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MAXIMAL OPERATORS FOR THE p-LAPLACIAN FAMILY

PABLO BLANC, JUAN P. PINASCO AND JULIO D. ROSSI

We prove existence and uniqueness of viscosity solutions for the problem:

maxf��p1
u.x/; ��p2

u.x/g D f .x/

in a bounded smooth domain ��RN with uDg on @�. Here��puD.NC

p/�1jDuj2�pdiv
�
jDujp�2Du

�
is the 1-homogeneous p-Laplacian and we

assume that 2 � p1; p2 � 1. This equation appears naturally when one
considers a tug-of-war game in which one of the players (the one who seeks
to maximize the payoff ) can choose at every step which are the parame-
ters of the game that regulate the probability of playing a usual tug-of-
war game (without noise) or playing at random. Moreover, the operator
maxf��p1

u.x/; ��p2
u.x/g provides a natural analogue with respect to p-

Laplacians to the Pucci maximal operator for uniformly elliptic operators.
We provide two different proofs of existence and uniqueness for this

problem. The first one is based in pure PDE methods (in the framework
of viscosity solutions) while the second one is more connected to probability
and uses game theory.

1. Introduction

In this paper our goal is to show existence and uniqueness of viscosity solutions
to the Dirichlet problem for the maximal operator associated with the family of
p-Laplacian operators, ��puD� div

�
jrujp�2ru

�
with 2� p �1.

When one considers the family of uniformly elliptic second-order operators of
the form � tr.AD2u/ and looks for maximal operators, one finds the so-called
Pucci maximal operator, PC

�;ƒ
.D2u/DmaxA2A� tr.AD2u/, where A is the set of

uniformly elliptic matrices with ellipticity constant between � andƒ. This maximal
operator plays a crucial role in the regularity theory for uniformly elliptic second-
order operators and has the following properties; see [Caffarelli and Cabré 1995]:

(1) (monotonicity) If �1 � �2 �ƒ2 �ƒ1, then PC
�2;ƒ2

.D2u/� PC
�1;ƒ1

.D2u/.

(2) (positive homogeneity) If ˛ � 0, then PC
�;ƒ

.˛D2u/D ˛PC
�;ƒ

.D2u/.
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(3) (subsolutions) If u verifies PC
�;ƒ

.D2u/ � 0 in the viscosity sense, then
� tr.AD2u/ � 0 for every matrix A with ellipticity constants � and ƒ (that
is, a subsolution to the maximal operator is a subsolution for every elliptic
operator in the class). Therefore, from the comparison principle we get that a
solution to PC

�;ƒ
.D2u/� 0 provides a lower bound for every solution of any

elliptic operator in the class with the same boundary values.

If we try to reproduce these properties for the family of p-Laplacians, we are
led to consider the operator maxp1�p�p2

��pu.x/. As we will show in this paper,
this operator has similar properties to the ones that hold for the Pucci maximal
operator, but with respect to the p-Laplacian family.

Hence, it is natural to consider the Dirichlet problem for the partial differential
equation

(1-1) max
p1�p�p2

��pu.x/D f .x/

in a bounded smooth domain��RN for 2�p1; p2�1. Here we have normalized
the p-Laplacian and considered the operator

�puD
div
�
jrujp�2ru

�
.N Cp/jrujp�2

;

which is called the 1-homogeneous p-Laplacian. We will assume that f � 0 or
that f is strictly positive or negative in �. We will consider solutions u (along the
whole paper we consider solutions in the viscosity sense, see [Crandall et al. 1992])
to this problem with f � 0, as p1-p2-harmonic functions.

Note that, formally, the 1-homogeneous p-Laplacian can be written as

�puD
p�2

NCp
�1uC

1

NCp
�u;

where �u is the usual Laplacian and �1u is the normalized1-Laplacian, that is,

�uD

NX
iD1

uxixi
and �1uD

1
jruj2

NX
i;jD1

uxi
uxixi

uxj
:

Therefore, we can think about the 1-homogeneous p-Laplacian as a convex combi-
nation of the Laplacian divided by N C 2 and the1-Laplacian, in fact,

�puD
p�2

NCp
�1uC

NC2

NCp

�u

NC2
D ˛�1uC ��u

with ˛D .p�2/=.NCp/ and �D1=.NCp/ (we reserve ˇ for a different constant)
for 2� p <1, and ˛ D 1 and � D 0 for p D1.
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Since we are dealing with convex combinations, equation (1-1) becomes

(1-2) max
p1�p�p2

��pu.x/Dmaxf��p1
u.x/; ��p2

u.x/g D f .x/;

with 2� p1; p2 �1.
Our main result concerning viscosity solutions to (1-2) reads as follows:

Theorem 1.1. Let � be a bounded domain such that the exterior ball condition
holds when p1 � N or p2 � N. Assume that inf� f > 0, sup� f < 0 or f � 0.
Then, given g a continuous function defined on @�, there exists a unique viscosity
solution u 2 C.�/ of (1-2) with uD g in @�.

Moreover, a comparison principle holds: if u; v 2 C.�/ are such that

max
˚
��p1

u;��p2
u
	
� f and max

˚
��p1

v;��p2
v
	
� f

are in � and v � u on @�, then v � u in �.
In addition, we have a Hopf’s lemma: let u be a supersolution to (1-2) and

x0 2 @� be such that u.x0/ > u.x/ for all x 2�, then we have

lim sup
t!0C

u.x0�t�/�u.x0/

t
< 0;

where � is exterior normal to @�.

Remark 1.2. An analogous result holds for the equation min
p1�p�p2

��pu.x/D f:

Remark 1.3. For the homogeneous case, f � 0, we have that viscosity sub- and
supersolutions to the 1-homogeneous p-Laplacian,

�
p�2

NCp
�1u�

1

NCp
�uD 0;

coincide with viscosity sub and supersolutions to the usual (.p�1/-homogeneous)
p-Laplacian � div

�
jrujp�2ru

�
D 0; see [Manfredi et al. 2012b].

Therefore, for f � 0 we are providing existence and uniqueness of viscosity
solutions to maxp1�p�p2

��pu.x/ D 0; with �pu being the usual p-Laplacian
that comes from calculus of variations.

Remark 1.4. This maximal operator for the p-Laplacian family has the following
properties that are analogous to the ones described above for Pucci’s operator:

(1) (monotonicity) If p1;1 � p2;1 � p2;2 � p1;2 then

max
p2;1�p�p2;2

��pu� max
p1;1�p�p1;2

��pu:

(2) (positive homogeneity) If ˛ � 0, then

max
p1�p�p2

��p.˛u/D ˛ max
p1�p�p2

��pu:
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(3) (subsolutions) A viscosity solution u to maxp1�p�p2
��pu.x/ � 0; is a

viscosity solution to ��pu.x/� 0 for every p1 � p � p2. Hence, from the
comparison principle, we get that a solution to maxp1�p�p2

��pu.x/ � 0

provides a lower bound for every solution of any elliptic operator in the class
with the same boundary values.

We have two different approaches for this problem. The first one is based on
PDE tools in the framework of viscosity solutions. The second one is related to
probability theory (game theory) using the game that we describe below.

Let us introduce a game that we call unbalanced tug-of-war game with noise. It
is a two-player ( Players I and II ) zero-sum stochastic game. The game is played in
a bounded open set � � RN. Fix an " > 0. At the initial time, the players place
a token at a point x0 2� and Player I chooses a coin between two possible ones.
They toss the chosen coin which is biased with probabilities ˛i and ˇi , ˛iCˇi D 1
and 0 � ˛i ; ˇi � 1, i D 1; 2. Now, they play the tug-of-war with noise game
described in [Manfredi et al. 2012b] with probabilities ˛i , ˇi . If they get heads
(probability ˛i ), they toss a fair coin (with equal probability of heads and tails) and
the winner of the toss moves the game position to any x1 2 B".x0/ of his choice.
On the other hand, if they get tails (probability ˇi ) the game state moves according
to the uniform probability density to a random point x1 2 B".x0/. Once the game
position leaves �, let’s say at the � -th step, the game ends. The payoff is given by
a running payoff function f W�! R and a final payoff function g W RN n�! R

(note that we only use the values of g in a strip of width " around @�). At the end
Player II pays to Player I the amount given by the formula

g.x� /C "
2
��1X
nD0

f .xn/:

Note that the positions of the game depend on the strategies adopted by Players I
and II. From this procedure we get two extreme functions, uI.x0/ (the value of the
game for Player I ) and uII.x0/ (the value of the game for Player II ), that are in a
sense the best expected outcomes that each player may expect choosing a strategy
when the game starts at x0. When uI.x0/ and uII.x0/ coincide at every x0 2� this
function u" WD uI D uII is called the value of the game.

Theorem 1.5. Assume that f is a Lipschitz function with sup� f <0 or inf� f >0
or f � 0. The unbalanced tug-of-war game with noise with f˛1; ˛2g ¤ f0; 1g when
f � 0 has a value and that value satisfies the dynamic programming principle,
given by

u".x/D"
2f .x/C max

i2f1;2g

�
˛i
2

˚
sup

y2B".x/

u".y/C inf
y2B".x/

u".y/
	
Cˇi �

Z
B".x/

u".y/ dy

�
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for x 2�, with u".x/D g.x/ for x 62�.
Moreover, if g is Lipschitz and � satisfies the exterior ball condition, then there

exists a uniformly continuous function u such that

u"! u uniformly in �:

This limit u is a viscosity solution to�
maxf��p1

u;��p2
ug D f on �;

uD g on @�;

where f D 2f and p1; p2 are given by

˛i D
pi�2

piCN
; ˇi D

2CN

piCN
; i D 1; 2:

Remark 1.6. When f is strictly positive or negative, we have that the game ends
almost surely (a.s.). The same is true (regardless of the strategies adopted by the
players) when they play with some noise at every turn, that is, when the two ˇi are
positive. This fact simplifies the arguments used in the proofs.

