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Abstract

We give a construction of a real number that is normal to all integer bases and
continued fraction normal. The computation of the first n digits of its continued fraction
expansion performs in the order of n4 mathematical operations. The construction works
by defining successive refinements of appropriate subintervals to achieve, in the limit,
simple normality to all integer bases and continued fraction normality. The main difficulty
is to control the length of these subintervals. To achieve this we adapt and combine known
metric theorems on continued fractions and on expansions in integers bases.

For a real number x in the unit interval, the continued fraction expansion of x is a sequence
of positive integers a1, a2, ..., such that

x =
1

a1 +
1

a2 +
1

. . . +
1

an +
1

.. .

A real number is continued fraction normal if every block of integers occurs in the continued
fraction expansion with the asymptotic frequency determined by the Gauss measure. An
application of Birkhoff’s Ergodic Theorem proves that almost all –with respect to Lebesgue
measure– real numbers have a normal continued fraction expansion.

For each real number x in the unit interval, its expansion in an integer base b greater than
or equal to 2 is a sequence of integers a1, a2..., where 0 ≤ ai < b for every i, such that

x =

∞
∑

i=1

aib
−i.

We require that ai < b − 1 infinitely many times to ensure that every rational number has
a unique representation. A real number x is simply normal to a given base b if every digit
occurs in the b-ary expansion of x with the same asymptotic frequency. Normality to base
b is defined as simple normality to b, b2, b3, ..., all the powers of b. In 1940 Pillai proved
that this formulation of normality is equivalent to Borel’s original definition in [4] (see [5,
Theorem 4.2]). Absolute normality is defined as normality to every integer base greater than
or equal to 2, hence, as simple normality to every integer base greater than or equal to 2.
Borel showed that almost all (with respect to Lebesgue measure) real numbers are absolutely
normal.
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Thus, almost all real numbers are absolutely normal and continued fraction normal.
Here we prove the following:

Theorem 1. There is an algorithm that computes a number that is absolutely normal and
continued fraction normal. The computation of the first n digits of the continued fraction
expansion performs a number of mathematical operations that is in O(n4).

On the problem of constructing a number satisfying the two forms of normality.

The problem appeared explicitly in the literature first in [16] and then in [5, Problem 10.49].
Recently Scheerer [17] gave an algorithm that yields one such number with doubly exponential
computational complexity: the computation of the first n digits of the continued fraction
expansion performs doubly exponential in n many mathematical operations. Thus, as any
other algorithm with exponential complexity, Scheerer’s algorithm can not run in human
time. In contrast, algorithms with polynomial complexity can. To prove Theorem 1 we give
an algorithm that can be implemented as an efficient computer program that outputs one
digit after the other. Our technique elaborates on the algorithm given by Becher, Heiber and
Slaman [2] which has just above quadratic complexity. Madritsch, Scheerer and Tichy [10] also
elaborated on the algorithm given in [2], but in a very different way, and they use it to compute
absolutely normal Pisot numbers efficiently. Finally we remark that if in our algorithm we
skip the treatment of integer bases then we obtain a continued fraction normal number (with
no guarantee of normality to integer bases). Such an algorithm differs substantially from all
the previously known constructions of continued fraction normal numbers [15, 1, 5, 11, 17].

About the proof of Theorem 1. Our algorithm works incrementally to define, in
the limit of the computation, a real number x in the unit interval. The construction works
by defining successive refinements of appropriate subintervals to achieve, in the limit, simple
normality to all integer bases and continued fraction normality. The choice of each subinterval
determines further digits in the expansion of x in integer bases and in its continued fraction.
We require that the choice contributes to the two forms of normality but without revisiting
the previous digits. For this we need to control, at each step of the construction, the lengths
of the new subintervals, as they should be not too small.

