and used the fact that v is $p_{1}-p_{2}$-harmonious. Thus

$$
M_{k}=v\left(x_{k}\right)+\varepsilon^{2} \sum_{n=0}^{k-1} f\left(x_{n}\right)-\eta 2^{-k}
$$

is a submartingale.

Now we observe the following: if $\beta_{1}, \beta_{2}>0$ then the game ends almost surely and we can continue (see below). If $\sup f<0$ the fact that M_{k} is a submartingale implies that the game ends in a finite number of moves (that can be estimated). In the case inf $f>0$ if the game does not end in a finite number of moves then we have to play until the accumulated payoff (recall that f gives the running payoff) is greater than v and then choose a strategy that ends the game almost surely (for example pointing to some prescribed point x_{0} outside Ω).

Since $g_{v} \leq g_{u_{\mathrm{I}}}$ and $f_{v} \leq f_{u_{\mathrm{I}}}$, we deduce

$$
\begin{aligned}
u_{\mathrm{I}}\left(x_{0}\right) & =\sup _{S_{\mathrm{I}}} \inf _{S_{\mathrm{II}}} \mathbb{E}_{S_{\mathrm{I}}, S_{\mathrm{II}}}^{x_{0}}\left[g_{u_{\mathrm{I}}^{\varepsilon}}\left(x_{\tau}\right)+\varepsilon^{2} \sum_{n=0}^{\tau-1} f\left(x_{n}\right)\right] \\
& \geq \inf _{S_{\mathrm{II}}} \mathbb{E}_{S_{\mathrm{I}}^{0}, S_{\mathrm{II}}}^{x_{0}}\left[g_{v}\left(x_{\tau}\right)+\varepsilon^{2} \sum_{n=0}^{\tau-1} f\left(x_{n}\right)-\eta 2^{-\tau}\right] \\
& \geq \inf _{S_{\mathrm{II}}} \liminf _{k \rightarrow \infty} \mathbb{E}_{S_{\mathrm{I}}^{0}, S_{\mathrm{II}}}^{x_{0}}\left[v\left(x_{\tau \wedge k}\right)+\varepsilon^{2} \sum_{n=0}^{(\tau-1) \wedge k} f\left(x_{n}\right)-\eta 2^{-(\tau \wedge k)}\right] \\
& \geq \inf _{S_{\mathrm{II}}} \mathbb{E}_{S_{\mathrm{I}}^{0}, S_{\mathrm{II}}}\left[M_{0}\right]=v\left(x_{0}\right)-\eta,
\end{aligned}
$$

where $(\tau-1) \wedge k=\min (\tau-1, k)$, and we used Fatou's lemma as well as the optional stopping theorem for M_{k}. Since η is arbitrary, this proves the claim.

A symmetric result can be proved for $u_{\text {II }}$, hence we obtain the following result: Theorem 4.6. Assume that $\beta_{1}, \beta_{2}>0$, sup $f<0$ or $\inf f>0$. Then there exists a unique $p_{1}-p_{2}$-harmonious function. Even more the game has a value, that is $u_{\mathrm{I}}=u_{\mathrm{II}}$, which coincides with the unique $p_{1}-p_{2}$-harmonious function.
Proof. Let u be a $p_{1}-p_{2}$-harmonious function, which exits, as we know from Proposition 4.4. From the definition of the game values we know that $u_{\mathrm{I}} \leq u_{\mathrm{II}}$. Then by Lemma 4.5 we have that

$$
u_{\mathrm{I}} \leq u_{\mathrm{II}} \leq u \leq u_{\mathrm{I}} .
$$

Thus $u_{\mathrm{I}}=u_{\mathrm{II}}=u$. Since we can repeat the argument for any $p_{1}-p_{2}$-harmonious function, uniqueness follows.
Remark 4.7. Note that if we have a sub $-p_{1}-p_{2}$-harmonious function u, then v given by $v=u-C$ in Ω and $v=u$ in Γ_{ε} is sub- $p_{1}-p_{2}$-harmonious for every constant $C>0$. In this way we can obtain a sub- $p_{1}-p_{2}$-harmonious function smaller than any super-$p_{1}-p_{2}$-harmonious function, and then if we start the above construction with this function we get the smallest $p_{1}-p_{2}$-harmonious function. That is, there exists a minimal $p_{1}-p_{2}$-harmonious function. We can use the analogous construction to get the largest $p_{1}-p_{2}$-harmonious function (the maximal $p_{1}-p_{2}$-harmonious function).

We now tackle the remaining case in which $f \equiv 0$ and one of the β_{i} is 0 (that is the same as saying that one of the α_{i} is equal to 1).

Theorem 4.8. There exists a unique p_{1}-p 2 -harmonious function when $\alpha_{1}=1$, $\alpha_{2}>0$ and $f \equiv 0$.
Proof. Suppose not, then we have u and v such that

$$
\begin{aligned}
& v(x)=\max \left\{\frac{1}{2}\left(\sup _{B_{\varepsilon}(x)} v+\inf _{B_{\varepsilon}(x)} v\right), \frac{\alpha}{2}\left(\sup _{B_{\varepsilon}(x)} v+\inf _{B_{\varepsilon}(x)} v\right)+\beta f_{B_{\varepsilon}(x)} v\right\} \\
& u(x)=\max \left\{\frac{1}{2}\left(\sup _{B_{\varepsilon}(x)} u+\inf _{B_{\varepsilon}(x)} u\right), \frac{\alpha}{2}\left(\sup _{B_{\varepsilon}(x)} u+\inf _{B_{\varepsilon}(x)} u\right)+\beta f_{B_{\varepsilon}(x)} u\right\}
\end{aligned}
$$

in Ω and

$$
u=v=g
$$

on Γ_{ε} with

$$
\|u-v\|_{\infty}=M>0 .
$$

As we observed in Remark 4.7 we can assume $u \geq v$ (just take v as the minimal solution to the DPP). Now we want to build a point where the difference between u and v is almost attained and v has a large variation in the ball of radius ε around this point (all this has to be carefully quantified). First, we apply a compactness argument. We know that

$$
\bar{\Omega}_{\varepsilon / 4} \subset \bigcup_{x \in \Omega} B_{\varepsilon / 2}(x)
$$

As $\bar{\Omega}_{\varepsilon / 4}$ is compact, there exists y_{i} such that

$$
\bar{\Omega}_{\varepsilon / 4} \subset \bigcup_{i=1}^{k} B_{\varepsilon / 2}\left(y_{i}\right)
$$

Let $A=\left\{i \in\{1, \ldots, k\}: u\right.$ or v are not constant on $\left.B_{\varepsilon / 2}\left(y_{i}\right)\right\}$ and let $\lambda>0$ such that, for every $i \in A$,

$$
\sup _{B_{\varepsilon}\left(y_{i}\right)} u-\inf _{B_{\varepsilon}\left(y_{i}\right)} u>\left(4+\frac{4 \beta}{\alpha}\right) \lambda \quad \text { or } \quad \sup _{B_{\varepsilon}\left(y_{i}\right)} v-\inf _{B_{\varepsilon}\left(y_{i}\right)} v>2 \lambda .
$$