When one of the ˛i is 1 (and therefore the corresponding ˇi is 0) the argument
is more delicate; see Section 4.

Remark 1.7. The proof of Theorem 1.5 follows from the results in Sections 4
and 5. In Section 4 we establish that the game has a value and that the value is
the unique function that satisfies the dynamic programming principle (DPP). In
Section 5 we prove the convergence part of the theorem. In Proposition 4.4 we
establish the existence of a function satisfying the DPP. In Theorem 4.6 we prove
that the function satisfying the DPP is unique and coincides with the game value,
in the case ˇ1; ˇ2 > 0, supf < 0 or inff > 0. The same result is obtained in the
remaining cases in Theorems 4.8 and 4.9. Here is where we had to assume that
f˛1; ˛2g ¤ f0; 1g. Finally, the convergence is established in Corollaries 5.8 and 5.9.

Remark 1.8. Note that in the limit problem one only considers the values of g on
@� while in the game one needs g to be defined in a bigger set. Given a Lipschitz
function defined on @� we can just extend it to this larger set without affecting
the Lipschitz constant. For simplicity but making an abuse of notation we also call
such an extension g.

Remark 1.9. We also prove uniqueness of solutions to the DPP; see Section 4.
That is, there exists a unique function verifying

v.x/D "2f .x/C max
i2f1;2g

�
˛i
2

˚
sup

y2B".x/

v.y/C inf
y2B".x/

v.y/
	
Cˇi �

Z
B".x/

v.y/ dy

�
;

for x 2�, with v.x/D g.x/ for x 62�.



262 PABLO BLANC, JUAN P. PINASCO AND JULIO D. ROSSI

Remark 1.10. When Player II (the player who wants to minimize the expected
outcome) has the choice of the probabilities ˛ and ˇ we end up with a solution to�

minf��p1
u;��p2

ug D f on �;
uD g on @�:

Let us make some brief comments on related work. First, let us recall that Pucci
operators are crucial in regularity theory for uniformly elliptic operators, due to
their natural comparison with a nondivergence linear operator with measurable
coefficients. We refer to [Busca et al. 2005; Caffarelli and Cabré 1995; Felmer et al.
2006; Quaas and Sirakov 2006].

On the other hand, concerning probabilistic ideas for PDEs, the fundamental
works of Doob, Hunt, Kakutani, Kolmogorov and many others have shown the
profound and powerful connection between the classical linear potential theory
and the corresponding probability theory. The idea behind the classical interplay
is that harmonic functions and martingales share a common origin in mean value
properties. This approach turns out to be useful in the nonlinear theory as well, since
p-harmonic functions verify an asymptotic mean value property; see, for example,
[Manfredi et al. 2010; Hartenstine and Rudd 2013; Kawohl et al. 2012; Llorente
2014; 2015]. Concerning tug-of-war games and PDEs the story begins with [Peres
et al. 2009; Peres and Sheffield 2008] and was extended in [Atar and Budhiraja 2010;
Bjorland et al. 2012a; 2012b; Nyström and Parviainen 2014], etc. Remark that for
the p-Laplacian it was proved in [Julin and Juutinen 2012; Juutinen et al. 2001] the
equivalence between viscosity and weak solutions. This probability approach was
used to obtain regularity properties of solutions; we refer to [Armstrong and Smart
2010; Luiro and Parviainen 2015; Luiro et al. 2013; Ruosteenoja 2016].

We finish the introduction with a comment on the main technical novelties
contained in this manuscript. To obtain existence and uniqueness for our maximal
PDE we first use ideas and techniques from viscosity solutions theory. This part
follows the usual steps (the first one shows a comparison principle and then applies
Perron’s method, including the construction of barriers near the boundary), but here
some extra care is needed to deal with points at which the gradient of a test function
vanishes. Concerning the game theoretical approach we want to emphasize that when
p2D1 we don’t know a priori that the game terminates almost surely and this fact
introduces some extra difficulties. The argument that shows that there is a unique so-
lution to the dynamic programming principle in this case is delicate; see Theorem 4.8.
The proof of convergence of the values of the game as the size of the steps goes
to zero is also different from previous results in the literature since here one has to
take care of the strategy of the player who chooses the parameters of the game. In
particular, the proof that when any of the two players pull in a fixed direction the
expectation of the exit time is bounded above C"2 is more involved; see Lemma 5.2.
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The paper is organized as follows: In Section 2 we prove the comparison principle
and then existence and uniqueness for our problem using Perron’s method; in
Section 3 we introduce a precise description of the game; in Section 4 we show that
the game has a value and that this value is the solution to the dynamic programming
principle; and finally, in Section 5 we collect some properties of the value function
of the game and show that these values converge to the unique viscosity solution of
our problem.

2. Existence and uniqueness

First, let us state the definition of a viscosity solution. We have to handle some
technical difficulties as the 1-homogeneous1-Laplacian is not well-defined when
the gradient vanishes. Observing that

�uD tr.D2u/ and �1uD
ru

jruj
D2u

ru

jruj
;

we can write (1-2) as F.ru;D2u/D f , where

F.v;X/D max
i2f1;2g

n
�˛i

v

jvj
X
v

jvj
� �i tr.X/

o
:

Note that F is degenerate elliptic, that is,

F.v;X/� F.v; Y / for v 2 RN n f0g and X; Y 2 SN provided X � Y;

as is generally requested to work in the context of viscosity solutions.
This function F W RN �SN 7! R is not well-defined at v D 0 (here SN denotes

the set of real symmetric N �N matrices). Therefore, we need to consider the
lower semicontinuous F� and upper semicontinuous F � envelopes of F. These
functions coincide with F for v ¤ 0, and for v D 0 are given by

F �.0; X/D max
i2f1;2g

f�˛i�min.X/� �i tr.X/g;

F�.0; X/D max
i2f1;2g

f�˛i�max.X/� �i tr.X/g;

where �min.X/ and �max.X/ are the minimum and maximum eigenvalues of X,
respectively.

Now we are ready to give the definition for a viscosity solution to our equation.

Definition 2.1. For 2� p1; p2 �1 consider the equation

maxf��p1
u;��p2

ug D f

in �. Then we have the following definitions:
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(1) A lower semicontinuous function u is a viscosity supersolution if for every
� 2 C 2 such that � touches u at x 2� strictly from below, we have

F �
�
r�.x/;D2�.x/

�
� f .x/:

(2) An upper semicontinuous function u is a subsolution if for every  2C 2 such
that  touches u at x 2� strictly from above, we have

F�
�
r .x/;D2 .x/

�
� f .x/:

(3) Finally, u is a viscosity solution if it is both a sub- and supersolution.

In the case f � 0, the comparison holds for our equation as a consequence of
the main result of [Koike and Kosugi 2015]. See also [Barles and Busca 2001].
Note that the comparison principle obtained in the former is slightly more general
than the one obtained in the latter. We need this more general result here as our F
is not necessarily continuous when the gradient vanishes. In [Koike and Kosugi
2015] a different notion of viscosity solution is considered. We remark that when a
function is a viscosity sub- or supersolution in the sense of Definition 2.1 it is also
that in the sense considered in [Koike and Kosugi 2015]. Therefore we can use the
comparison result established there once we check their hypotheses.

Proposition 2.2. Let u 2 USC.�/ and v 2 LSC.�/ be, respectively, a viscosity
subsolution and a viscosity supersolution of (1-2) with f � 0. If u� v on @�, then
u� v in �.

Proof. We just apply the main result in [Koike and Kosugi 2015], referring to
notations and details therein. To this end we need to check some conditions. First,
let us show that F is elliptic. In fact, we have

F.v;X ��v˝ v/D max
i2f1;2g

n
�˛i

v

jvj
.X ��v˝ v/

v

jvj
� �i tr.X ��v˝ v/

o
D max
i2f1;2g

n
�˛i

v

jvj
X
v

jvj
C˛i�jvj

2
� �i tr.X/C �i�jvj2

o
D max
i2f1;2g

n
�˛i

v

jvj
X
v

jvj
� �i tr.X/C �i

o
C�jvj2

D F.v;X/C�jvj2:

Moreover, F is invariant by rescaling in v and 1-homogeneous in X.
So, using the notation from [Koike and Kosugi 2015], we can take �0.v/D jvj2,

�1.t/D t and �� 0 that satisfy the conditions imposed in that paper, to obtain the
comparison result. �

Now we deal with the case where f is assumed to be nontrivial and does not
change sign. In fact, we assume that inff > 0 or supf < 0. We follow similar
ideas to the ones in [Lu and Wang 2008].
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Lemma 2.3. If we have u; v 2 C.�/ such that

maxf��p1
u;��p2

ug � f and maxf��p1
v;��p2

vg � g;

where g > f and v � u in @�, then we have v � u in �.

Proof. By adding a constant if necessary we can assume that u; v > 0. Arguing by
contradiction we assume that

max
�

.u� v/ > 0�max
@�
.u� v/:

Now we double the variables and consider

sup
x;y2�

˚
u.x/� v.y/� .j=2/jx�yj2

	
:

For large j the supremum is attained at interior points xj , yj such that xj ! yx,
yj ! yx, where yx is an interior point (that yx cannot be on the boundary can be
obtained as in [Lindqvist and Lukkari 2010]).