We say that an interval I is cf-ary if there is a finite continued fraction [a1, . . . , an] such
that the interval I is equal to the set of all the numbers whose first n digits of their continued
fraction expansion are a1, . . . , an. And we say that an interval J is b-ary for some integer b
greater than or equal to 2 if there is a finite block d1, . . . , dn of digits between 0 and b − 1
such that J is equal to the set of real numbers whose first n digits of their b-ary expansion
are equal to d1, . . . , dn. The set of b-ary intervals determined by n digits between 0 and b− 1
is a partition of the unit interval in finitely many parts of equal length. The set of cf-ary
intervals determined by n digits also form a partition of the unit interval, but in infinite parts
of different length. Our construction rests on the fact that the cf-ary intervals determined
by any n digits have, nevertheless, an expected approximate length. This is because the
distribution of the logarithm of the convergent of finite continued fractions of n digits obeys a
Gaussian law. Ibragimov [8] was the first to establish this theorem. Morita [13, Theorem 8.1]
and Vallée [18, Theorem 9] obtained the same result with an optimal error term. We use
this optimal version in Lemma 5 to guarantee the existence of enough cf-ary subintervals
having the desired relative length with respect to the previously considered cf-ary interval.
The control of the length of the b-ary subintervals is much simpler. Proposition 12 gives the
needed estimate for the relative size of a b-ary subinterval of any given interval.
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To achieve continued fraction normality we need to bound the measure of the set inside
any givencf-ary interval I having too many or too few occurrences of a given block of digits in
their continued fraction expansions. This is essentially a result on large deviations proved by
Kifer, Peres and Weiss [9, Corollary 3.2] but conditioned on the first digits that determine the
interval I. We establish this result in Lemma 3. To achieve normality in each integer base b we
use Hardy and Wright’s estimate [7, Proof of Theorem 148] for the number of blocks having
too many or too few occurrences of a given digit, as stated in Lemma 8. At each step of the
computation the algorithm determines a finite extension of the continued fraction expansion
of x, as well as a finite extension of the expansion of x in each of the finitely many integer
bases designated for that step. To obtain absolute normality the set of designated integer
bases increases with the step number, and in the limit it consists of all integers greater than
or equal to 2. To obtain continued fraction normality, at each step the algorithm considers
the occurrences of blocks from certain finite collection. The set of designated blocks increases
monotonically in the step number and in the limit consists of all blocks of all positive integers.

Organisation of the paper. We devote Section 1 to the definitions and the tools to be
used in the proof of Theorem 1. We first present a non-recursive formulation of the convergent
of a finite continued fraction and we use it in Lemma 3 to obtain convenient upper and lower
bounds of the length of any cf-ary subinterval of a given cf-ary interval. These upper and
lower bounds propagate along most of the results of this work. We give aforementioned
key Lemmas 5, 6 and 8, as well as the material to deal with the discrepancy associated to
continued fraction expansions and b-ary expansions, see Lemmas 7 and 9. In Section 2 we
give the actual proof of Theorem 1. We present the algorithm, we prove its correctness and
we estimate the number of mathematical operations needed to compute the first n digits of
the continued fraction expansion of the number defined by our algorithm. The algorithm and
its correctness are based on Lemma 13, which is the main lemma of the paper.

1 Needed definitions and lemmas

Notation. As usual we write N to denote the set of positive integers and N
k to denote the

set of k tuples of positive integers. For a finite set S, #S is its cardinality. For an infinite set
S of real numbers, |S| is its Lebesgue measure; hence, when S is an interval, |S| is its length.
We use standard notation for the asymptotic behaviour of functions. We say that a function
g(x) is O(f(x)) if there are constants x0 and c such that for every x ≥ x0, |g(x)| < c · |f(x)|.
We write log to denote the logarithm in base e.

1.1 cf-ary intervals

We write x = [a1, a2, ...] with a1, a2, ... positive integers to denote the continued fraction
expansion of a real number x in the unit interval. The functions pn(x) and qn(x), called the
convergents of x, are defined recursively as follows.

If x = [a1, a2, ...],

p−1(x) = q0(x) = 1

p0(x) = q−1(x) = 0
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and for n ≥ 1,

pn(x) = anpn−1(x) + pn−2(x),

qn(x) = anqn−1(x) + qn−2(x).

When the real number x is understood from the context we write p−1, q−1, p0, q0, ... instead
of p−1(x), q−1(x), p0(x), q0(x), ... Given a1, . . . , an, we have the equation

[a1, . . . , an] =
pn
qn

.

For irrational x = [a1, a2, ...], pn/qn is the nth approximant to x and converges to x as n tends
to infinity. For rational x = [a1, . . . , an], x = pn/qn. Observe that (pn)n≥1 and (qn)n≥1 are
increasing.

The convergent qn can be expressed by a non-recursive formula, as follows. We write ∐
to denote the disjoint union operation. We define the set P of subsets of positive integers as

P =
{

C ⊂ N : (∃D ⊂ N) C = ∐n∈D{n, n+ 1}
}

.

For every pair of positive integers r, s such that r ≤ s, define

Ωr,s =
{

I ⊂ {r, . . . , s} : ({r, . . . , s} \ I) ∈ P
}

.

αr,s =
∑

I∈Ωr,s

∏

i∈I
ai.

And let
αs+1,s = 1 and αs+2,s = 0.

The following proposition holds.

Proposition 2. Let x = [a1, a2, ...] ∈ (0, 1).

1. For every positive integer s, qs(x) = α1,s.

2. Let r, r′, s, s′ be positive integers. If r ≤ r′ and s ≥ s′ then αr,s ≤ αr′,s′. Equality holds
if and only if r = r′ and s = s′.

3. Let r and s be positive integers. If r ≤ s then α1,s = α1,r αr+1,s + α1,r−1 αr+2,s.

Proof. Item 1 is true for s = 1 and it follows by induction from qn = anqn−1 + qn−2.
Items 2 and 3 follow from the definition of αr,s.