We fix this λ. Now, for every $\delta>0$ such that $\lambda>\delta$ and $M>\delta$, let $z \in \Omega$ such that $M-\delta<u(z)-v(z)$. Let

$$
O=\{x \in \Omega: u(x)=u(z) \text { and } v(x)=v(z)\} \subset \Omega .
$$

Take $\bar{z} \in \partial O \subset \bar{\Omega}$. Letting i_{0} be such that $\bar{z} \in B_{\varepsilon / 2}\left(y_{i_{0}}\right)$, we have

$$
B_{\varepsilon / 2}\left(y_{i_{0}}\right) \cap O \neq \varnothing \quad \text { and } \quad B_{\varepsilon / 2}\left(y_{i_{0}}\right) \cap O^{c} \neq \varnothing,
$$

hence $i_{0} \in A$. Let $x_{0} \in B_{\varepsilon / 2}\left(y_{i_{0}}\right) \cap O$. In this way we have obtained x_{0} such that $u\left(x_{0}\right)-v\left(x_{0}\right)>M-\delta$ and one of the following holds:

$$
\begin{equation*}
\sup _{B_{\varepsilon}\left(x_{0}\right)} u-\inf _{B_{\varepsilon}\left(x_{0}\right)} u>\left(4+\frac{4 \beta}{\alpha}\right) \lambda, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sup _{B_{\varepsilon}\left(x_{0}\right)} v-\inf _{B_{\varepsilon}\left(x_{0}\right)} v>2 \lambda . \tag{2}
\end{equation*}
$$

Let us show that in fact the second statement must hold. Suppose not, then the first holds and we have

$$
\sup _{B_{\varepsilon}\left(x_{0}\right)} v-\inf _{B_{\varepsilon}\left(x_{0}\right)} v \leq 2 \lambda .
$$

Given that

$$
v\left(x_{0}\right) \geq \frac{1}{2}\left(\sup _{B_{\varepsilon}\left(x_{0}\right)} v+\inf _{B_{\varepsilon}\left(x_{0}\right)} v\right),
$$

we get

$$
v\left(x_{0}\right)+\lambda \geq \sup _{B_{\varepsilon}\left(x_{0}\right)} v .
$$

Hence

$$
v\left(x_{0}\right)+\lambda+M \geq \sup _{B_{\varepsilon}\left(x_{0}\right)} v+M \geq \sup _{B_{\varepsilon}\left(x_{0}\right)} u .
$$

Further, since

$$
u\left(x_{0}\right)-v\left(x_{0}\right)>M-\delta>M-\lambda,
$$

we get

$$
u\left(x_{0}\right)+2 \lambda>\sup _{B_{\varepsilon}\left(x_{0}\right)} u,
$$

and

$$
\sup _{B_{\varepsilon}\left(x_{0}\right)} u>\inf _{B_{\varepsilon}\left(x_{0}\right)} u+\left(4+\frac{4 \beta}{\alpha}\right) \lambda .
$$

Hence

$$
u\left(x_{0}\right)-\left(2+\frac{4 \beta}{\alpha}\right) \lambda>\inf _{B_{\varepsilon}\left(x_{0}\right)} u .
$$

If we bound the integral by the value of the supremum we can control all the terms in the DPP in terms of $u\left(x_{0}\right)$. We have

$$
\begin{aligned}
u\left(x_{0}\right) & =\max \left\{\frac{1}{2}\left(\sup _{B_{\varepsilon}\left(x_{0}\right)} u+\inf _{B_{\varepsilon}\left(x_{0}\right)} u\right), \frac{\alpha}{2}\left(\sup _{B_{\varepsilon}\left(x_{0}\right)} u+\inf _{B_{\varepsilon}\left(x_{0}\right)} u\right)+\beta f_{B_{\varepsilon}\left(x_{0}\right)} u\right\} \\
& <\max \left\{\frac{1}{2}\left(u\left(x_{0}\right)+2 \lambda+u\left(x_{0}\right)-\left(2+\frac{4 \beta}{\alpha}\right) \lambda\right),\right. \\
& \left.\frac{\alpha}{2}\left(u\left(x_{0}\right)+2 \lambda+u\left(x_{0}\right)-\left(2+\frac{4 \beta}{\alpha}\right) \lambda\right)+\beta\left(u\left(x_{0}\right)+2 \lambda\right)\right\} \\
& <\max \left\{u\left(x_{0}\right)-\frac{4 \beta}{\alpha} \lambda, u\left(x_{0}\right)\right\}=u\left(x_{0}\right),
\end{aligned}
$$

which is a contradiction. Hence, the second condition must hold, that is, we have

$$
\sup _{B_{\varepsilon}\left(x_{0}\right)} v-\inf _{B_{\varepsilon}\left(x_{0}\right)} v>2 \lambda .
$$

Applying the DPP we get

$$
v\left(x_{0}\right) \geq \frac{1}{2}\left(\sup _{B_{\varepsilon}\left(x_{0}\right)} v+\inf _{B_{\varepsilon}\left(x_{0}\right)} v\right)
$$

together with the fact that

$$
\sup _{B_{\varepsilon}\left(x_{0}\right)} v-\inf _{B_{\varepsilon}\left(x_{0}\right)} v>2 \lambda,
$$

and then we conclude that

$$
v\left(x_{0}\right)>\inf _{B_{\varepsilon}\left(x_{0}\right)} v+\lambda .
$$

We have proved that there exists x_{0} such that

$$
v\left(x_{0}\right)>\inf _{B_{\varepsilon}\left(x_{0}\right)} v+\lambda \quad \text { and } \quad u\left(x_{0}\right)-v\left(x_{0}\right)>M-\delta .
$$

Now we are going to build a sequence of points where the difference between u and v is almost maximal and where the value of v decreases by at least λ in every step. Applying the DPP to $M-\delta<u\left(x_{0}\right)-v\left(x_{0}\right)$ and bounding the difference of the suprema by M we get:

$$
M-\frac{2}{\alpha} \delta+\inf _{B_{\varepsilon}\left(x_{0}\right)} v<\inf _{B_{\varepsilon}\left(x_{0}\right)} u .
$$

Let x_{1} be such that $v\left(x_{0}\right)>v\left(x_{1}\right)+\lambda$ and $\inf _{B_{\varepsilon}\left(x_{0}\right)} v+\delta>v\left(x_{1}\right)$. We get

$$
M-\left(1+\frac{2}{\alpha}\right) \delta+v\left(x_{1}\right)<u\left(x_{1}\right) .
$$

To repeat this construction we need the following two results:

- In the last inequality, if δ is small enough $u\left(x_{1}\right) \neq v\left(x_{1}\right)$, hence $x_{1} \in \Omega$.
- We know that $2 v\left(x_{1}\right) \geq \inf _{B_{\varepsilon}\left(x_{1}\right)} v+\sup _{B_{\varepsilon}\left(x_{1}\right)} v>v\left(x_{0}\right)+\inf _{B_{\varepsilon}\left(x_{1}\right)} v$. Hence, since $v\left(x_{0}\right)>v\left(x_{1}\right)+\lambda$, we get $v\left(x_{1}\right)>\inf _{B_{\varepsilon}\left(x_{1}\right)} v+\lambda$.

Then we get

$$
v\left(x_{n-1}\right)>v\left(x_{n}\right)+\lambda
$$

and

$$
M-\left(\sum_{k=0}^{n}\left(\frac{2}{\alpha}\right)^{k}\right) \delta+v\left(x_{n}\right)<u\left(x_{n}\right) .
$$

We can repeat this argument as long as

$$
M-\left(\sum_{k=0}^{n}\left(\frac{2}{\alpha}\right)^{k}\right) \delta>0
$$

which is a contradiction with the fact that v is bounded.