Now, we observe that there exists a constant C such that j jxj �yj j � C . The
theorem of sums (see Theorem 3.2 from [Crandall et al. 1992]) implies that there are
symmetric matrices Xj , Yj , with Xj �Yj such that .j jxj �yj j;Xj /2J 2;C.u/.xj /
and .j jxj �yj j;Yj / 2 J 2;�.v/.yj /, where J 2;C.u/.xj / and J 2;�.v/.yj / are the
closures of the super- and subjets of u and v respectively. Using the equations,
assuming that xj ¤ yj , we have

max
i2f1;2g

�
�˛i

�
Xj
.xj �yj /

jxj �yj j
;
.xj �yj /

jxj �yj j

�
� �i tr.Xj /

�
� f .yj /

and

max
i2f1;2g

�
�˛i

�
Yj
.xj �yj /

jxj �yj j
;
.xj �yj /

jxj �yj j

�
� �i tr.Yj /

�
� g.yj /:

Now we observe that, since Xj � Yj we get

� tr.Xj /� � tr.Yj /

and

�

�
Xj
.xj �yj /

jxj �yj j
;
.xj �yj /

jxj �yj j

�
� �

�
Yj
.xj �yj /

jxj �yj j
;
.xj �yj /

jxj �yj j

�
:

Hence

f .yj /� max
i2f1;2g

�
�˛i

�
Xj
.xj �yj /

jxj �yj j
;
.xj �yj /

jxj �yj j

�
� �i tr.Xj /

�
� max
i2f1;2g

�
�˛i

�
Yj
.xj �yj /

jxj �yj j
;
.xj �yj /

jxj �yj j

�
� �i tr.Yj /

�
� g.xj /:
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This gives a contradiction passing to the limit as j !1.
When xj D yj we obtain

max
i2f1;2g

˚
�˛i�max.Yj /� �i tr.Yj /

	
� f .yj /

and
max
i2f1;2g

˚
�˛i�min.Xj /� �i tr.Xj /

	
� g.xj /;

which also lead to a contradiction since �max.Yj /� �max.Xj /� �min.Xj /.
Hence we have obtained that u� v, as we wanted to prove. �

Lemma 2.4. If u; v 2 C.�/ are such that

maxf��p1
u;��p2

ug � f; and max
˚
��p1

v;��p2
v
	
� f

in � with inf� f > 0 and v � u on @�, then we have v � u in �.

Proof. By adding a constant if necessary we can assume that u; v >0. Let’s consider
vı D .1C ı/v, then

maxf��p1
u;��p2

ug � f < .1C ı/f �maxf��p1
vı ;��p2

vıg

and vı � v � u in @�. Then by the preceding lemma we conclude that and vı � u
in � for all ı > 0. Making ı! 0, we get v � u in � as we wanted to show. �
Remark 2.5. The above lemma is also true when sup� f < 0. So, we have
comparisons for the cases inf� f >0, sup� f <0 and f �0. From this comparison
result we get uniqueness of solutions.

Now we deal with the existence of solutions. In the proof of this result we are
only using that the exterior ball condition holds for � when p1 �N or p2 �N.

Theorem 2.6. Assume that inff > 0, supf < 0 or f � 0. Then, given g a
continuous function defined on @�, there exists u 2 C.�/ which is a viscosity
solution of (1-2) such that uD g in @�.

Proof. We consider the set

AD
˚
v 2 C.�/ Wmaxf��p1

v;��p2
vg � f in � and v � g on @�

	
;

where the inequality for the equation inside � is verified in the viscosity sense and
the inequality on @� in the pointwise sense. Since �jxj2 D 2n and �1jxj2 D 2,
we have that maxf��p1

v;��p2
vg > 0 for v.x/D �jxj2. Hence we can choose

K1 such that the operator applied to �K1jxj2 is grater than supf and then we can
choose K2 such that K2 �K1jxj2 � g.x/ in @�. We conclude that the function
K2�K1jxj

2 is in A for suitable K1; K2. Therefore the set A is not empty.
We define

u.x/D inf
v2A

v.x/; x 2�:
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This infimum is finite since, as the comparison holds, we have u.x/��L2CL1jxj2

for all u 2A for large L1; L2. The function u, being the infimum of supersolutions,
is a supersolution. We already know that u is upper semicontinuous, as it is the
infimum of continuous functions. Let us see that it is indeed a solution. Suppose not,
then there exists � 2 C 2 such that � touches u at x0 2� strictly from above, but

maxf��p1
�.x0/;��p2

�.x0/g> f .x0/:

Let us write

�.x/D �.x0/Cr�.x0/ � .x�x0/C
1
2

˝
D2�.x0/.x�x0/; x�x0

˛
Co

�
jx� x0j

2
�
:

We define y�.x/D �.x/�ı for a small positive number ı. Then y� < u in a small
neighborhood of x0, contained in the set

˚
x Wmaxf��p1

�.x/;��p2
�.x/g>f .x/

	
,

but y� � u outside this neighborhood, if we take ı small enough.
Now we can consider vDminfy�; ug. Since u is a viscosity supersolution in� and
y� also is a viscosity supersolution in the small neighborhood of x0, it follows that v is
a viscosity supersolution. Moreover, on @�, vDu�g. This implies v 2A, but vD
y� <u near x0, which is a contradiction with the definition of u as the infimum in A.

Finally, we want to prove that uD g on @� and that boundary values are attained
with continuity. To this end, we have to construct barriers for our operator. It is
enough to prove that for every x0 2 @� and " > 0 there exists a supersolution
such that v � g on @� and v.x0/� g.x0/C ", and that there exists a subsolution
such that v � g on @� and v.x0/� g.x0/� ". We prove now the existence of the
supersolution, and the subsolution can be obtained in a similar way.

Let us consider � a radial function, �.x/D  .r/ with  0.r/ > 0. Then

�1� D  
00 and �� D  00C

N�1

r
 0

and we get

max
i2f1;2g

˚
��pi

�
	
D max
i2f1;2g

˚
�˛i�1� � �i��

	
D max
i2f1;2g

n
�˛i 

00
� �i

�
 00C

N�1

r
 0
�o

D max
i2f1;2g

n
�
pi�2

NCpi
 00�

1

NCpi

�
 00C

N�1

r
 0
�o

D max
i2f1;2g

n
�
pi�1

NCpi
 00�

1

NCpi

N�1

r
 0
o
:

We want this last expression to be greater than a positive constant.
To have a function of the form  .r/D r with  > 0 that fulfills this, we need

max
i2f1;2g

n
�
pi�1

NCpi
. � 1/�

N�1

NCpi

o
r�2 � c > 0:
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Hence we have to choose  according to

0 <  < 1�
N�1

pi�1
:

We have that such  exists ifN <p1 orN <p2. We will require that minfp1; p2g>
N, that is, N < p1; p2.

In this case we can consider v.x/DK�.x�x0/Cg.x0/C" with K big enough.
If Kc > supf , then v is a supersolution. We have that v.x0/ D g.x0/C ", it
remains to prove that v � g on @�. Since g is continuous at x0, there exists ı > 0
such that jg.x/�g.x0/j < " for every x 2 Bı.x0/. Then we have that v � g on
@�\Bı.x0/. Finally we can pick K such that Kı Cg.x0/C " > supg, and we
obtain v � g on @�\Bı.x0/c.

When N � p1 or N � p2, we can find (with similar computations) a barrier of
the form  .r/D�r with  < 0. Note that this function is not well-defined at 0.
In this case, we have a barrier if the exterior ball condition holds. Given x0 2 @�,
there exist � > 0 and y0 2�c such that jx0�y0j D � and B�.y0/��c. We can
consider v.x/DK.�.x�y0/��.x0�y0//Cg.x0/C " and pick K in a similar
way to above. �

Now, we prove a version of the Hopf lemma for our equation. Note that since we
deal with viscosity solutions, the normal derivative may not exist in a classical sense.

Lemma 2.7. Let � � RN be a domain with the interior ball condition and u a
subsolution to (1-2) with f � 0. Given x0 2 @� such that u.x0/ > u.x/ for all
x 2�, we have

lim sup
t!0C

u.x0�t�/�u.x0/

t
< 0:

where � is exterior normal to @�.

Proof. As the interior ball condition holds, we can assume there exists a ball centered
at 0, contained in � that has x0 in its boundary; that is, we have Br.0/�� and
x0 2 @Br.0/. Let us consider �.x/ D 1=

�
jxjN�2

�
� 1=

�
rN�2

�
if N > 2 and

�.x/D� lnjxjC ln.r/ for N D 2. It is easy to check that

�� D 0; �1� � 0; in Br.0/ n f0g:

So we have

maxf��p1
�;��p2

�g � 0 in Br.0/ n f0g;

� � 0 on @Br.0/:

As u.x0/ > u.x/ for all x 2�, in particular on @Br=2.0/, then there exists " > 0
such that u.x0/� "� � u on @Br=2.0/. Therefore, by the comparison principle, we
get u.x0/� "� � u in Br.0/ nBr=2.0/ and the result follows. �
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3. Unbalanced tug-of-war games with noise

In this section we introduce the game that we call unbalanced tug-of-war game
with noise. First, let us describe the game without entering in mathematical details.
It is a two-player zero-sum stochastic game. The game is played over a bounded
open set �� RN. An " > 0 is given. Players I and II play as follows. At an initial
time, they place a token at a point x0 2 � and Player I chooses a coin between
two possible ones (each of the two coins have different probabilities of getting a
head). We think of this as choosing i 2 f1; 2g. Now they play the tug-of-war with
noise introduced in [Manfredi et al. 2012b] starting with the chosen coin. They toss
the chosen coin, which is biased with probabilities ˛i and ˇi , where ˛i Cˇi D 1
and 0 � ˛i ; ˇi � 1. If they get heads (probability ˛i ), they toss a fair coin (with
the same probability for heads and tails) and the winner of the toss moves the
game position to any x1 2 B".x0/ of his choice. On the other hand, if they get
tails (probability ˇi ) the game state moves according to the uniform probability
density to a random point x1 2 B".x0/. Note that Player I chooses the probability
of playing the usual tug-of-war game or moving at random with the choice of the
first coin between two possibilities. Then they continue playing from x1. At each
turn Player I may change the choice of coin.