For a finite continued fraction [a1, . . . , an] we consider the open interval I[a1,...,an] containing
the numbers whose first n digits of their continued fraction expansion are a1, . . . , an. Thus,

I[a1,...,an] = ([a1, . . . , an], [a1, . . . , an + 1]), or

I[a1,...,an] = ([a1, . . . , an + 1], [a1, . . . , an])

We say that an interval I is cf-ary of order n if it is some I[a1,...,an].
The length of a cf-ary interval is

|I[a1,...,an]| =
1

qn(qn + qn−1)
.

If a = [a1, . . . , ar], b = [ar+1, . . . , as] and c = [a1, . . . , as], we write Ia,b to denote Ic. For
x = [d1, . . . , dn] we simply write q(x) to denote qn(x).
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Lemma 3. Let a = [a1, . . . , ar], b = [ar+1, . . . , as] and c = [a1, . . . , as]. Then,

1. q(a)q(b) ≤ q(c) ≤ 2q(a)q(b).

2. |Ib|/2 ≤ |Ia,b|/|Ia| ≤ 2|Ib|.

Proof. 1. Using Proposition 2,

q(a)q(b) = α1,r αr+1,s ≤ α1,r αr+1,s + α1,r−1 αr+2,s = α1,s = q(c).

q(c) = α1,r αr+1,s + α1,r−1 αr+2,s ≤ 2α1,r αr+1,s ≤ 2q(a)q(b).

2. |Ia,b|−1 = α1,s (α1,s + α1,s−1)

=
(

α1,r αr+1,s + α1,r−1 αr+2,s

)(

α1,r (αr+1,s + αr+1,s−1) + α1,r−1 (αr+2,s + αr+2,s−1)
)

≤ 2α1,r αr+1,s

(

α1,r (αr+1,s + αr+1,s−1) + α1,r−1 (αr+1,s + αr+1,s−1)
)

= 2α1,r(α1,r + α1,r−1)αr+1,s (αr+1,s + αr+1,s−1)

= 2|Ia|−1|Ib|−1.

|Ia,b|−1 = α1,s (α1,s + α1,s−1)

=
(

α1,r αr+1,s + α1,r−1 αr+2,s

)(

α1,r

(

αr+1,s + αr+1,s−1

)

+ α1,r−1

(

αr+2,s + αr+2,s−1

)

)

≥
(

α1,r αr+1,s

)(

α1,r

(

αr+1,s + αr+1,s−1

)

)

≥
(

α1,r αr+1,s

)(α1,r + α1,r−1

2

)

(αr+1,s + αr+1,s−1)

=
1

2
|Ia|−1|Ib|−1.

The distribution of log qn obeys in the limit a Gaussian law. It was first proved by
Ibragimov [8]. Then Philipp [14, Satz 3] obtained an error term of O(n−1/5), which was
later improved by Mischyavichyus [12] to O(n−1/2 log n). Morita [13, Theorem 8.1] obtained
the optimal error term of order O(n−1/2); a different proof of the same bound was given by
Vallée [18, Théoreme 9]. In the sequel we write L for Lévy’s constant π2/(12 log 2).

Lemma 4 (Morita [13, Theorem 8.1], Vallée [18, Théoreme 9]). The distribution of the
random variable log qn(x) is asymptotically Gaussian. There is K0 and n0 such that for
every n ≥ n0,

∣

∣

∣

∣

Pr
[

x ∈ (0, 1) : −y ≤ log qn(x)− nL

σ
√
n

≤ y
]

− 1√
2π

∫ y

−y
e−z2/2dz

∣

∣

∣

∣

<
K0√
n
,

where σ is a positive absolute constant.

Vallée in [18] and also in [6], obtained an expression for σ using the generalised transfer
operators Ls for s > 1 over a suitable space of functions, also known as the Ruelle-Mayer
operator, defined by

Ls[f ](z) =

∞
∑

n=1

(

1

n+ z

)s

f

(

1

n+ z

)

.
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These operators Ls have a simple dominant positive eigenvalue λ(s). The expression for σ
uses the dominant eigenvalue of L2,

σ2 = λ′′(2)− λ′(2)2

where λ′ and λ′′ denote the derivative and second derivative of λ and

λ′(2) = −π2/(12 log 2) is Levy’s constant with negative sign.

λ′′(2) is the variance of the law of continuants, known as Hensley’s constant.

We remark that our use of σ occurs just in Lemma 5 and we not require its exact value σ,
any upper bound suffices.

Lemma 5. There are positive constants K, c and a positive integer n1 such that for anycf-ary
interval I and any integer n ≥ n1, the Lebesgue measure of the union of thecf-ary subintervals
J of I of relative order n such that

|I|
4
e−2nL−2c ≤ |J | ≤ 2|I|e−2nL+2c

is greater than K|I|/√n.