Now we want to show that this unique function that satisfies the DPP is the game value. The key point of the proof is to construct a strategy based on the approximating sequence that we used to construct the solution.

Theorem 4.9. Given $f \equiv 0$, the game has a value, that is $u_{\mathrm{I}}=u_{\mathrm{II}}$, which coincides with the unique $p_{1-} p_{2}$-harmonious function.

Proof. Let u be the unique $p_{1}-p_{2}$-harmonious function (the uniqueness is given by Theorems 4.6 and 4.8). We will show that $u \leq u_{\mathrm{I}}$. The analogous result can be proved for u_{II}, completing the proof.

Let us consider a sub- $p_{1}-p_{2}$-harmonious function u_{0} which is smaller than $\inf _{\Omega} g$ at every point in Ω. Starting with this u_{0} we build the corresponding u_{k} as in Proposition 4.4. We have that $u_{k} \rightarrow u$ as $k \rightarrow \infty$.

Now, given $\delta>0$, let $n>0$ be such that $u_{n}\left(x_{0}\right)>u\left(x_{0}\right)-\delta / 2$. We build a strategy S_{I}^{0} for Player I: in the first n moves, given x_{k-1} he will choose to move to a point that almost maximizes u_{n-k}, that is, he chooses $x_{k} \in B_{\varepsilon}\left(x_{k-1}\right)$ such that

$$
u_{n-k}\left(x_{k}\right)>\sup _{B_{\varepsilon}\left(x_{k-1}\right)} u_{n-k}-\frac{\delta}{2 n}
$$

and chooses γ in order to maximize

$$
\frac{\alpha_{i}}{2}\left\{\inf _{B_{\varepsilon}\left(x_{k-1}\right)} u_{n-k}-\frac{\delta}{2 n}+\sup _{B_{\varepsilon}\left(x_{k-1}\right)} u_{n-k}\right\}+\beta_{i} f_{B_{\varepsilon}\left(x_{k-1}\right)} u_{n-k} d y
$$

After the first n moves he will follow a strategy that ends the game almost surely (for example pointing in a fix direction).

We have

$$
\begin{aligned}
& \mathbb{E}_{S_{\mathrm{I}}^{0}, S_{\mathrm{II}}}^{x_{0}}\left[u_{n-k}\left(x_{k}\right)+\frac{k \delta}{2 n}: x_{0}, \ldots, x_{k-1}\right] \\
& \quad \geq \max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\inf _{B_{\varepsilon}\left(x_{k-1}\right)} u_{n-k}-\frac{\delta}{2 n}+\sup _{B_{\varepsilon}\left(x_{k-1}\right)} u_{n-k}\right\}+\beta_{i} f_{B_{\varepsilon}\left(x_{k-1}\right)} u_{n-k} d y\right)+\frac{k \delta}{2 n} \\
& \quad \geq u_{n-k+1}\left(x_{k-1}\right)+\frac{(k-1) \delta}{2 n}
\end{aligned}
$$

where we have estimated the strategy of Player II by inf and used the construction for the u_{k}. Thus

$$
M_{k}= \begin{cases}u_{n-k}\left(x_{k}\right)+\frac{k \delta}{2 n}-\frac{\delta}{2} & \text { for } 0 \leq k \leq n, \\ \inf _{\Omega} g & \text { for } k>n,\end{cases}
$$

is a submartingale.
Now we have

$$
\begin{aligned}
u_{\mathrm{I}}\left(x_{0}\right) & =\sup _{S_{\mathrm{I}}} \inf _{S_{\mathrm{II}}} \mathbb{E}_{S_{\mathrm{I}}, S_{\mathrm{II}}}^{x_{0}}\left[g\left(x_{\tau}\right)\right] \\
& \geq \inf _{S_{\mathrm{II}}} \mathbb{E}_{S_{\mathrm{I}}^{0}, S_{\mathrm{II}}}^{x_{0}}\left[g\left(x_{\tau}\right)\right] \\
& \geq \inf _{S_{\mathrm{II}}} \liminf _{k \rightarrow \infty} \mathbb{E}_{S_{\mathrm{I}}^{0}, S_{\mathrm{II}}}^{x_{0}}\left[M_{k}\right] \\
& \geq \inf _{S_{\mathrm{II}}} \mathbb{E}_{S_{\mathrm{I}}^{0}, S_{\mathrm{II}}}\left[M_{0}\right]=u_{n}\left(x_{0}\right)-\frac{\delta}{2}>u\left(x_{0}\right)-\delta,
\end{aligned}
$$

where $\tau \wedge k=\min (\tau, k)$, and we used the optional stopping theorem for M_{k}. Since δ is arbitrary, this proves the claim.

As an immediate corollary of our results in this section we obtain a comparison result for solutions to the DPP.

Corollary 4.10. If v and u are $p_{1}-p_{2}$-harmonious functions for g_{v}, f_{v} and g_{u}, f_{u}, respectively such that $g_{v} \geq g_{u}$ and $f_{v} \geq f_{u}$, then $v \geq u$.

5. Properties of harmonious functions and convergence

First, we show some properties of $p_{1}-p_{2}$-harmonious functions that we need to prove convergence as $\varepsilon \rightarrow 0$. We want to apply the following Arzelà-Ascoli-type lemma. For its proof, see [Manfredi et al. 2012b, Lemma 4.2].
Lemma 5.1. Let $\left\{u_{\varepsilon}: \bar{\Omega} \rightarrow \mathbb{R}, \varepsilon>0\right\}$ be a set of functions such that
(1) there exists $C>0$ such that $\left|u_{\varepsilon}(x)\right|<C$ for every $\varepsilon>0$ and every $x \in \bar{\Omega}$,
(2) given $\eta>0$ there are constants r_{0} and ε_{0} such that for every $\varepsilon<\varepsilon_{0}$ and any $x, y \in \bar{\Omega}$ with $|x-y|<r_{0}$,

$$
\left|u_{\varepsilon}(x)-u_{\varepsilon}(y)\right|<\eta .
$$

Then, there exists a uniformly continuous function $u: \bar{\Omega} \rightarrow \mathbb{R}$ and a subsequence still denoted by $\left\{u_{\varepsilon}\right\}$ such that

$$
u_{\varepsilon} \rightarrow u \quad \text { uniformly in } \bar{\Omega},
$$

as $\varepsilon \rightarrow 0$.

So our task now is to show that the family u_{ε} satisfies the hypotheses of the previous lemma. To this end we need some bounds on the expected exit time in the case of a player choose a certain strategy.

Let us start showing that u_{ε} are uniformly bounded. In Lemma 4.2 we obtained a bound for the value of the game for a fixed ε; here we need a bound independent of ε. To this end, let us define what we understand by pulling in one direction: we fix a direction, that is, a unitary vector v and at each turn of the game the player strategy is given as $S\left(x_{k-1}\right)=x_{k-1}+\left(\varepsilon-\varepsilon^{3} / 2^{k}\right) v$.