This procedure yields a sequence of game states x0; x1; : : : . Once the game
position leaves �, let’s say at the �-th step, the game ends. At that time the token
will be on the compact boundary strip around � of width " that we denote

�" D fx 2 Rn n� W dist.x; @�/� "g:

The payoff is given by a running payoff function f W�! R and a final payoff
function g W �" ! R. At the end, Player II pays Player I the amount given by
g.x� /C "

2
P��1
nD0f .xn/, that is, Player I will have earned

g.x� /C "
2
��1X
nD0

f .xn/

while Player II will have earned

�g.x� /� "
2
��1X
nD0

f .xn/:

We can think of this as Player II paying Player I "2f .xi / when the token leaves xi ,
and g.x� / when the game ends.

A strategy SI for Player I is a pair of collections of measurable mappings

SI D
�
fkg1kD0; fS

k
I g
1
kD0

�
;



270 PABLO BLANC, JUAN P. PINASCO AND JULIO D. ROSSI

such that, given a partial history .x0; x1; : : : ; xk/, Player I chooses coin 1 with
probability

k.x0; x1; : : : ; xk/D  2 Œ0; 1�

and the next game position is

SkI .x0; x1; : : : ; xk/D xkC1 2 B".xk/

if Player I wins the toss. Similarly, Player II plays according to a strategy

SII D fS
k
II g
1
kD0:

Then, the next game position xkC12B".xk/, given a partial history .x0; x1; : : : ; xk/,
is distributed according to the probability

�SI;SII.x0; x1; : : : ; xk; A/D

ˇjA\B".xk/j

jB".xk/j
C
˛

2
ıSk

I .x0;x1;:::;xk/
.A/C

˛

2
ıSk

II .x0;x1;:::;xk/
.A/;

where  D k.x0; x1 : : : ; xk/, ˛D ˛1C˛2.1�/, ˇD ˇ1Cˇ2.1�/ and A
is any measurable set (note that ˛ and ˇ depend on SI and .x0; x1; : : : ; xk/; we do
not make this explicit to avoid overloading the notation). From now on, we shall
omit k and simply denote the strategies by  , SI and SII.

Let �"D�[�" �Rn be equipped with the natural topology, and the � -algebra
B of the Lebesgue measurable sets. The space of all game sequences

H1 D fx0g ��" ��" � � � � ;

is a product space endowed with the product topology.
Let fFkg1kD0 denote the filtration of � -algebras, F0�F1� � � � which are defined

as follows: Fk is the product �-algebra generated by cylinder sets of the form
fx0g �A1 � � � � �Ak ��" ��" � � � with Ai 2 B. For

! D .x0; !1; : : :/ 2H
1;

we define the coordinate processes

Xk.!/D !k; Xk WH
1
! Rn; k D 0; 1; : : :

so that Xk is an Fk-measurable random variable. Moreover, F1D �
�S

Fk
�

is the
smallest � -algebra so that all Xk are F1-measurable. To denote the time when the
game state reaches �", we define a random variable

�.!/D inffk W Xk.!/ 2 �"; k D 0; 1; : : :g;

which is a stopping time relative to the filtration fFkg1kD0.
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A starting point x0 and the strategies SI and SII define (by Kolmogorov’s
extension theorem) a unique probability measure P

x0

SI;SII
in H1 relative to the

� -algebra F1. We denote by E
x0

SI;SII
the corresponding expectation.

Then, if SI and SII denote the strategies adopted by Player I and II respectively,
we define the expected payoff for Player I as

Vx0;I.SI; SII/D

(
E
x0

SI;SII

�
g.X� /C "

2
P��1
nD1 f .xn/

�
if the game ends a.s.,

�1 otherwise,

and then the expected payoff for Player II as

Vx0;II.SI; SII/D

(
E
x0

SI;SII

�
g.X� /C "

2
P��1
nD1 f .xn/

�
if the game ends a.s.,

C1 otherwise.

Note that we penalize both players when the game doesn’t end almost surely.
The value of the game for Player I is given by

uI.x0/D supSI
infSII Vx0;I.SI; SII/;

while the value of the game for Player II is given by

uII.x0/D infSII supSI
Vx0;II.SI; SII/:

When uI D uII we say the game has a value u WD uI D uII. The values uI.x0/ and
uII.x0/ are in a sense the best outcomes each player can expect when the game
starts at x0. For the measurability of the value functions we refer to [Maitra and
Sudderth 1993; 1996].

Comment. It seems natural to consider a more general protocol to determine ˛ in a
prescribed closed set. It is clear that there are only two possible scenarios: At each
turn, Player I wants to maximize the value of ˛ and Player II wants to minimize
it, or the converse. An expected value for ˛ is obtained in each case assuming
each player plays optimally. Depending on the value of ˛ in each case, we are
considering a game equivalent to the one that we described previously or another
one where Player II gets the choice of the first coin, for certain values of ˛i .

4. The game value function and the dynamic programming principle

In this section, we prove that the game has a value, that is, uI D uII and that this
value function satisfies the dynamic programming principle (DPP) given by

u.x/D

8<:"2f .x/C max
i2f1;2g

�
˛i
2

˚
sup
B".x/

uC inf
B".x/

u
	
Cˇi �

Z
B".x/

u.y/ dy

�
; x 2�;

g.x/; x 2 �":
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Let’s see intuitively why this holds. At each step we have that Player I chooses
i 2 f1; 2g and then we have three possibilities:

� With probability ˛i=2, Player I moves the token, trying to maximize the
expected outcome.

� With probability ˛i=2, Player II moves the token, trying to minimize the
expected outcome.

� With probability ˇi , the token moves at random.

Since Player I chooses i trying to maximize the expected outcome we obtain a
maxi2f1;2g in the DPP. Finally, the expected payoff at x is given by "2f .x/ plus
the expected payoff for the rest of the game.

Similar results are proved in [Antunović et al. 2012; Liu and Schikorra 2013;
Luiro et al. 2013; Manfredi et al. 2012a; Peres et al. 2009; Ruosteenoja 2016]. Note
that when ˛1 D ˛2 (and hence ˇ1 D ˇ2) Player I has no choice to make and we
recover known results for tug-of-war games (with or without noise); see [Peres
et al. 2009; Manfredi et al. 2012b]. We follow [Ruosteenoja 2016] where the idea
is to prove the existence of a function satisfying the DPP and then that this function
gives the game value. For the existence of a solution to the DPP we borrow some
ideas from [Antunović et al. 2012], and for the uniqueness of such a solution and
the existence of the value of the game we use martingales as in [Manfredi et al.
2012a]. However we will have two different cases: One, where the noise or the
strict positivity (or negativity) of f assures us that the game ends almost surely,
independently of the strategies adopted by the players. And another one where
we have to handle the problem of getting strategies for the players to play almost
optimally and to make sure that the game ends almost surely.

In what follows, � � RN is a bounded open set and " > 0, g W �" ! R and
f W�!R are bounded Borel functions such that f � 0, inf� f >0 or sup� f <0.

Definition 4.1. A function u is sub-p1-p2-harmonious if

u.x/�

8<:"2f .x/C max
i2f1;2g

�
˛i
2

˚
sup
B".x/

uC inf
B".x/

u
	
Cˇi �

Z
B".x/

u.y/ dy

�
x 2�;

g.x/ x 2 �"

Analogously, a function u is super-p1-p2-harmonious if

u.x/�

8<:"2f .x/C max
i2f1;2g

�
˛i
2

˚
sup
B".x/

uC inf
B".x/

u
	
Cˇi �

Z
B".x/

u.y/ dy

�
; x 2�;

g.x/; x 2 �":

Finally, u is p1-p2-harmonious if it is both sub- and super-p1-p2-harmonious (i.e.,
the equality holds).
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�

xN

xN�
"
2

t "
2
C
"
2t "

2

Figure 1. The partition considered in the proof of Lemma 4.2.

Here ˛i and ˇi are given by

˛i D
pi�2

piCN
and ˇi D

NC2

piCN
; i D 1; 2:

Our next task is to prove uniform bounds for these functions.

Lemma 4.2. Sub-p1-p2-harmonious functions are uniformly bounded from above.

Proof. We will consider the space partitioned along the xN axis in strips of width "=2.
To this end we define

D D
jfy 2 B" W yN < �"=2gj

jB"j
D
jfy 2 B1 W yN < �1=2gj

jB1j
and C D 1�D:

The constant D gives the fraction of the ball B".x/ covered by the shadowed
section in Figure 1, fy 2 B" W yN < xN � "=2g, and C the fraction occupied by its
complement.