Proof. Take a positive constant c > σ
√
2πK0, say c = 2σ

√
2πK0. For each positive integer n

consider the set
Sn = {x ∈ (0, 1) : −c ≤ log qn(x)− nL ≤ c}

By Lemma 4 there is K0 and n0 such that for every integer n ≥ n0, the Lebesgue measure of
Sn is at least

1√
2π

∫ c/(σ
√
n)

−c/(σ
√
n)
e−w2/2dw − K0√

n
.

But for n sufficiently large so that e−w2/2 > 1/2 in the following integration region,

1√
2π

∫ c/(σ
√
n)

−c/(σ
√
n)
e−w2/2dw >

1√
2π

c

σ
√
n
= 2

K0√
n
,

hence we have that the Lebesgue measure of Sn is at least K0/
√
n.

Consider a sequence of digits a1, a2, ...an such that

−c ≤ log qn(x)− nL ≤ c.

This is equivalent to

e−nL−c ≤ 1

qn(x)
≤ e−nL+c.

We call In = Ia1,...,an , whose length is |In| = 1/(qn(qn + qn−1)). Clearly

1

2q2n
≤ |In| ≤

1

q2n
.

Fix a cf-ary interval I. The concatenation of a1, ..., an after the digits that define I yields a
cf-ary subinterval J of I. By Lemma 3,

1

4q2n
≤ |In|

2
≤ |J |

|I| ≤ 2|In| ≤
2

q2n
.
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Thus,
1

4
|I|e−2nL−2c ≤ |J | ≤ 2|I|e−2nL−2c.

Then, the set of cf-ary subintervals J of I of relative order n such that

|I|
4
e−2nL−2c ≤ |J | ≤ 2|I|e−2nL+2c

has Lebesgue measure at least
K0/(2|I|

√
n).

1.2 Discrepancy associated to continued fraction expansions

The Gauss map T is a function from real numbers in the unit interval to real numbers in the
unit interval, defined by T (0) = 0 and T (x) = 1/x−⌊1/x⌋. If [a1, a2, ...] denotes the continued
fraction expansion of x, then T n(x) = [an+1, an+2, ...] and an = ⌊1/T n−1(x)⌋, for n ≥ 1. The
map T possesses an invariant ergodic measure, the Gauss measure µ, which is absolutely
continuous with respect to Lebesgue measure,

µ(dx) =
dx

(1 + x) log 2
.

Then the Gauss measure for a cf-ary interval I[a1,...,an] in the unit interval is,

µ(I[a1,...,an]) =

∫ r′/s′

r/s
µ(dx),

where r/s and r′/s′ denote the rational numbers [a1, . . . , an] and [a1, . . . , an+1] ordered such
that r/s < r′/s′.

We write II(x) to denote the characteristic function of the interval I, so II(x) = 1 if x ∈ I
and II(x) = 0, otherwise. We say that [a1, a2, ...] is a normal continued fraction if, for every
positive integer k and for every block of k positive integers v1, . . . , vk,

lim
n→∞

1

n

n−1
∑

j=0

II[v1,...,vk]
(T jx) = µ(I[v1,...,vk]).

Equivalently,

lim
n→∞

1

n
#{j : 1 ≤ j ≤ n, aj = v1, . . . , aj+k−1 = vk} = µ(I[v1,...,vk]).

For example, quadratic irrationals do not have a normal continued fraction expansion
because they are periodic. The continued fraction expansion of e, [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, ...],
is not normal either because it is the concatenation of the pattern (1m1), for all even m in
increasing order. Applying Birkhoff’s Ergodic Theorem [3] we obtain that almost every real
in the unit interval has normal continued fraction expansion.
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For a real number x and a block v of k positive integers v1, . . . , vk the discrepancy of x
with respect to v in the first n positions of its continued fraction expansion is defined as

Dcf-ary
v,n (x) =

∣

∣

∣

1

n

n−1
∑

j=0

II[v1,...,vk]
(T jx)− µ

(

I[v1,...,vk]
)

∣

∣

∣
.

Clearly, a real number x has a normal continued fraction if and only if for every positive
integer k, and for every block v of k positive integers,

lim
n→∞

Dcf-ary
v,n (x) = 0.

The following result on large deviations is essentially Kifer, Peres and Weiss’ Corollary 3.2
in [9] but conditioning on the first r terms.

Lemma 6. Let I[a1,...,ar ] be a cf-ary interval, and let b be a block of k positive integers
b1, . . . , bk. Then for every positive real δ and for every positive integer n,

∣

∣

∣

{

x ∈ I[a1,...,ar ] :
∣

∣

∣

1

n

n−1
∑

i=0

II[b1,...,bk ]
(T r+ix)− µ(I[b1,...,bk])

∣

∣

∣
> δ

}
∣

∣

∣
≤ 6Me−

δ2n
2M |I[a1...,ar]|,

where M = M(δ, k) =
⌈

k − log
(

δ2/(2 log 2)
)

⌉

, or any larger number.