Lemma 5.2. In a game where a player pulls in a fixed direction the expectation of the exit time is bounded above by

$$
\mathbb{E}[\tau] \leq C \varepsilon^{-2}
$$

for some $C>0$ independent of ε.
Proof. First, let us assume without loss of generality that

$$
\Omega \subset\left\{x \in \mathbb{R}^{n}: 0<x_{n}<R\right\}
$$

and that the direction that the player is pulling to is $-e_{n}$. Then

$$
M_{k}=\left(x_{k}\right)_{n}+\frac{\varepsilon^{3}}{2^{k}}
$$

is a supermartingale. Indeed, if the random move occurs, then we know that the expectation of $\left(x_{k+1}\right)_{n}$ is equal to $\left(x_{k}\right)_{n}$. If the tug-of-war game is played we know that with probability one half, $\left(x_{k+1}\right)_{n}=\left(x_{k}\right)_{n}-\varepsilon+\varepsilon^{3} / 2^{k}$ and if the other player moves $\left(x_{k+1}\right)_{n} \leq\left(x_{k}\right)_{n}+\varepsilon$, so the expectation is less than or equal to $\left(x_{k}\right)_{n}+\varepsilon^{3} / 2^{k+1}$.

Let us consider the expectation for $\left(M_{k+1}-M_{k}\right)^{2}$. If the random walk occurs, then the expectation is $\varepsilon^{2} /(n+2)+o\left(\varepsilon^{2}\right)$. Indeed,

$$
f_{B_{\varepsilon}} x_{n}^{2}=\frac{1}{n} f_{B_{\varepsilon}}|x|^{2}=\frac{1}{\varepsilon^{n} n\left|B_{1}\right|} \int_{0}^{\varepsilon} r^{2}\left|\partial B_{r}\right| d r=\frac{\left|\partial B_{1}\right|}{\varepsilon^{n} n\left|B_{1}\right|} \int_{0}^{\varepsilon} r^{n+1} d r=\frac{\varepsilon^{2}}{n+2} .
$$

If the tug-of-war occurs we know that with probability one half $\left(x_{k+1}\right)_{n}=$ $\left(x_{k}\right)_{n}-\varepsilon+\varepsilon^{3} / 2^{k}$, so the expectation is greater than or equal to $\varepsilon^{2} / 3$.

Let us consider the expectation for $M_{k}^{2}-M_{k+1}^{2}$. We have

$$
\mathbb{E}\left[M_{k}^{2}-M_{k+1}^{2}\right]=\mathbb{E}\left[\left(M_{k+1}-M_{k}\right)^{2}\right]+2 \mathbb{E}\left[\left(M_{k}-M_{k+1}\right) M_{k+1}\right] .
$$

As $\left(x_{k}\right)_{n}$ is positive, we have $2 \mathbb{E}\left[\left(M_{k}-M_{k+1}\right) M_{k+1}\right] \geq 0$. Then

$$
\mathbb{E}\left[M_{k}^{2}-M_{k+1}^{2}\right] \geq \varepsilon^{2} /(n+2),
$$

so $M_{k}^{2}+k \varepsilon^{2} /(n+2)$ is a supermartingale. According to the optional stopping theorem for supermartingales,

$$
\mathbb{E}\left[M_{\tau \wedge k}^{2}+\frac{(\tau \wedge k) \varepsilon^{2}}{n+2}\right] \leq M_{0}^{2}
$$

We have

$$
\mathbb{E}[(\tau \wedge k)] \frac{\varepsilon^{2}}{n+2} \leq M_{0}^{2}-E\left[M_{\tau \wedge k}^{2}\right] \leq M_{0}^{2}
$$

Taking the limit in k, we get a bound for the expected exit time,

$$
\mathbb{E}[\tau] \leq(n+2) M_{0}^{2} \varepsilon^{-2}
$$

so the statement holds for $C=(n+2) R^{2}$.
Lemma 5.3. An $f-p_{1-}-p_{2}$-harmonious function u_{ε} with boundary values g satisfies

$$
\begin{equation*}
\inf _{y \in \Gamma_{\varepsilon}} g(y)+C \inf _{y \in \Omega} f(y) \leq u_{\varepsilon}(x) \leq \sup _{y \in \Gamma_{\varepsilon}} g(y)+C \sup _{y \in \Omega} f(y) \tag{5-1}
\end{equation*}
$$

Proof. We use the connection to games. Let one of the players choose a strategy of pulling in a fixed direction. Then

$$
\mathbb{E}[\tau] \leq C \varepsilon^{-2}
$$

and this gives the upper bound

$$
\begin{aligned}
\mathbb{E}\left[g\left(X_{\tau}\right)+\varepsilon^{2} \sum_{n=0}^{\tau-1} f\left(X_{n}\right)\right] & \leq \sup _{y \in \Gamma_{\varepsilon}} g(y)+E[\tau] \varepsilon^{2} \sup _{y \in \Omega} f(y) \\
& \leq \sup _{y \in \Gamma_{\varepsilon}} g(y)+C \sup _{y \in \Omega} f(y)
\end{aligned}
$$

The lower bound follows analogously.
Let us show now that the u_{ε} are asymptotically uniformly continuous. First we need a lemma that bounds the expectation for the exit time when one player is pulling towards a fixed point.

Let us consider an annular domain $B_{R}(y) \backslash \bar{B}_{\delta}(y)$ and a game played inside. In each round the token starts at a certain point x, an ε-step tug-of-war is played inside $B_{R}(y)$ or the token moves at random with uniform probability in $B_{R}(y) \cap B_{\varepsilon}(x)$. If an ε-step tug-of-war is played, there is a probability of one half for either player to move the token to a point of his choosing in $B_{R}(y) \cap B_{\varepsilon}(x)$. We can think there is a third player choosing whether the ε-step tug-of-war or the random move occurs. The game ends when the position reaches $\bar{B}_{\delta}(y)$, that is, when $x_{\tau^{*}} \in \bar{B}_{\delta}(y)$.

Lemma 5.4. Assume that one of the players pulls towards y in the game described above. Then, no mater how many times the tug-of-war is played or the random move is done, the exit time verifies

$$
\begin{equation*}
\mathbb{E}^{x_{0}}\left(\tau^{*}\right) \leq\left(C(R / \delta) \operatorname{dist}\left(\partial B_{\delta}(y), x_{0}\right)+o(1)\right) / \varepsilon^{2}, \tag{5-2}
\end{equation*}
$$

for $x_{0} \in B_{R}(y) \backslash \bar{B}_{\delta}(y)$. Here τ^{*} is the exit time in the previously described game and $o(1) \rightarrow 0$ as $\varepsilon \rightarrow 0$ can be taken as depending only on δ and R.

Proof. Let us denote

$$
h_{\varepsilon}(x)=\mathbb{E}^{x}(\tau) .
$$

By symmetry, we know that h_{ε} is radial and it is easy to see that it is increasing in $r=|x-y|$. If we assume that the other player wants to maximize the expectation for the exit time and that the random move or tug-of-war is chosen in the same way, we have that the function h_{ε} satisfies a dynamic programming principle,

$$
h_{\varepsilon}(x)=\max \left\{\frac{1}{2}\left(\max _{B_{\varepsilon}(x) \cap B_{R}(y)} h_{\varepsilon}+\min _{B_{\varepsilon}(x) \cap B_{R}(y)} h_{\varepsilon}\right), f_{B_{\varepsilon}(x) \cap B_{R}(y)} h_{\varepsilon} d z\right\}+1,
$$

by the above assumptions and that the number of steps always increases by 1 when making a step. Further, we denote $v_{\varepsilon}(x)=\varepsilon^{2} h_{\varepsilon}(x)$ and obtain

$$
v_{\varepsilon}(x)=\max \left\{\frac{1}{2}\left(\sup _{B_{\varepsilon}(x) \cap B_{R}(y)} v_{\varepsilon}+\inf _{B_{\varepsilon}(x) \cap B_{R}(y)} v_{\varepsilon}\right), f_{B_{\varepsilon}(x) \cap B_{R}(y)} v_{\varepsilon} d z\right\}+\varepsilon^{2} .
$$