Given x 2�, let us consider t 2 R such that xN < t"=2C "=2. We getn
y 2 B".x/ W yN < xN �

"

2

o
�

n
z 2 RN W zN < t

"

2

o
:

Now, given u a sub-p1-p2-subharmonious function, we have that

u.x/� "2f .x/C max
i2f1;2g

�
˛i
2

˚
sup
B".x/

uC inf
B".x/

u
	
Cˇi �

Z
B".x/

u.y/ dy

�
:
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Now we can bound the terms in the right-hand side considering the partition given
above, see Figure 1. We have

supB".x/
u� sup�"

u;

infB".x/ u� supfy2B".x/WyN<xN�"=2g
u� sup�"\fzN<t"=2g

u;

and

�

Z
B".x/

u.y/ dy �
ˇ̌̌n
y 2 B".x/ W yN � xN �

"

2

oˇ̌̌
supfy2B".x/WyN�xN�"=2g

u

C

ˇ̌̌n
y 2 B".x/ W yN < xN �

"

2

oˇ̌̌
supfy2B".x/WyN<xN�"=2g

u

� C sup�"
uCD sup�"\fzN<t"=2g

u:

Hence, we obtain

u.x/� "2 sup� f Cmaxi2f1;2g
�
˛i
2

˚
sup�"

uC sup�"\fzN<t"=2g
u
	

Cˇi
˚
C sup�"

uCD sup�"\fzN<t"=2g
u
	�

D "2 sup� f Cmaxi2f1;2g
�n
˛i
2
CˇiC

o
sup�"

u

C

n
˛i
2
CˇiD

o
sup�"\fzn<t"=2g

u
�

D "2 sup� f Cmaxi2f1;2g
n
˛i
2
CˇiC

o
sup�"

u

Cmini2f1;2g
n
˛i
2
CˇiD

o
sup�"\fzN<t"=2g

u

D "2 sup� f CK sup�"
uC .1�K/ sup�"\fzN<t"=2g

u;

where K Dmaxi2f1;2g
˚
˛i=2CˇiC

	
. We conclude that

sup�"\fzN<.tC1/"=2g
uk�"

2 sup� fCK sup�"
ukC.1�K/ sup�"\fzN<t"=2g

uk :

Then, inductively, we get

sup�"\fzN<.tCn/"=2g
u�

�
"2 sup� f CK sup�"

u
�

�

Xn�1

iD0
.1�K/i C .1�K/n sup�"\fzN<t"=2g

u:

We assume without loss of generality that �� fx 2 RN W 0 < xN <Rg for some
R > 0. Now, we apply the formula for t D 0 and n such that n"=2 > R, and get

sup�"
u�

�
"2 sup� f CK sup�"

u
�Xn�1

iD0
.1�K/i C .1�K/n sup�"

g

D
�
"2 sup� f CK sup�"

u
�1�.1�K/n
1�.1�K/

C .1�K/n sup�"
g

D
1�.1�K/n

K
"2 sup� f C

�
1� .1�K/n

�
sup�"

uC .1�K/n sup�"
g:
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Hence, we obtain

.1�K/n sup�"
u�

1�.1�K/n

K
"2 sup� f C .1�K/

n sup�"
g;

that gives the desired upper bound,

sup�"
u�

1�.1�K/n

K.1�K/n
"2 sup� f C sup�"

g: �

Analogously, there holds that super-p1-p2-harmonious functions are uniformly
bounded from below.

Now with these results we can show that there exists a p1-p2-harmonious function
as in [Liu and Schikorra 2015] applying Perron’s Method. Remark that when f
and g are bounded we can easily obtain the existence of sub-p1-p2-harmonious and
super-p1-p2-harmonious functions.

We prefer a constructive argument (since we will use this construction again in
what follows). Let uk W�"! R be a sequence of functions such that uk D g on
�" for all k 2 N, then u0 is sub-p1-p2-harmonious and

ukC1.x/D "
2f .x/C max

i2f1;2g

�
˛i
2

˚
sup
B".x/

ukC inf
B".x/

uk
	
Cˇi �

Z
B".x/

uk.y/ dy

�
;

for x 2�.
Now, our main task is to show that this sequence converges uniformly. To this

end, let us prove an auxiliary lemma where we borrow some ideas from [Antunović
et al. 2012].

Lemma 4.3. Let x 2�, n 2 N and fix �i for i D 1; : : : ; 4, such that

unC1.x/�un.x/� �1; kun�un�1k1 � �2; �

Z
B".x/

un�un�1 � �3;

�3 < �1, and �4 > 0. Then, for ˛ WD maxf˛1; ˛2g > 0, there exists y 2 B".x/
such that

inf
B".x/

un � un�1.y/C
2�1
˛
��2�

2.1�˛/�3
˛

��4:

Proof. Given unC1.x/�un.x/� �1, by the recursive definition, we have

�1 � "
2f .x/C max

i2f1;2g

�
˛i
2

˚
sup
B".x/

unC inf
B".x/

un
	
Cˇi �

Z
B".x/

un.y/ dy

�
�"2f .x/� max

i2f1;2g

�
˛i
2

˚
sup
B".x/

un�1C inf
B".x/

un�1
	
Cˇi �

Z
B".x/

un�1.y/ dy

�
:
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Since maxfa; bg�maxfc; dg �maxfa� c; b� dg, we get

�1 � max
i2f1;2g

�
˛i
2

˚
sup
B".x/

unC inf
B".x/

un� sup
B".x/

un�1� inf
B".x/

un�1
	

Cˇi �

Z
B".x/

un.y/�un�1.y/ dy

�
:

Using that �
R
B".x/

un�un�1 � �3 we get

max
i2f1;2g

�
˛i
2

˚
sup
B".x/

unC inf
B".x/

un� sup
B".x/

un�1� inf
B".x/

un�1
	
Cˇi�3

�
� �1:

Now �3 < �1 implies
˛

2

˚
sup
B".x/

unC inf
B".x/

un� sup
B".x/

un�1� inf
B".x/

un�1
	
C .1�˛/�3 � �1:

We bound the difference between the suprema using kun�un�1k1 � �2 and we
obtain

˛

2

˚
inf
B".x/

un� inf
B".x/

un�1
	
C
˛�2
2
C .1�˛/�3 � �1;

that is,

inf
B".x/

un � inf
B".x/

un�1C
2�1
˛
��2�

2.1�˛/�3
˛

:

Finally we can choose y 2 B".x/ such that

un�1.y/� inf
B".x/

un�1C�4;

which gives the desired inequality. �

Now we are ready to prove the uniform convergence and, therefore, the existence
of a p1-p2-harmonious function.

Proposition 4.4. The sequence uk converges uniformly and the limit is a solution
to the DPP.

Proof. Since u0 is sub-p1-p2-harmonious we have u1�u0. In addition, if uk�uk�1,
by the recursive definition, we have ukC1 � uk . Then, by induction, we obtain that
the sequence of functions is an increasing sequence. Replacing uk � ukC1 in the
recursive definition we can see that uk is a sub-p1-p2-harmonious function for all k.
This gives us a uniform bound for uk (independent of k). Hence, the uk converge
pointwise to a bounded Borel function u.

In the case ˛1 D ˛2 D 0 we can pass to the limit on the recursion because of
Fatou’s lemma. Hence we assume ˛ WDmaxf˛1; ˛2g> 0.

Now we show that the convergence is uniform. Suppose not. Observe that if
kunC1 � unk1 ! 0 we can extract a uniformly Cauchy subsequence, thus this
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subsequence converges uniformly to a limit u. This implies that the uk converge
uniformly to u, because of the monotonicity. By the recursive definition we have
kunC1�unk1 � kun�un�1k1 � 0. Then, as we are assuming the convergence
is not uniform, we have

kunC1�unk1!M and kunC1�unk1 �M

for some M > 0.
Let us observe that by Fatou’s lemma it follows that

lim
n!1

Z
�

u.y/�un.y/ dy D 0;

so we can bound �
R
B".x/

unC1�un uniformly on x.
Given ı > 0, let n0 2 N such that for all n� n0,

kunC1�unk1 �M C ı and �

Z
B".x/

unC1�un < ı;

for all x 2�. We fix k � 0. Let x0 2� such that

un0Ck.x0/�un0Ck�1.x0/�M � ı:

Now we apply Lemma 4.3 for �1 DM � ı, �2 DM C ı, �3 D ı and �4 D ı and
we get

un0Ck�1.x0/;un0Ck�1.x1/� inf
B".x0/

un0Ck�1

� un0Ck�2.x1/C
2.M�ı/

˛
�.MCı/�

2.1�˛/

˛
�ı

D un0Ck�2.x1/CM
�
2

˛
�1
�
�ı

4

˛

� un0Ck�2.x1/CM�ı
4

˛
;

for some x1 2 B".x0/. Let us define � D 4=˛. If we repeat the argument for x1,
but now with �1 DM � ı� , we obtain

un0Ck�2.x1/; un0Ck�2.x2/� un0Ck�3.x2/CM � ı
�
�2C �

�
:

Inductively, we obtain a sequence xl , 1� l � k� 1 such that

un0Ck�l.xl�1/; un0Ck�l.xl/� un0Ck�l�1.xl/CM � ı
Xl

tD1
� t :

In Lemma 4.3 we require �3 < �1, so we need k.ı/ to satisfy

M � ı

lX
tD1

� t > ı;
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that is,

M > ı

lX
tD0

� t

for 1� l � k�1. As the right-hand side term grows with l , it is enough to check it
for l D k� 1. Since

lX
tD1

� t D �
�l�1

��1
� �lC1� 1� �lC1;

we obtain
un0Ck�l.xl�1/� un0Ck�l�1.xl/CM � ı�

lC1:

Adding these inequalities for 1� l � k�1, and un0Ck.x0/�un0Ck�1.x0/�M �ı

we get

un0Ck.x0/� un0
.xk�1/C kM � ı

Xk�1

lD0
�lC1:

From the last inequality and the condition for k.ı/, since

k�1X
lD0

�lC1 D

kX
lD1

�l � �kC1;

we have
un0Ck.x0/� un0

.xk�1/C kM � ı�
kC1

for all k such that M > ı�kC1. For kC 1D
�

log.M=ı/=log �
˘

this gives

un0Ck.x0/� un0
.xk�1/C

�
log.M=ı/

log �
� 3

�
M;

which is a contradiction since

lim
ı!0C

log.M=ı/
log �

D1

and the sequence un is bounded. We have that un! u uniformly, therefore the
result follows by passing to the limit in the recursive definition of un. In fact, that
the uniform limit of the sequence un is a solution to the DPP is immediate since
from the uniform convergence we can pass to the limit as n!1 in all the terms
of the DPP formula. �

Now we want to prove that this solution to the DPP, u, is unique and that it
gives the value of the game. To this end we have to take special care of the fact
that the game ends (or not) almost surely. First, we deal with the case ˇ1; ˇ2 > 0,
sup� f < 0 or inf� f > 0. We apply a martingale argument to handle these cases.
In other cases we also use the construction of the sequence uk .
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Lemma 4.5. Assume that ˇ1; ˇ2 > 0, supf < 0 or inff > 0. Then, if the function
v is a p1-p2-harmonious function for gv and fv such that gv � guI and fv � fuI ,
then v � uI.