Proof. We write Ia and Ib to denote, respectively, I[a1,...,ar ], I[b1,...,bk].
Define

τb,n,δ =
{

x ∈ (0, 1) :
∣

∣

∣

1

n

n−1
∑

i=0

IIb(T
ix)− µ(Ib)

∣

∣

∣
> δ

}

τab,n,δ =
{

x ∈ Ia :
∣

∣

∣

1

n

n−1
∑

i=0

IIb(T
r+ix)− µ(Ib)

∣

∣ > δ
}

The set τab,n,δ is the disjoint union of cf-ary intervals Iac where c belongs to some appropriate

set Z ⊂ N
k+n−1. The set τb,n,δ is the disjoint union of Ic where c ∈ N

k+n−1 belongs to the
same Z. Lemma 3.1 and Remark 5.1 both in [9] establish that

µ(τb,n,δ) ≤ 2M(δ, k)e
− δ2n

2M(δ,k) ,

where
M(δ, k) = min{m ∈ N : (log 2)2−m+k ≤ δ2/2}.

For each c ∈ N
k+n−1, by Lemma 3.2,

|Iac|
|Ia|

≤ 2|Ic|.

Adding all these inequalities for c in Z and given the fact that for all measurable S,

|S| ≤ 2(log 2)µ(S) <
3

2
µ(S),

we obtain
|τab,n,δ|
|Ia|

≤ 2|τb,n,δ| ≤ 3µ(τb,n,δ) ≤ 6M(δ, k)e
− δ2n

2M(δ,k) .

Since xe−t/x is increasing in x for x, t > 0, we can replace M(δ, k) by any larger value M .
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Lemma 7. Let x = [a1, a2, . . . , an] and u = [b1, . . . , bs]. Let v be a block of k positive integers
v1, . . . , vk. Let ǫ be a positive real less than 1.

1. If Dcf-ary
v,n (x) < ǫ and Dcf-ary

v,s (u) < ǫ− (k − 1)/s then Dcf-ary
v,n+s(xu) < ǫ.

2. If Dcf-ary
v,n (x) < ǫ and s/n < ǫ then

(a) for every ℓ such that 1 ≤ ℓ ≤ s, Dcf-ary
v,n+ℓ(xu) < 2ǫ,

(b) Dcf-ary
v,n+s(ux) < 2ǫ.

Proof. Let |[a1, . . . , an]|v1,...,vk = |{j : 1 ≤ j ≤ n− k + 1, aj = v1, . . . , aj+k−1 = vk}| be the number
of occurrences of the block v1, . . . , vk in the continued fraction expansion [a1, . . . , an].

For part 1, assume Dcf-ary
v,n (x) < ǫ and Dcf-ary

v,s (x) < ǫ− (k − 1)/s. Then,

|xu|v ≤ |x|v + |u|v) + k − 1

≤ (n + s)µ(Iv) + (n+ s)ǫ− s
k − 1

s
+ k − 1

= (n + s)(µ(Iv) + ǫ).

|xu|v ≥ |x|v + |u|v
≥ (n + s)µ(Iv)− (n+ s)ǫ

= (n + s)(µ(Iv)− ǫ).

Therefore, Dcf-ary
v,n+s(xu) < ǫ.

For part 2, assume Dcf-ary
v,n (x) < ǫ and s/n < ǫ. Let ℓ such that 1 ≤ ℓ ≤ s. Then,

|[a1, . . . , an, b1, . . . , bℓ]|v
n+ ℓ

≤ |x|v
n+ s

+
s

n+ s

≤ (µ(Iv) + ǫ)n

n+ s
+

ǫn

n+ s

≤ (2ǫ+ µ(Iv))
n

n+ s

≤ 2ǫ
n

n+ s
+ µ(Iv)

≤ 2ǫ+ µ(Iv).

And

|[a1, . . . , an, b1, . . . , bℓ]|v
n+ ℓ

≥ |x|v
n+ s

≥ (µ(Iv)− ǫ)n

n+ s

≥ µ(Iv)− ǫ− µ(Iv)
s

n+ s
by elementary means

≥ µ(Iv)− ǫ− s

n
≥ µ(Iv)− 2ǫ, since ǫ > s/n.

We conclude Dcf-ary
v,n+ℓ([a1, . . . , an, b1 . . . , bℓ]) < 2ǫ.

Item (b), Dcf-ary
v,n+s(ux) < 2ǫ, is proved similarly.