This induces us to look for a function v such that

$$
\begin{equation*}
v(x) \geq f_{B_{\varepsilon}(x)} v d z+\varepsilon^{2} \quad \text { and } \quad v(x) \geq \frac{1}{2}\left(\sup _{B_{\varepsilon}(x)} v+\inf _{B_{\varepsilon}(x)} v\right)+\varepsilon^{2} . \tag{5-3}
\end{equation*}
$$

Note that for small ε this is a sort of discrete version of the following inequalities:

$$
\begin{cases}\Delta v(x) \leq-2(n+2), & x \in B_{R+\varepsilon}(y) \backslash \bar{B}_{\delta-\varepsilon}(y), \tag{5-4}\\ \Delta_{\infty} v(x) \leq-2, & x \in B_{R+\varepsilon}(y) \backslash \bar{B}_{\delta-\varepsilon}(y) .\end{cases}
$$

This leads us to consider the problem

$$
\begin{cases}\Delta v(x)=-2(n+2), & x \in B_{R+\varepsilon}(y) \backslash \bar{B}_{\delta}(y), \tag{5-5}\\ v(x)=0, & x \in \partial B_{\delta}(y), \\ \frac{\partial v}{\partial v}=0, & x \in \partial B_{R+\varepsilon}(y),\end{cases}
$$

where $\partial v / \partial v$ refers to the normal derivative. The solution to this problem is radially symmetric and strictly increasing in $r=|x-y|$. It takes the form

$$
v(r)= \begin{cases}-a r^{2}-b r^{2-N}+c & \text { if } N>2, \text { and } \\ -a r^{2}-b \log (r)+c & \text { if } N=2 .\end{cases}
$$

If we extend this v to $B_{\delta}(y) \backslash \bar{B}_{\delta-\varepsilon}(y)$, it satisfies $\Delta v(x)=-2(N+2)$ in $B_{R+\varepsilon}(y) \backslash$ $\bar{B}_{\delta-\varepsilon}(y)$. We know that

$$
\Delta_{\infty} v=v_{r r} \leq v_{r r}+\frac{N-1}{r} v_{r}=\Delta v
$$

Thus, v satisfies the inequalities (5-4). Then, the classical calculation shows that v satisfies (5-3) for each $B_{\varepsilon}(x) \subset B_{R+\varepsilon}(y) \backslash \bar{B}_{\delta-\varepsilon}(y)$.

In addition, as v is increasing in r, it holds for each $x \in B_{R}(y) \backslash \bar{B}_{\delta}(y)$ that

$$
f_{B_{\varepsilon}(x) \cap B_{R}(y)} v d z \leq f_{B_{\varepsilon}(x)} v d z \leq v(x)-\varepsilon^{2}
$$

and

$$
\frac{1}{2}\left(\sup _{B_{\varepsilon}(x) \cap B_{R}(y)} v_{+} \inf _{B_{\varepsilon}(x) \cap B_{R}(y)} v\right) \leq \frac{1}{2}\left(\sup _{B_{\varepsilon}(x)} v_{+} \inf _{B_{\varepsilon}(x)} v\right) \leq v(x)-\varepsilon^{2}
$$

It follows that

$$
\begin{aligned}
& \mathbb{E}\left[v\left(x_{k}\right)+k \varepsilon^{2}: x_{0}, \ldots, x_{k-1}\right] \\
& \quad \leq \max \left\{\frac{1}{2}\left(\sup _{B_{\varepsilon}\left(x_{k-1}\right) \cap B_{R}(y)} v+\inf _{B_{\varepsilon}\left(x_{k-1}\right) \cap B_{R}(y)} v\right), f_{B_{\varepsilon}\left(x_{k-1}\right) \cap B_{R}(y)} v d z\right\} \\
& \quad \leq v\left(x_{k-1}\right)+(k-1) \varepsilon^{2}
\end{aligned}
$$

if $x_{k-1} \in B_{R}(y) \backslash \bar{B}_{\delta}(y)$. Thus $v\left(x_{k}\right)+k \varepsilon^{2}$ is a supermartingale, and the optional stopping theorem yields

$$
\begin{equation*}
\mathbb{E}^{x_{0}}\left[v\left(x_{\tau^{*} \wedge k}\right)+\left(\tau^{*} \wedge k\right) \varepsilon^{2}\right] \leq v\left(x_{0}\right) \tag{5-6}
\end{equation*}
$$

Because $x_{\tau^{*}} \in \bar{B}_{\delta}(y) \backslash \bar{B}_{\delta-\varepsilon}(y)$, we have

$$
0 \leq-\mathbb{E}^{x_{0}}\left[v\left(x_{\tau^{*}}\right)\right] \leq o(1)
$$

Furthermore, the estimate

$$
0 \leq v\left(x_{0}\right) \leq C(R / \delta) \operatorname{dist}\left(\partial B_{\delta}(y), x_{0}\right)
$$

holds for the solutions of (5-5). Thus, by passing to the limit as $k \rightarrow \infty$, we obtain

$$
\varepsilon^{2} \mathbb{E}^{x_{0}}\left[\tau^{*}\right] \leq v\left(x_{0}\right)-\mathbb{E}\left[u\left(x_{\tau^{*}}\right)\right] \leq C(R / \delta)\left(\operatorname{dist}\left(\partial B_{\delta}(y), x_{0}\right)+o(1)\right)
$$

This completes the proof.
Next we derive a uniform bound and estimate for the asymptotic continuity of the family of $p_{1}-p_{2}$-harmonious functions.

We assume here that Ω satisfies an exterior sphere condition: for each $y \in \partial \Omega$, there exists $B_{\delta}(z) \subset \mathbb{R}^{n} \backslash \Omega$ such that $y \in \partial B_{\delta}(z)$.

Lemma 5.5. Let g be Lipschitz continuous in Γ_{ε} and f Lipschitz continuous in Ω such that $f \equiv 0, \inf f>0$ or $\sup f<0$. The $p_{1}-p_{2}$-harmonious function u_{ε} with data g and f satisfies

$$
\begin{align*}
\left|u_{\varepsilon}(x)-u_{\varepsilon}(y)\right| & \leq \operatorname{Lip}(g)(|x-y|+\delta) \tag{5-7}\\
& +C(R / \delta)(|x-y|+o(1))\left(1+\|f\|_{\infty}\right)+\widetilde{C} \operatorname{Lip}(f)|x-y|,
\end{align*}
$$

for every small enough $\delta>0$ and for every two points $x, y \in \Omega \cup \Gamma_{\varepsilon}$. Here $o(1)$ can be taken depending only on δ and R.

Proof. The case $x, y \in \Gamma_{\varepsilon}$ is clear. Thus, we can concentrate on the cases $x \in \Omega$ and $y \in \Gamma_{\varepsilon}$ as well as $x, y \in \Omega$.