Proof. By choosing a strategy according to the points where the maximal values
of v are attained, we show that Player I can obtain a certain process which is a
submartingale. The optional stopping theorem then implies that the expectation of
the process under this strategy is bounded by v. Moreover, this process provides a
lower bound for uI.

Player II follows any strategy and Player I follows a strategy S0I such that at
xk�1 2� he chooses  to be 1 if

˛1

2

˚
sup

y2B".x/

u.y/C inf
y2B".x/

u.y/
	
Cˇ1�

Z
B".x/

u.y/ dy

>
˛2

2

˚
sup

y2B".x/

u.y/C inf
y2B".x/

u.y/
	
Cˇ2�

Z
B".x/

u.y/ dy

and 0 otherwise, and he chooses to step to a point that almost maximizes v, that is,
to a point xk 2 B".xk�1/ such that

v.xk/� supB".xk�1/
v� �2�k

for some fixed � > 0. We start from the point x0. It follows that

E
x0

SI;S
0
II

h
v.xk/C "

2
k�1X
nD0

f .xn/� �2
�k
W x0; : : : ; xk�1

i
� max
i2f1;2g

�
˛i
2

˚
inf

B".xk�1/
v� �2�kC sup

B".xk�1/

v
	
Cˇi �

Z
B".xk�1/

v dy
�

C "2
k�1X
nD0

f .xn/� �2
�k

� v.xk�1/� "
2f .xk�1/� �2

�k
C "2

k�1X
nD0

f .xn/� �2
�k

D v.xk�1/C "
2
k�2X
nD0

f .xn/� �2
�kC1;

where we have estimated the strategy of Player II by inf and used the fact that v is
p1-p2-harmonious. Thus

Mk D v.xk/C "
2
k�1X
nD0

f .xn/� �2
�k

is a submartingale.
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Now we observe the following: if ˇ1; ˇ2 > 0 then the game ends almost surely
and we can continue (see below). If supf < 0 the fact that Mk is a submartingale
implies that the game ends in a finite number of moves (that can be estimated). In
the case inff > 0 if the game does not end in a finite number of moves then we
have to play until the accumulated payoff (recall that f gives the running payoff)
is greater than v and then choose a strategy that ends the game almost surely (for
example pointing to some prescribed point x0 outside �).

Since gv � guI and fv � fuI , we deduce

uI.x0/D sup
SI

inf
SII

E
x0

SI;SII

h
gu"

I
.x� /C "

2
X��1

nD0
f .xn/

i
� inf
SII

E
x0

S0
I ;SII

h
gv.x� /C "

2
X��1

nD0
f .xn/� �2

��
i

� inf
SII

lim inf
k!1

E
x0

S0
I ;SII

h
v.x�^k/C "

2
X.��1/^k

nD0
f .xn/� �2

�.�^k/
i

� inf
SII

ES0
I ;SII

ŒM0�D v.x0/� �;

where .� � 1/ ^ k D min.� � 1; k/, and we used Fatou’s lemma as well as the
optional stopping theorem for Mk . Since � is arbitrary, this proves the claim. �

A symmetric result can be proved for uII, hence we obtain the following result:

Theorem 4.6. Assume that ˇ1; ˇ2 > 0, supf < 0 or inff > 0. Then there exists
a unique p1-p2-harmonious function. Even more the game has a value, that is
uI D uII, which coincides with the unique p1-p2-harmonious function.

Proof. Let u be a p1-p2-harmonious function, which exits, as we know from
Proposition 4.4. From the definition of the game values we know that uI � uII.
Then by Lemma 4.5 we have that

uI � uII � u� uI:

Thus uI D uII D u. Since we can repeat the argument for any p1-p2-harmonious
function, uniqueness follows. �
Remark 4.7. Note that if we have a sub-p1-p2-harmonious function u, then v given
by vDu�C in� and vDu in �" is sub-p1-p2-harmonious for every constantC >0.
In this way we can obtain a sub-p1-p2-harmonious function smaller than any super-
p1-p2-harmonious function, and then if we start the above construction with this
function we get the smallest p1-p2-harmonious function. That is, there exists a
minimal p1-p2-harmonious function. We can use the analogous construction to get
the largest p1-p2-harmonious function (the maximal p1-p2-harmonious function).

We now tackle the remaining case in which f � 0 and one of the ˇi is 0 (that is
the same as saying that one of the ˛i is equal to 1).
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Theorem 4.8. There exists a unique p1-p2-harmonious function when ˛1 D 1,
˛2 > 0 and f � 0.

Proof. Suppose not, then we have u and v such that

v.x/Dmax
�
1
2

�
sup
B".x/

vC inf
B".x/

v
�
; ˛
2

�
sup
B".x/

vC inf
B".x/

v
�
Cˇ�

Z
B".x/

v

�

u.x/Dmax
�
1
2

�
sup
B".x/

uC inf
B".x/

u
�
; ˛
2

�
sup
B".x/

uC inf
B".x/

u
�
Cˇ�

Z
B".x/

u

�
in � and

uD v D g

on �" with
ku� vk1 DM > 0:

As we observed in Remark 4.7 we can assume u� v (just take v as the minimal
solution to the DPP). Now we want to build a point where the difference between u
and v is almost attained and v has a large variation in the ball of radius " around
this point (all this has to be carefully quantified). First, we apply a compactness
argument. We know that

�"=4 �
[
x2�

B"=2.x/:

As �"=4 is compact, there exists yi such that

�"=4 �

k[
iD1

B"=2.yi /:

Let AD
˚
i 2 f1; : : : ; kg W u or v are not constant on B"=2.yi /

	
and let � > 0 such

that, for every i 2 A,

sup
B".yi /

u� inf
B".yi /

u >

�
4C

4ˇ

˛

�
� or sup

B".yi /

v� inf
B".yi /

v > 2�:

We fix this �. Now, for every ı > 0 such that � > ı and M > ı, let z 2� such that
M � ı < u.z/� v.z/. Let

O D fx 2� W u.x/D u.z/ and v.x/D v.z/g ��:

Take z 2 @O ��. Letting i0 be such that z 2 B"=2.yi0/, we have

B"=2.yi0/\O ¤∅ and B"=2.yi0/\O
c
¤∅;

hence i0 2 A. Let x0 2 B"=2.yi0/\O . In this way we have obtained x0 such that
u.x0/� v.x0/ >M � ı and one of the following holds:



282 PABLO BLANC, JUAN P. PINASCO AND JULIO D. ROSSI

(1) sup
B".x0/

u� inf
B".x0/

u >

�
4C

4ˇ

˛

�
�;

(2) sup
B".x0/

v� inf
B".x0/

v > 2�:

Let us show that in fact the second statement must hold. Suppose not, then the first
holds and we have

sup
B".x0/

v� inf
B".x0/

v � 2�:

Given that
v.x0/�

1
2

�
sup
B".x0/

vC inf
B".x0/

v
�
;

we get
v.x0/C�� sup

B".x0/

v:

Hence
v.x0/C�CM � sup

B".x0/

vCM � sup
B".x0/

u:

Further, since
u.x0/� v.x0/ >M � ı >M ��;

we get
u.x0/C 2� > sup

B".x0/

u;

and

sup
B".x0/

u > inf
B".x0/

uC

�
4C

4ˇ

˛

�
�:

Hence

u.x0/�

�
2C

4ˇ

˛

�
� > inf

B".x0/
u:

If we bound the integral by the value of the supremum we can control all the terms
in the DPP in terms of u.x0/. We have

u.x0/Dmax
�
1
2

�
sup
B".x0/

uC inf
B".x0/

u
�
; ˛
2

�
sup
B".x0/

uC inf
B".x0/

u
�
Cˇ�

Z
B".x0/

u

�
< max

�
1
2

�
u.x0/C 2�Cu.x0/�

�
2C

4ˇ

˛

�
�

�
;

˛
2

�
u.x0/C 2�Cu.x0/�

�
2C

4ˇ

˛

�
�

�
Cˇ

�
u.x0/C 2�

��
< max

�
u.x0/�

4ˇ

˛
�; u.x0/

�
D u.x0/;
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which is a contradiction. Hence, the second condition must hold, that is, we have

sup
B".x0/

v� inf
B".x0/

v > 2�:

Applying the DPP we get

v.x0/�
1
2

�
sup
B".x0/

vC inf
B".x0/

v
�

together with the fact that

sup
B".x0/

v� inf
B".x0/

v > 2�;

and then we conclude that

v.x0/ > inf
B".x0/

vC�:

We have proved that there exists x0 such that

v.x0/ > inf
B".x0/

vC� and u.x0/� v.x0/ >M � ı:

Now we are going to build a sequence of points where the difference between u
and v is almost maximal and where the value of v decreases by at least � in every
step. Applying the DPP to M � ı < u.x0/� v.x0/ and bounding the difference of
the suprema by M we get:

M �
2

˛
ıC inf

B".x0/
v < inf

B".x0/
u:

Let x1 be such that v.x0/ > v.x1/C� and infB".x0/ vC ı > v.x1/. We get

M �
�
1C

2

˛

�
ıC v.x1/ < u.x1/:

To repeat this construction we need the following two results:

� In the last inequality, if ı is small enough u.x1/¤ v.x1/, hence x1 2�.

� We know that 2v.x1/� infB".x1/ vCsupB".x1/
v >v.x0/CinfB".x1/ v. Hence,

since v.x0/ > v.x1/C�, we get v.x1/ > infB".x1/ vC�.

Then we get
v.xn�1/ > v.xn/C�

and

M �

� nX
kD0

�
2

˛

�k�
ıC v.xn/ < u.xn/:



284 PABLO BLANC, JUAN P. PINASCO AND JULIO D. ROSSI

We can repeat this argument as long as

M �

� nX
kD0

�
2

˛

�k�
ı > 0;

which is a contradiction with the fact that v is bounded. �

Now we want to show that this unique function that satisfies the DPP is the
game value. The key point of the proof is to construct a strategy based on the
approximating sequence that we used to construct the solution.