9



1.3 Discrepancy associated to expansions in a given integer base

We say that a base is an integer greater than or equal to 2, a digit in base b is an integer
in {0, . . . , b − 1}, and a block in base b is a finite sequence of digits in base b. If u is a
block, its length is denoted by |u|. We define the discrepancy of the first n digits of a block
u = a1, . . . , a|u| in base b as

Db-ary
n (u) = max

{

∣

∣

∣

1

n
#{j : 1 ≤ j ≤ n, aj = s} − 1

b

∣

∣

∣
: s ∈ {0, . . . , b− 1}

}

.

Clearly, a real number x is simply normal to base b if and only if its expansion in base b,
a1a2... is such that

lim
n→∞

Db-ary
n (a1...an) = 0.

In the construction we use the following explicit bound for the number of blocks of a given
length having larger discrepancy than a given value.

Lemma 8 ([2, Lemma 2.5], adapted from [7, Theorem 148]). Fix a base b and a block
length k. For every real ǫ such that 6/k ≤ ǫ ≤ 1/b, the number of blocks of length k with b-ary

discrepancy greater than or equal to ǫ is at most 2bk+1e−bǫ2k/6.

If v and u are blocks, we write vu for their concatenation.

Lemma 9 ([2, Lemma 3.1]). Let u and v be blocks in base b and let ǫ > 0.

1. If Db-ary

|u| (u) < ǫ and Db-ary

|v| (v) < ǫ, then Db-ary

|uv| (uv) < ǫ.

2. If Db-ary

|v| (v) < ǫ and |u|/|v| < ǫ, then

(a) for every ℓ less than or equal to |u|, Db-ary

|v|+ℓ(vu) < 2ǫ.

(b) Db-ary

|v|+|u|(uv) < 2ǫ.

Proof. 1. It follows easily by considering a proper convex combination.
2. Let |a1...an|d = #{j : 1 ≤ j ≤ n, aj = d}. Fix the base b. Let u and v be blocks. Fix ℓ

and ǫ. We write (vu)1...(vu)m for the block of the first m digits of (vu).

|(vu)1...(vu)|v|+ℓ)|d
|v|+ ℓ

≥ |v|d
|v|+ |u|

≥ (1/b − ǫ)|v|
|v|+ |u|

≥ 1/b− ǫ− (1/b)
|u|

|v|+ |u| , by elementary means

≥ 1/b− 2ǫ, since ǫ > |u|/|v|.

By a similar verification,
|(vu)...(vu)|v|+ℓ|d

|v|+ ℓ
≤ 1/b+ 2ǫ.

We conclude Db-ary

|v|+ℓ(vu) < 2ǫ.

The proof of point (b), Db-ary

|v|+|u|(uv) < 2ǫ, is similar.
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As usual, for any integer b greater than or equal to 2, we say that an interval is b-ary, if
it is of the form

(

a

bk
,
a+ 1

bk

)

for some positive integer k and and integer a with 0 ≤ a < bk. In this case we also say that
the interval has order k.

2 Proof of Theorem 1

The following definition is the core of the construction.

Definition 10. For an integer t ≥ 2, a t-brick is a t-uple (σcf, σ2, . . . , σt) as follows

- the interval σcf is cf-ary;

- for every d = 2, ..., t, σd is d-ary interval or the union of two consecutive d-ary intervals
of the same order;

- for every d = 2, ..., t, σcf ⊂ σd and |σcf|/|σd| ≥ 1/(16e4cd).

Definition 11. If we have a t-brick ~σ = (σcf, σ2, . . . , σt) and a t′-brick ~τ = (τcf, τ2, . . . , τt′) we
say that ~τ refines ~σ if t′ ≥ t, τcf ⊂ σcf and τd ⊂ σd for d = 2, . . . , t. The refinement is said to
have discrepancy less than ǫ if

- for each d = 2, ..., t the new block w in base d corresponding to the inclusion τd ⊂ σd
has simple discrepancy Dd-ary(w) less than ǫ.

- the new cf-block of digits w corresponding to the inclusion τcf ⊂ σcf satisfies that for

every block v of t digits all less than or equal to t, Dcf-ary

v,|w| (w) is less than ǫ− (t− 1)/|w|.

We highlight the following trivial fact about lengths of d-ary subintervals because it will
be important in the proof of Lemma 13, our main lemma.

Proposition 12. Let d ≥ 2 and m ∈ N. Every interval I whose Lebesgue measure is less
than d−m is contained in a d-ary interval of order m or in the union of two such intervals.

Lemma 13 (main lemma). Let t be greater than or equal to 2, let ǫ be a positive real less
than 1/t, and let integer t′ be equal to t or to t + 1. Then, any t-brick ~σ = (σcf, σ2, . . . , σt)
admits a refinement ~τ = (τcf, τ2, . . . , τt′) with discrepancy less than ǫ. The relative order of τcf
might be any n greater than certain n0(t, ǫ).

Proof. First, assume t′ = t.