We use the connection to games. Suppose first that $x \in \Omega$ and $y \in \Gamma_{\varepsilon}$. By the exterior sphere condition, there exists $B_{\delta}(z) \subset \mathbb{R}^{n} \backslash \Omega$ such that $y \in \partial B_{\delta}(z)$. Now Player I chooses a strategy of pulling towards z, denoted by S_{I}^{z}. Then

$$
M_{k}=\left|x_{k}-z\right|-C \varepsilon^{2} k
$$

is a supermartingale for a sufficiently large constant C, independent of ε. Indeed,

$$
\begin{aligned}
& \mathbb{E}_{S_{1}^{z}, S_{\text {II }}}^{x_{0}}\left[\left|x_{k}-z\right|: x_{0}, \ldots, x_{k-1}\right] \\
& \quad \leq \max _{i \in\{1,2\}}\left(\frac{\alpha_{i}}{2}\left\{\left|x_{k-1}-z\right|+\varepsilon-\varepsilon^{3}+\left|x_{k-1}-z\right|-\varepsilon\right\}+\beta_{i} f_{B_{\varepsilon}\left(x_{k-1}\right)}|x-z| d x\right) \\
& \quad \leq\left|x_{k-1}-z\right|+C \varepsilon^{2} .
\end{aligned}
$$

The first inequality follows from the choice of the strategy, and the second from the estimate

$$
f_{B_{\varepsilon}\left(x_{k-1}\right)}|x-z| d x \leq\left|x_{k-1}-z\right|+C \varepsilon^{2} .
$$

By the optional stopping theorem, this implies that

$$
\begin{equation*}
\mathbb{E}_{S_{1}^{2}, S_{\mathrm{II}}}^{x_{0}}\left[\left|x_{\tau}-z\right|\right] \leq\left|x_{0}-z\right|+C \varepsilon^{2} \mathbb{E}_{S_{\mathrm{I}}^{2}, S_{\mathrm{II}}}^{x_{0}}[\tau] . \tag{5-8}
\end{equation*}
$$

Next we can estimate $\mathbb{E}_{S_{\mathrm{I}}^{2}, S_{I I}}^{x_{0}}[\tau]$ by the stopping time of Lemma 5.4. Let $R>0$ be such that $\Omega \subset B_{R}(z)$. Thus, by (5-2),

$$
\varepsilon^{2} \mathbb{E}_{S_{1}^{\prime}, S_{\mathrm{II}}}^{x_{0}}[\tau] \leq \varepsilon^{2} \mathbb{E}_{S_{1}^{2}, S_{\mathrm{II}}^{\prime}}^{x_{0}}\left[\tau^{*}\right] \leq C(R / \delta)\left(\operatorname{dist}\left(\partial B_{\delta}(z), x_{0}\right)+o(1)\right) .
$$

Since $y \in \partial B_{\delta}(z)$,

$$
\operatorname{dist}\left(\partial B_{\delta}(z), x_{0}\right) \leq\left|y-x_{0}\right|,
$$

and thus, (5-8) implies

$$
\mathbb{E}_{S_{1}^{2}, S_{\mathrm{II}}}^{x_{0}}\left[\left|x_{\tau}-z\right|\right] \leq C(R / \delta)\left(\left|x_{0}-y\right|+o(1)\right) .
$$

We get

$$
g(z)-C(R / \delta)(|x-y|+o(1)) \leq \mathbb{E}_{S_{\mathrm{I}}^{z}, S_{\mathrm{II}}}^{x_{0}}\left[g\left(x_{\tau}\right)\right]
$$

Thus, we obtain

$$
\begin{aligned}
\sup _{S_{\mathrm{I}}} \inf _{S_{\mathrm{II}}} \mathbb{E}_{S_{\mathrm{I}}, S_{\mathrm{II}}}^{x_{0}}[& \left.g\left(x_{\tau}\right)+\varepsilon^{2} \sum_{n=0}^{\tau-1} f\left(x_{n}\right)\right] \\
& \geq \inf _{S_{\mathrm{II}}} \mathbb{E}_{S_{\mathrm{I}}^{z}, S_{\mathrm{II}}}^{x_{0}}\left[g\left(x_{\tau}\right)+\varepsilon^{2} \sum_{n=0}^{\tau-1} f\left(x_{n}\right)\right] \\
& \geq g(z)-C(R / \delta)\left(\left|x_{0}-y\right|+o(1)\right)-\varepsilon^{2} \inf _{S_{\mathrm{II}}} \mathbb{E}_{S_{\mathrm{I}}^{z}, S_{\mathrm{II}}}^{x_{0}}[\tau]\|f\|_{\infty} \\
& \geq g(y)-\operatorname{Lip}(g) \delta-C(R / \delta)\left(\left|x_{0}-y\right|+o(1)\right)\left(1+\|f\|_{\infty}\right)
\end{aligned}
$$

The upper bound can be obtained by choosing for Player II a strategy where he points to z, and thus, (5-7) follows.

Finally, let $x, y \in \Omega$ and fix the strategies $S_{\mathrm{I}}, S_{\text {II }}$ for the game starting at x. We define a virtual game starting at y : we use the same coin tosses and random steps as the usual game starting at x. Furthermore, the players adopt their strategies S_{I}^{v}, S_{II}^{v} from the game starting at x, that is, when the game position is y_{k-1} a player chooses the step that would be taken at x_{k-1} in the game starting at x. We proceed in this way until for the first time $x_{k} \in \Gamma_{\varepsilon}$ or $y_{k} \in \Gamma_{\varepsilon}$. At that point we have

$$
\left|x_{k}-y_{k}\right|=|x-y|
$$

and we may apply the previous steps that work for $x_{k} \in \Omega, y_{k} \in \Gamma_{\varepsilon}$ or for $x_{k}, y_{k} \in \Gamma_{\varepsilon}$.

If we are in the case $f \equiv 0$ we are done. In the case $\inf _{y \in \Omega}|f(y)|>0$, as we know that the u_{ε} are uniformly bounded according to Lemma 5.3, we have that the expected exit time is bounded by

$$
\widetilde{C}=\frac{\max _{y \in \Gamma_{\varepsilon}}|g(y)|+C \max _{y \in \Omega}|f(y)|}{\inf _{y \in \Omega}|f(y)|}
$$

So the expected difference in the running payoff in the game starting at x and the virtual one is bounded by $\widetilde{C} \operatorname{Lip}(f)|x-y|$, because $\left|x_{i}-y_{i}\right|=|x-y|$ for all $0 \leq i \leq k$.

Corollary 5.6. Let $\left\{u_{\varepsilon}\right\}$ be a family of $p_{1}-p_{2}$-harmonious functions. Then there exists a uniformly continuous u and a subsequence still denoted by $\left\{u_{\varepsilon}\right\}$ such that

$$
u_{\varepsilon} \rightarrow u \quad \text { uniformly in } \quad \bar{\Omega}
$$

Proof. Using Lemmas 5.3 and 5.5 we get that the family u_{ε} satisfies the hypothesis of compactness in Lemma 5.1.

Theorem 5.7. The function u obtained as a limit in Corollary 5.6 is a viscosity solution to (1-2) when we consider the game with $f / 2$ as the running payoff function.