Theorem 4.9. Given f � 0, the game has a value, that is uID uII, which coincides
with the unique p1-p2-harmonious function.

Proof. Let u be the unique p1-p2-harmonious function (the uniqueness is given by
Theorems 4.6 and 4.8). We will show that u � uI. The analogous result can be
proved for uII, completing the proof.

Let us consider a sub-p1-p2-harmonious function u0 which is smaller than inf� g
at every point in �. Starting with this u0 we build the corresponding uk as in
Proposition 4.4. We have that uk! u as k!1.

Now, given ı > 0, let n > 0 be such that un.x0/ > u.x0/� ı=2. We build a
strategy S0I for Player I: in the first n moves, given xk�1 he will choose to move to
a point that almost maximizes un�k , that is, he chooses xk 2 B".xk�1/ such that

un�k.xk/ > sup
B".xk�1/

un�k �
ı

2n
:

and chooses  in order to maximize

˛i
2

n
inf

B".xk�1/
un�k �

ı

2n
C sup
B".xk�1/

un�k

o
Cˇi �

Z
B".xk�1/

un�k dy:

After the first n moves he will follow a strategy that ends the game almost surely
(for example pointing in a fix direction).

We have

E
x0

S0
I ;SII

h
un�k.xk/C

kı

2n
W x0; : : : ; xk�1

i
� max
i2f1;2g

�
˛i
2

n
inf

B".xk�1/
un�k�

ı

2n
C sup
B".xk�1/

un�k

o
Cˇi �

Z
B".xk�1/

un�k dy

�
C
kı

2n

� un�kC1.xk�1/C
.k�1/ı

2n
;
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where we have estimated the strategy of Player II by inf and used the construction
for the uk . Thus

Mk D

8<:un�k.xk/C
kı

2n
�
ı

2
for 0� k � n;

inf� g for k > n;

is a submartingale.
Now we have

uI.x0/D sup
SI

inf
SII

E
x0

SI; SII
Œg.x� /�

� inf
SII

E
x0

S0
I ; SII

Œg.x� /�

� inf
SII

lim inf
k!1

E
x0

S0
I ;SII

ŒMk�

� inf
SII

ES0
I ;SII

ŒM0�D un.x0/�
ı

2
> u.x0/� ı;

where � ^kDmin.�; k/, and we used the optional stopping theorem for Mk . Since
ı is arbitrary, this proves the claim. �

As an immediate corollary of our results in this section we obtain a comparison
result for solutions to the DPP.

Corollary 4.10. If v and u are p1-p2-harmonious functions for gv , fv and gu, fu,
respectively such that gv � gu and fv � fu, then v � u.

5. Properties of harmonious functions and convergence

First, we show some properties of p1-p2-harmonious functions that we need to
prove convergence as "! 0. We want to apply the following Arzelà–Ascoli-type
lemma. For its proof, see [Manfredi et al. 2012b, Lemma 4.2].

Lemma 5.1. Let fu" W�! R; " > 0g be a set of functions such that

(1) there exists C > 0 such that ju".x/j< C for every " > 0 and every x 2�,

(2) given � > 0 there are constants r0 and "0 such that for every " < "0 and any
x; y 2� with jx�yj< r0,

ju".x/�u".y/j< �:

Then, there exists a uniformly continuous function u W�! R and a subsequence
still denoted by fu"g such that

u"! u uniformly in �;

as "! 0.
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So our task now is to show that the family u" satisfies the hypotheses of the
previous lemma. To this end we need some bounds on the expected exit time in the
case of a player choose a certain strategy.

Let us start showing that u" are uniformly bounded. In Lemma 4.2 we obtained
a bound for the value of the game for a fixed "; here we need a bound independent
of ". To this end, let us define what we understand by pulling in one direction: we
fix a direction, that is, a unitary vector v and at each turn of the game the player
strategy is given as S.xk�1/D xk�1C ."� "3=2k/v.

Lemma 5.2. In a game where a player pulls in a fixed direction the expectation of
the exit time is bounded above by

EŒ� �� C"�2

for some C > 0 independent of ".

Proof. First, let us assume without loss of generality that

�� fx 2 Rn W 0 < xn <Rg

and that the direction that the player is pulling to is �en. Then

Mk D .xk/nC
"3

2k

is a supermartingale. Indeed, if the random move occurs, then we know that the
expectation of .xkC1/n is equal to .xk/n. If the tug-of-war game is played we
know that with probability one half, .xkC1/n D .xk/n� "C "3=2k and if the other
player moves .xkC1/n � .xk/n C ", so the expectation is less than or equal to
.xk/nC "

3=2kC1.
Let us consider the expectation for .MkC1�Mk/

2. If the random walk occurs,
then the expectation is "2=.nC 2/C o."2/. Indeed,

�

Z
B"

x2n D
1

n
�

Z
B"

jxj2 D
1

"nnjB1j

Z "

0

r2j@Br j dr D
j@B1j

"nnjB1j

Z "

0

rnC1 dr D
"2

nC2
:

If the tug-of-war occurs we know that with probability one half .xkC1/n D
.xk/n� "C "

3=2k , so the expectation is greater than or equal to "2=3.
Let us consider the expectation for M 2

k
�M 2

kC1
. We have

EŒM 2
k �M

2
kC1�D EŒ.MkC1�Mk/

2�C 2EŒ.Mk �MkC1/MkC1�:

As .xk/n is positive, we have 2EŒ.Mk �MkC1/MkC1�� 0. Then

EŒM 2
k �M

2
kC1�� "

2=.nC 2/;
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so M 2
k
C k"2=.nC 2/ is a supermartingale. According to the optional stopping

theorem for supermartingales,

E

�
M 2
�^kC

.�^k/"2

nC2

�
�M 2

0 :

We have

EŒ.� ^ k/�
"2

nC2
�M 2

0 �EŒM
2
�^k��M

2
0 :

Taking the limit in k, we get a bound for the expected exit time,

EŒ� �� .nC 2/M 2
0 "
�2;

so the statement holds for C D .nC 2/R2. �

Lemma 5.3. An f-p1-p2-harmonious function u" with boundary values g satisfies

(5-1) inf
y2�"

g.y/CC inf
y2�

f .y/� u".x/� sup
y2�"

g.y/CC sup
y2�

f .y/:

Proof. We use the connection to games. Let one of the players choose a strategy of
pulling in a fixed direction. Then

EŒ� �� C"�2;

and this gives the upper bound

E

�
g.X� /C "

2
��1X
nD0

f .Xn/

�
� sup
y2�"

g.y/CEŒ��"2 sup
y2�

f .y/

� sup
y2�"

g.y/CC sup
y2�

f .y/:

The lower bound follows analogously. �

Let us show now that the u" are asymptotically uniformly continuous. First we
need a lemma that bounds the expectation for the exit time when one player is
pulling towards a fixed point.

Let us consider an annular domain BR.y/ nBı.y/ and a game played inside. In
each round the token starts at a certain point x, an "-step tug-of-war is played inside
BR.y/ or the token moves at random with uniform probability in BR.y/\B".x/.
If an "-step tug-of-war is played, there is a probability of one half for either player
to move the token to a point of his choosing in BR.y/\B".x/. We can think there
is a third player choosing whether the "-step tug-of-war or the random move occurs.
The game ends when the position reaches Bı.y/, that is, when x�� 2 Bı.y/.
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Lemma 5.4. Assume that one of the players pulls towards y in the game described
above. Then, no mater how many times the tug-of-war is played or the random
move is done, the exit time verifies

(5-2) Ex0.��/�
�
C.R=ı/ dist.@Bı.y/; x0/C o.1/

�
="2;

for x0 2 BR.y/ nBı.y/. Here �� is the exit time in the previously described game
and o.1/! 0 as "! 0 can be taken as depending only on ı and R.

Proof. Let us denote
h".x/D Ex.�/:

By symmetry, we know that h" is radial and it is easy to see that it is increasing in
r D jx�yj. If we assume that the other player wants to maximize the expectation
for the exit time and that the random move or tug-of-war is chosen in the same way,
we have that the function h" satisfies a dynamic programming principle,

h".x/Dmax
�
1
2

�
max

B".x/\BR.y/
h"C min

B".x/\BR.y/
h"

�
; �

Z
B".x/\BR.y/

h" dz

�
C 1;

by the above assumptions and that the number of steps always increases by 1 when
making a step. Further, we denote v".x/D "2h".x/ and obtain

v".x/Dmax
�
1
2

�
sup

B".x/\BR.y/

v"C inf
B".x/\BR.y/

v"

�
; �

Z
B".x/\BR.y/

v" dz

�
C "2:

This induces us to look for a function v such that

(5-3) v.x/� �

Z
B".x/

v dzC "2 and v.x/� 1
2

�
sup
B".x/

vC inf
B".x/

v
�
C "2:

Note that for small " this is a sort of discrete version of the following inequalities:

(5-4)
�
�v.x/� �2.nC 2/; x 2 BRC".y/ nBı�".y/;

�1v.x/� �2; x 2 BRC".y/ nBı�".y/:

This leads us to consider the problem

(5-5)

8̂̂<̂
:̂
�v.x/D�2.nC 2/; x 2 BRC".y/ nBı.y/;

v.x/D 0; x 2 @Bı.y/;

@v

@�
D 0; x 2 @BRC".y/;

where @v=@� refers to the normal derivative. The solution to this problem is radially
symmetric and strictly increasing in r D jx�yj. It takes the form

v.r/D

(
�ar2� br2�N C c if N > 2, and

�ar2� b log.r/C c if N D 2.
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If we extend this v toBı.y/nBı�".y/, it satisfies�v.x/D�2.NC2/ inBRC".y/n
Bı�".y/. We know that

�1v D vrr � vrr C
N�1

r
vr D�v:

Thus, v satisfies the inequalities (5-4). Then, the classical calculation shows that v
satisfies (5-3) for each B".x/� BRC".y/ nBı�".y/.