Towards the length of τcf. For each n consider In(σcf) the cf-ary subintervals of σcf of
relative order n. Let K, c, n1 be the constants provided by lemma 5. Call Jn(σcf) the collection
of intervals J ∈ In(σcf) such that

1

4
e−2nL−2c ≤ |J |

|σcf|
≤ 2 e−2nL+2c.

If n ≥ n1, lemma 5 asserts
∣

∣

⋃

J∈Jn
J
∣

∣

|σcf|
≥ K√

n
.

11



At the end of the proof we will determine a value for n and we will choose τcf as one of these
intervals J in Jn(σcf ).

Towards the length of τd. For each n and for each d = 2, ..., t we call

md = orderd(τd).

We choose md as the largest integer such that 2e−2nL+2c|σcf | ≤ d−md . This choice guarantees
|J | ≤ d−md for every J ∈ Jn and also

d−md−1 ≤ 2e−2nL+2c|σcf | = 8e4c
1

4
e−2nL−2c|σcf | ≤ 8e4c|J |.

For each J ∈ Jn we determine τJd as the d-ary interval of order md or the union of two
consecutive d-ary intervals of order md that contain J (Proposition 12). Thus,

|J |
|τJd |

≥ 1

16e4cd
.

This choice of md imposes bounds on nd = order(τd) − order(σd) which only depend on n
and d, as follows:

1. Since |σcf | ≤ |σd| ≤ |σcf |16e4cd then

logd (|σcf |/2) ≤ −order(σd) ≤ logd(|σcf |16e4cd).

Notice that order(σd) = − logd (|σd|/2) or order(σd) = − logd(|σd|).

2. And since 2e−2nL+2c|σcf | ≤ d−md ≤ d 2e−2nL+2c|σcf | then

logd(2e
−2nL+2c|σcf |) ≤ −order(τd) = −md ≤ logd(d 2e−2nL+2c|σcf |).

We obtain,

2nL logd e− logd(4de
2c) ≤ order(τd)− order(σd) ≤ 2nL logd e+ logd(8e

2cd)

Then, since nd = order(τd)− order(σd),

2n
L

log d
− 2c

log d
− 3 ≤ nd ≤ 2n

L

log d
+

2c

log d
+ 4.

Bad zones. We must pick one interval J in Jn in a zone of low discrepancy. This is
possible because the measure of the zones of large discrepancy decrease at an exponential
rate in n while the measure of Jn decreases only as K/

√
n.

For each n let
B0

d,σd,md,ǫ

be the set of reals in the d-ary subintervals of σd of order md with d-discrepancy greater
than ǫ. And let

Bd,σd,md,ǫ

be the union of B0
d,σd,md,ǫ

with those numbers lying in a d-ary interval of the same order that

is a neighbour to one in B0
d,σd,md,ǫ

.

12



With the conditions 6/nd ≤ ǫ ≤ 1/d, Lemma 8 gives the estimate

|Bd,σd,md,ǫ|
|σd|

≤ 6de−dǫ2nd/6.

Since nd ≥ 2n L
log d − 2c

log d − 3, and |σd| ≤ 16e4cd|σcf|, we have

|Bd,σd,md,ǫ|
|σcf|

≤ 16e4cd
|Bd,σd,md,ǫ|

|σd|
≤ 96 e4cd2e−dǫ2nd/6

≤ A(d)e−dǫ2Ln/(3 log d)

where A(d) = 96 e4cd2edǫ
2(c/(3 log d)+1/2).

For each n, let
B̃t,σcf,n,ǫ

be the set of reals x in thecf-ary subintervals of σcf of relative order n such that for some block
of length t of digits less than or equal to t thecf-discrepancy of x is greater than ǫ− (t−1)/n.
With the condition 2(t − 1)/ǫ ≤ n, it suffices to consider cf-discrepancy greater than ǫ/2.
Lemma 6 gives the estimate,

|B̃t,σcf,n,ǫ|
|σcf|

≤ tt6Me−
(ǫ/2)2n

2M ,

where M =
⌈

t− log
(

(ǫ/2)2

2 log 2

)⌉

or larger.

Find n0 large enough. Now we choose n0 such that for n ≥ n0 the bad zones are smaller
than the measure of the union of Jn. We need a value of n such that

6Mtte−
(ǫ/2)2n

2M ≤ K

t
√
n
, and for d = 2, . . . , t,

A(d)e−dǫ2Ln/(3 log d) ≤ K

t
√
n
.

Hence, we need to find solutions to

√
ne−rn ≤ γ

for certain values of r and γ. Since for every positive x, it holds that x < ex/2, we have

√
ne−rn/2 ≤ 1

r
r n e−rn/2 <

1

r
ern/2−rn/2 =

1

r
.

Thus, we need n0 such that
e−rn/2 ≤ γr.

for each of the needed values r and γ. Hence, n0 has to be as large as

−2/r log(γr).

for each of the needed values r and γ.