Proof. First, we observe that $u=g$ on $\partial \Omega$ since $u_{\varepsilon}=g$ on $\partial \Omega$ for all $\varepsilon>0$. Hence, we can focus our attention on showing that u is $p_{1}-p_{2}$-harmonic inside Ω in the viscosity sense. To this end, we recall from [Manfredi et al. 2010] an estimate that involves the regular Laplacian $(p=2)$ and an approximation for the infinity Laplacian $(p=\infty)$. Choose a point $x \in \Omega$ and a C^{2}-function ϕ defined in a neighborhood of x. Note that since ϕ is continuous we have

$$
\min _{y \in \bar{B}_{\varepsilon}(x)} \phi(y)=\inf _{y \in B_{\varepsilon}(x)} \phi(y)
$$

for all $x \in \Omega$. Let x_{1}^{ε} be the point at which ϕ attains its minimum in $\bar{B}_{\varepsilon}(x)$,

$$
\phi\left(x_{1}^{\varepsilon}\right)=\min _{y \in \bar{B}_{\varepsilon}(x)} \phi(y) .
$$

It follows from the Taylor expansions in [Manfredi et al. 2010] that

$$
\begin{align*}
& \frac{\alpha}{2}\left(\max _{y \in \bar{B}_{\varepsilon}(x)} \phi(y)+\min _{y \in \bar{B}_{\varepsilon}(x)} \phi(y)\right)+\beta f_{B_{\varepsilon}(x)} \phi(y) d y-\phi(x) \tag{5-9}\\
& \quad \geq \frac{\varepsilon^{2}}{2(n+p)}\left\{(p-2)\left\langle D^{2} \phi(x)\left(\frac{x_{1}^{\varepsilon}-x}{\varepsilon}\right),\left(\frac{x_{1}^{\varepsilon}-x}{\varepsilon}\right)\right\rangle+\Delta \phi(x)\right\}+o\left(\varepsilon^{2}\right)
\end{align*}
$$

Suppose that ϕ touches u at x strictly from below. We want to prove that $F^{*}\left(\nabla \phi(x), D^{2} \phi(x)\right) \geq f(x)$. By the uniform convergence, there exists a sequence $\left\{x_{\varepsilon}\right\}$ converging to x such that $u_{\varepsilon}-\phi$ has an approximate minimum at x_{ε}, that is, for $\eta_{\varepsilon}>0$, there exists x_{ε} such that

$$
u_{\varepsilon}(x)-\phi(x) \geq u_{\varepsilon}\left(x_{\varepsilon}\right)-\phi\left(x_{\varepsilon}\right)-\eta_{\varepsilon} .
$$

Moreover, considering $\tilde{\phi}=\phi-u_{\varepsilon}\left(x_{\varepsilon}\right)-\phi\left(x_{\varepsilon}\right)$, we can assume that $\phi\left(x_{\varepsilon}\right)=u_{\varepsilon}\left(x_{\varepsilon}\right)$. Thus, by recalling the fact that u_{ε} is $p_{1}-p_{2}$-harmonious, we obtain

$$
\eta_{\varepsilon} \geq \varepsilon^{2} \frac{f\left(x_{\varepsilon}\right)}{2}-\phi\left(x_{\varepsilon}\right)+\max _{i \in\{1,2\}}\left\{\frac{\alpha_{i}}{2}\left(\max _{\bar{B}_{\varepsilon}\left(x_{\varepsilon}\right)} \phi+\min _{\bar{B}_{\varepsilon}\left(x_{\varepsilon}\right)} \phi\right)+\beta_{i} f_{B_{\varepsilon}\left(x_{\varepsilon}\right)} \phi(y) d y\right\}
$$

and thus, by (5-9), and choosing $\eta_{\varepsilon}=o\left(\varepsilon^{2}\right)$, we have

$$
\begin{aligned}
0 \geq & \frac{\varepsilon^{2}}{2} \max _{i \in\{1,2\}}\left\{\alpha_{i}\left\langle D^{2} \phi\left(x_{\varepsilon}\right)\left(\frac{x_{1}^{\varepsilon}-x_{\varepsilon}}{\varepsilon}\right),\left(\frac{x_{1}^{\varepsilon}-x_{\varepsilon}}{\varepsilon}\right)\right\}+\theta_{i} \Delta \phi\left(x_{\varepsilon}\right)\right\} \\
& +\varepsilon^{2} \frac{f\left(x_{\varepsilon}\right)}{2}+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

Next we need to observe that

$$
\left\langle D^{2} \phi\left(x_{\varepsilon}\right)\left(\frac{x_{1}^{\varepsilon}-x_{\varepsilon}}{\varepsilon}\right),\left(\frac{x_{1}^{\varepsilon}-x_{\varepsilon}}{\varepsilon}\right)\right\rangle
$$

converges to $\Delta_{\infty} \phi(x)$ when $\nabla \phi(x) \neq 0$ and is always bounded in the limit by $\lambda_{\text {min }}\left(D^{2} \phi(x)\right)$ and $\lambda_{\text {max }}\left(D^{2} \phi(x)\right)$. Dividing by ε^{2} and letting $\varepsilon \rightarrow 0$, we get

$$
F^{*}\left(\nabla \phi(x), D^{2} \phi(x)\right) \geq f(x)
$$

Therefore u is a viscosity supersolution.
To prove that u is a viscosity subsolution, we use a reverse inequality to (5-9) by considering the maximum point of the test function and choose a smooth test function that touches u from above.

Now, we just observe that this probabilistic approach provides an alternative existence proof of viscosity solutions to our PDE problem.

Corollary 5.8. Any limit function obtained as in Corollary 5.6 is a viscosity solution to the problem

$$
\begin{cases}\max \left\{-\Delta_{p_{1}} u,-\Delta_{p_{2}} u\right\}=f & \text { on } \Omega \\ u=g & \text { on } \partial \Omega\end{cases}
$$

In particular, the problem has a solution.
We proved that the problem has an unique solution using PDE methods, therefore we conclude that we have convergence as $\varepsilon \rightarrow 0$ of u_{ε} (not only along subsequences).

Corollary 5.9. It holds that

$$
u_{\varepsilon} \rightarrow u \quad \text { uniformly in } \quad \bar{\Omega}
$$

being u the unique solution to the problem

$$
\begin{cases}\max \left\{-\Delta_{p_{1}} u,-\Delta_{p_{2}} u\right\}=f & \text { on } \Omega \\ u=g & \text { on } \partial \Omega\end{cases}
$$