In addition, as v is increasing in r , it holds for each x 2 BR.y/ nBı.y/ that

�

Z
B".x/\BR.y/

v dz � �

Z
B".x/

v dz � v.x/� "2

and

1
2

�
sup

B".x/\BR.y/

vC inf
B".x/\BR.y/

v
�
�
1
2

�
sup
B".x/

vC inf
B".x/

v
�
� v.x/� "2:

It follows that

EŒv.xk/C k"
2
W x0; : : : ; xk�1�

�max
�
1
2

�
sup

B".xk�1/\BR.y/

vC inf
B".xk�1/\BR.y/

v
�
; �

Z
B".xk�1/\BR.y/

v dz

�
� v.xk�1/C .k� 1/"

2;

if xk�1 2BR.y/nBı.y/. Thus v.xk/Ck"2 is a supermartingale, and the optional
stopping theorem yields

(5-6) Ex0 Œv.x��^k/C .�
�
^ k/"2�� v.x0/:

Because x�� 2 Bı.y/ nBı�".y/, we have

0� �Ex0 Œv.x��/�� o.1/:

Furthermore, the estimate

0� v.x0/� C.R=ı/ dist
�
@Bı.y/; x0

�
holds for the solutions of (5-5). Thus, by passing to the limit as k!1, we obtain

"2Ex0 Œ���� v.x0/� EŒu.x��/�� C.R=ı/
�
dist.@Bı.y/; x0/C o.1/

�
:

This completes the proof. �

Next we derive a uniform bound and estimate for the asymptotic continuity of
the family of p1-p2-harmonious functions.

We assume here that � satisfies an exterior sphere condition: for each y 2 @�,
there exists Bı.z/� Rn n� such that y 2 @Bı.z/.
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Lemma 5.5. Let g be Lipschitz continuous in �" and f Lipschitz continuous in �
such that f � 0, inff > 0 or supf < 0. The p1-p2-harmonious function u" with
data g and f satisfies

(5-7) ju".x/�u".y/j � Lip.g/
�
jx�yjC ı

�
CC.R=ı/

�
jx�yjC o.1/

�
.1Ckf k1/C zC Lip.f /jx�yj;

for every small enough ı > 0 and for every two points x; y 2 �[�". Here o.1/
can be taken depending only on ı and R.

Proof. The case x; y 2 �" is clear. Thus, we can concentrate on the cases x 2�
and y 2 �" as well as x; y 2�.

We use the connection to games. Suppose first that x 2� and y 2 �". By the
exterior sphere condition, there exists Bı.z/� Rn n� such that y 2 @Bı.z/. Now
Player I chooses a strategy of pulling towards z, denoted by SzI . Then

Mk D jxk � zj �C"
2k

is a supermartingale for a sufficiently large constant C , independent of ". Indeed,

E
x0

Sz
I ;SII

�
jxk � zj W x0; : : : ; xk�1

�
� max
i2f1;2g

�
˛i
2

˚
jxk�1� zjC "� "

3
Cjxk�1� zj � "

	
Cˇi �

Z
B".xk�1/

jx� zj dx

�
� jxk�1� zjCC"

2:

The first inequality follows from the choice of the strategy, and the second from the
estimate

�

Z
B".xk�1/

jx� zj dx � jxk�1� zjCC"
2:

By the optional stopping theorem, this implies that

(5-8) E
x0

Sz
I ;SII

�
jx� � zj

�
� jx0� zjCC"

2E
x0

Sz
I ;SII

Œ� �:

Next we can estimate E
x0

Sz
I ;SII

Œ� � by the stopping time of Lemma 5.4. Let R > 0
be such that �� BR.z/. Thus, by (5-2),

"2E
x0

Sz
I ;SII

Œ� �� "2E
x0

Sz
I ;SII

Œ���� C.R=ı/
�
dist.@Bı.z/; x0/C o.1/

�
:

Since y 2 @Bı.z/,
dist

�
@Bı.z/; x0

�
� jy � x0j;

and thus, (5-8) implies

E
x0

Sz
I ;SII

�
jx� � zj

�
� C.R=ı/

�
jx0�yjC o.1/

�
:
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We get
g.z/�C.R=ı/

�
jx�yjC o.1/

�
� E

x0

Sz
I ;SII

Œ g.x� / �:

Thus, we obtain

supSI
infSII E

x0

SI;SII

�
g.x� /C "

2
��1X
nD0

f .xn/

�
� infSII E

x0

Sz
I ;SII

�
g.x� /C "

2
��1X
nD0

f .xn/

�
� g.z/�C.R=ı/

�
jx0�yjC o.1/

�
� "2 infSII E

x0

Sz
I ;SII

Œ� �kf k1

� g.y/�Lip.g/ı�C.R=ı/
�
jx0�yjC o.1/

�
.1Ckf k1/:

The upper bound can be obtained by choosing for Player II a strategy where he
points to z, and thus, (5-7) follows.

Finally, let x; y 2� and fix the strategies SI; SII for the game starting at x. We
define a virtual game starting at y: we use the same coin tosses and random steps as
the usual game starting at x. Furthermore, the players adopt their strategies SvI ; S

v
II

from the game starting at x, that is, when the game position is yk�1 a player chooses
the step that would be taken at xk�1 in the game starting at x. We proceed in this
way until for the first time xk 2 �" or yk 2 �". At that point we have

jxk �ykj D jx�yj;

and we may apply the previous steps that work for xk 2 �, yk 2 �" or for
xk; yk 2 �".

If we are in the case f � 0 we are done. In the case infy2�jf .y/j > 0, as we
know that the u" are uniformly bounded according to Lemma 5.3, we have that the
expected exit time is bounded by

zC D
maxy2�"

jg.y/jCC maxy2�jf .y/j
infy2�jf .y/j

:

So the expected difference in the running payoff in the game starting at x and
the virtual one is bounded by zC Lip.f /jx�yj, because jxi �yi j D jx�yj for all
0� i � k. �

Corollary 5.6. Let fu"g be a family of p1-p2-harmonious functions. Then there
exists a uniformly continuous u and a subsequence still denoted by fu"g such that

u"! u uniformly in �:

Proof. Using Lemmas 5.3 and 5.5 we get that the family u" satisfies the hypothesis
of compactness in Lemma 5.1. �
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Theorem 5.7. The function u obtained as a limit in Corollary 5.6 is a viscosity
solution to (1-2) when we consider the game with f=2 as the running payoff
function.

Proof. First, we observe that u D g on @� since u" D g on @� for all " > 0.
Hence, we can focus our attention on showing that u is p1-p2-harmonic inside
� in the viscosity sense. To this end, we recall from [Manfredi et al. 2010] an
estimate that involves the regular Laplacian (p D 2) and an approximation for the
infinity Laplacian (p D1). Choose a point x 2� and a C 2-function � defined in
a neighborhood of x. Note that since � is continuous we have

min
y2B".x/

�.y/D inf
y2B".x/

�.y/

for all x 2�. Let x"1 be the point at which � attains its minimum in B".x/,

�. x"1 /D min
y2B".x/

�.y/:

It follows from the Taylor expansions in [Manfredi et al. 2010] that

(5-9) ˛

2

�
max

y2B".x/

�.y/C min
y2B".x/

�.y/
�
Cˇ�

Z
B".x/

�.y/ dy ��.x/

�
"2

2.nCp/

�
.p� 2/

�
D2�.x/

�
x"1� x

"

�
;

�
x"1� x

"

��
C��.x/

�
C o."2/:

Suppose that � touches u at x strictly from below. We want to prove that
F �.r�.x/;D2�.x//� f .x/. By the uniform convergence, there exists a sequence
fx"g converging to x such that u"�� has an approximate minimum at x", that is,
for �" > 0, there exists x" such that

u".x/��.x/� u".x"/��.x"/� �":

Moreover, considering z�D��u".x"/��.x"/, we can assume that �.x"/Du".x"/.
Thus, by recalling the fact that u" is p1-p2-harmonious, we obtain

�" � "
2f .x"/

2
��.x"/C max

i2f1;2g

�
˛i
2

�
max
B".x"/

�C min
B".x"/

�
�
Cˇi �

Z
B".x"/

�.y/ dy

�
;

and thus, by (5-9), and choosing �" D o."2/, we have

0�
"2

2
max
i2f1;2g

�
˛i

�
D2�.x"/

�
x"1� x"

"

�
;

�
x"1� x"

"

��
C �i��.x"/

�
C "2

f .x"/

2
C o."2/:
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Next we need to observe that�
D2�.x"/

�
x"1� x"

"

�
;

�
x"1� x"

"

��
converges to �1�.x/ when r�.x/ ¤ 0 and is always bounded in the limit by
�min.D

2�.x// and �max.D
2�.x//. Dividing by "2 and letting "! 0, we get

F �.r�.x/;D2�.x//� f .x/:

Therefore u is a viscosity supersolution.
To prove that u is a viscosity subsolution, we use a reverse inequality to (5-9)

by considering the maximum point of the test function and choose a smooth test
function that touches u from above. �

Now, we just observe that this probabilistic approach provides an alternative
existence proof of viscosity solutions to our PDE problem.

Corollary 5.8. Any limit function obtained as in Corollary 5.6 is a viscosity solution
to the problem �

maxf��p1
u;��p2

ug D f on �;
uD g on @�:

In particular, the problem has a solution.

We proved that the problem has an unique solution using PDE methods, therefore
we conclude that we have convergence as "!0 of u" (not only along subsequences).

Corollary 5.9. It holds that

u"! u uniformly in �;

being u the unique solution to the problem�
maxf��p1

u;��p2
ug D f on �;

uD g on @�:
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