References

[Antunović et al. 2012] T. Antunović, Y. Peres, S. Sheffield, and S. Somersille, "Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition", Comm. Partial Differential Equations 37:10 (2012), 1839-1869. MR Zbl
[Armstrong and Smart 2010] S. N. Armstrong and C. K. Smart, "An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions", Calc. Var. Partial Differential Equations 37:3-4 (2010), 381-384. MR Zbl
[Atar and Budhiraja 2010] R. Atar and A. Budhiraja, "A stochastic differential game for the inhomogeneous ∞-Laplace equation", Ann. Probab. 38:2 (2010), 498-531. MR Zbl
[Barles and Busca 2001] G. Barles and J. Busca, "Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term", Comm. Partial Differential Equations 26:1112 (2001), 2323-2337. MR Zbl
[Bjorland et al. 2012a] C. Bjorland, L. Caffarelli, and A. Figalli, "Non-local gradient dependent operators", Adv. Math. 230:4-6 (2012), 1859-1894. MR Zbl
[Bjorland et al. 2012b] C. Bjorland, L. Caffarelli, and A. Figalli, "Nonlocal tug-of-war and the infinity fractional Laplacian", Comm. Pure Appl. Math. 65:3 (2012), 337-380. MR Zbl
[Busca et al. 2005] J. Busca, M. J. Esteban, and A. Quaas, "Nonlinear eigenvalues and bifurcation problems for Pucci's operators", Ann. Inst. H. Poincaré Anal. Non Linéaire 22:2 (2005), 187-206. MR Zbl
[Caffarelli and Cabré 1995] L. A. Caffarelli and X. Cabré, Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications 43, American Mathematical Society, Providence, RI, 1995. MR Zbl
[Crandall et al. 1992] M. G. Crandall, H. Ishii, and P.-L. Lions, "User's guide to viscosity solutions of second order partial differential equations", Bull. Amer. Math. Soc. (N.S.) 27:1 (1992), 1-67. MR Zbl
[Felmer et al. 2006] P. L. Felmer, A. Quaas, and M. Tang, "On uniqueness for nonlinear elliptic equation involving the Pucci's extremal operator", J. Differential Equations 226:1 (2006), 80-98. MR Zbl
[Hartenstine and Rudd 2013] D. Hartenstine and M. Rudd, "Statistical functional equations and p-harmonious functions", Adv. Nonlinear Stud. 13:1 (2013), 191-207. MR Zbl
[Julin and Juutinen 2012] V. Julin and P. Juutinen, "A new proof for the equivalence of weak and viscosity solutions for the p-Laplace equation", Comm. Partial Differential Equations 37:5 (2012), 934-946. MR Zbl
[Juutinen et al. 2001] P. Juutinen, P. Lindqvist, and J. J. Manfredi, "On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation", SIAM J. Math. Anal. 33:3 (2001), 699-717. MR Zbl
[Kawohl et al. 2012] B. Kawohl, J. Manfredi, and M. Parviainen, "Solutions of nonlinear PDEs in the sense of averages", J. Math. Pures Appl. (9) 97:2 (2012), 173-188. MR Zbl
[Koike and Kosugi 2015] S. Koike and T. Kosugi, "Remarks on the comparison principle for quasilinear PDE with no zeroth order terms", Commun. Pure Appl. Anal. 14:1 (2015), 133-142. MR Zbl
[Lindqvist and Lukkari 2010] P. Lindqvist and T. Lukkari, "A curious equation involving the ∞ Laplacian", Adv. Calc. Var. 3:4 (2010), 409-421. MR Zbl
[Liu and Schikorra 2013] Q. Liu and A. Schikorra, "A game-tree approach to discrete infinity Laplacian with running costs", preprint, 2013. arXiv
[Liu and Schikorra 2015] Q. Liu and A. Schikorra, "General existence of solutions to dynamic programming equations", Commun. Pure Appl. Anal. 14:1 (2015), 167-184. MR Zbl
[Llorente 2014] J. G. Llorente, "A note on unique continuation for solutions of the ∞-mean value property", Ann. Acad. Sci. Fenn. Math. 39:1 (2014), 473-483. MR Zbl
[Llorente 2015] J. G. Llorente, "Mean value properties and unique continuation", Commun. Pure Appl. Anal. 14:1 (2015), 185-199. MR Zbl
[Lu and Wang 2008] G. Lu and P. Wang, "Inhomogeneous infinity Laplace equation", Adv. Math. 217:4 (2008), 1838-1868. MR Zbl
[Luiro and Parviainen 2015] H. Luiro and M. Parviainen, "Regularity for nonlinear stochastic games", preprint, 2015. arXiv
[Luiro et al. 2013] H. Luiro, M. Parviainen, and E. Saksman, "Harnack's inequality for p-harmonic functions via stochastic games", Comm. Partial Differential Equations 38:11 (2013), 1985-2003. MR Zbl
[Maitra and Sudderth 1993] A. Maitra and W. Sudderth, "Borel stochastic games with lim sup payoff", Ann. Probab. 21:2 (1993), 861-885. MR Zbl
[Maitra and Sudderth 1996] A. P. Maitra and W. D. Sudderth, Discrete gambling and stochastic games, Applications of Mathematics 32, Springer, New York, 1996. MR Zbl
[Manfredi et al. 2010] J. J. Manfredi, M. Parviainen, and J. D. Rossi, "An asymptotic mean value characterization for p-harmonic functions", Proc. Amer. Math. Soc. 138:3 (2010), 881-889. MR Zbl
[Manfredi et al. 2012a] J. J. Manfredi, M. Parviainen, and J. D. Rossi, "Dynamic programming principle for tug-of-war games with noise", ESAIM Control Optim. Calc. Var. 18:1 (2012), 81-90. MR Zbl
[Manfredi et al. 2012b] J. J. Manfredi, M. Parviainen, and J. D. Rossi, "On the definition and properties of p-harmonious functions", Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11:2 (2012), 215-241. MR Zbl
[Nyström and Parviainen 2014] K. Nyström and M. Parviainen, "Tug-of-war, market manipulation, and option pricing", Math. Finance (online publication December 2014).
[Peres and Sheffield 2008] Y. Peres and S. Sheffield, "Tug-of-war with noise: a game-theoretic view of the p-Laplacian", Duke Math. J. 145:1 (2008), 91-120. MR Zbl
[Peres et al. 2009] Y. Peres, O. Schramm, S. Sheffield, and D. B. Wilson, "Tug-of-war and the infinity Laplacian", J. Amer. Math. Soc. 22:1 (2009), 167-210. MR Zbl
[Quaas and Sirakov 2006] A. Quaas and B. Sirakov, "Existence results for nonproper elliptic equations involving the Pucci operator", Comm. Partial Differential Equations 31:7-9 (2006), 987-1003. MR Zbl
[Ruosteenoja 2016] E. Ruosteenoja, "Local regularity results for value functions of tug-of-war with noise and running payoff", Adv. Calc. Var. 9:1 (2016), 1-17. MR Zbl

Received June 5, 2015. Revised June 23, 2016.

Pablo Blanc
pblanc@dm.uba.ar

Juan P. Pinasco
jpinasco@dm.uba.ar

Julio D. Rossi

jrossi@dm.uba.ar

(all authors)

Departamento de Matemática FCEyN
Universidad de Buenos Aires
Ciudad Universitaria, Pabellòn 1 (1428)
Buenos Aires
Argentina

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@ math.ucla.edu
Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Robert Finn
Department of Mathematics Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu
Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu
Kefeng Liu
Department of Mathematics University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu
Igor Pak
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 pak.pjm@gmail.com

Daryl Cooper
Department of Mathematics University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu
Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE
NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY UNIV. OF CALIF., SANTA CRUZ
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA
UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2017 is US $\$ 450 / y$ year for the electronic version, and $\$ 625 /$ year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2017 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 287 No. $2 \quad$ April 2017
Maximal operators for the p-Laplacian family 257
Pablo Blanc, Juan P. Pinasco and Julio D. Rossi
Van Est isomorphism for homogeneous cochains 297
Alejandro Cabrera and Thiago Drummond
The Ricci-Bourguignon flow 337
Giovanni Catino, Laura Cremaschi, Zindine Djadli, Carlo Mantegazza and Lorenzo Mazzieri
The normal form theorem around Poisson transversals 371
Pedro Frejlich and Ioan MĂrcuț
Some closure results for \mathscr{C}-approximable groups 393
Derek F. Holt and Sarah Rees
Coman conjecture for the bidisc 411
Łukasz Kosiński, Pascal J. Thomas and WŁodzimierz ZWONEK
Endotrivial modules: a reduction to p^{\prime}-central extensions 423
Caroline Lassueur and JacQues Thévenaz
Infinitely many positive solutions for the fractional 439
Schrödinger-Poisson system
Weiming Liu
A Gaussian upper bound of the conjugate heat equation along 465 Ricci-harmonic flow
Xian-Gao Liu and Kui Wang
Approximation to an extremal number, its square and its cube 485
Johannes Schleischitz