13



Letting

r(1) = ε2/(8M), γ(1) = K/(6Mtt+1), and for d = 2, . . . , t,

r(d) = dε2L/(3 log d), γ(d) = K/(t A(d)).

we have to take

n0 = max
{

−2/r(d) log
(

γ(d)r(d)
)

: 1 ≤ d ≤ t
}

∪
{

6

ǫ
,
2(t− 1)

ǫ
, n1

}

This completes the proof in case t′ = t.

The case t′ = t + 1 follows easily by taking first a t-brick ~τ refining ~σ with discrepancy
less than ǫ. Then we only need to take τt+1 a (t + 1)-ary interval of order mt+1, or a union
of two consecutive such intervals so that τcf ⊂ τt+1 and τt+1 not very large. For instance,
we can take mt+1 to be the maximum such that |τcf | ≤ (t+ 1)−mt+1 , so that applying again
Proposition 12,

|τcf |
|τt+1|

≥ 1

2(t+ 1)
.

2.1 Algorithm

The algorithm constructs a sequence of t-bricks ~σ1, ~σ2, ~σ3, ... for non-decreasing values of t.
The real number defined by the intersection of all the intervals in the sequence is absolutely
normal and continued fraction normal.

We consider the block length t, the discrepancy value ǫ and the relative order n of the
new cf-ary interval as functions of the step s. Define for every positive s

t(s) = max(2, ⌊ 5
√

log s⌋),
ǫ(s) = 1/t(s).

Clearly t(s) is non-decreasing unbounded and ǫ(s) is non-increasing and goes to zero. Now
consider the function n0

(

ǫ(s), t(s)
)

given by Lemma 13 and notice that

n0

(

ǫ(s), t(s)
)

is in O
(

t(s)4 log(t(s))
)

.

Let nstart be the minimum positive integer such that for every positive s

⌊log s⌋+ nstart ≥ n0(ǫ(s), t(s))

and define
n(s) = ⌊log s⌋+ nstart.

The algorithm is as follows.

Initial step, s = 1. Let ~σ1 = (σcf, σ2), with σ2 = σcf = (0, 1).

Recursive step, s > 1. Assume ~σs−1 = (σcf, σ2, . . . , σt(s−1)). Take ~σs = (τcf, τ2, . . . , τt(s)) the
leftmost refinement of ~σs−1 with discrepancy less than ǫ(s) and such that the order of
τcf is n(s) plus the order of σcf.

14



2.2 Correctness

The existence of the sequence ~σ1, ~σ2, ... is guaranteed by Lemma 13. We have to prove that
the real number x defined by the intersection of all the intervals in the sequence is absolutely
normal and continued fraction normal.

We first show that x has a normal continued fraction expansion. Let v be a block of m
integers v1, . . . , vm and let ǫ̃ > 0. Choose s0 so that m ≤ t(s0), max{v1, . . . , vm} ≤ t(s0) and
ǫ(s0) ≤ ǫ̃/4. At each step s after s0, the continued fraction expansion of x is constructed by
appending a block us such that |us| = n(s) and

Dcf-ary

v,|us|(us) < ǫ(s)− t(s− 1)− 1

|us|
< ǫ(s)− m− 1

|us|
.

By Lemma 7 (item 1) applied many times, for every s ≥ s0:

Dcf-ary

v,|us0 ...us|(us0us0+1...us) < ǫ(s0).

Next, by Lemma 7 (item 2b) there is s1 sufficiently large such that for every s ≥ s1,

Dcf-ary

v,|u1...us|(u1...us) < 2ǫ(s0).

Since n(s) grows logarithmically, the inequality

n(s) ≤ 2ǫ(s0)

s−1
∑

j=1

n(j)

holds from certain point on. Hence, by Lemma 7 (item 2a), we have for every s sufficiently
large and for every ℓ such that |u1...us−1| < ℓ ≤ |u1...us|,

Dcf-ary
v,ℓ (u1...us) < 4ǫ(s0) < ǫ̃.

It follows that x is continued fraction normal.
The argument to show that x is absolutely normal is very similar. We pick a base d

and show that x is simply normal to base d. Let ǫ̃ > 0. Choose s0 so that t(s0) ≥ d and
ǫ(s0) ≤ ǫ̃/4. At each step s after s0 the expansion of x in base d was constructed by appending

blocks us such that Dd-ary

|us| (us) < ǫ(s0). Thus, by Lemma 9 (item 1) for any s > s0,

Dd-ary

|us0 ...us|(us0 ...us) < ǫ(s0).

Applying Lemma 9 (item 2a), we obtain s1 such that for any s > s1

Dd-ary

|u1...us|(u1...us) < 2ǫ(s0).

Call nd(j) the relative order of the d-interval of ~σn(j) with respect to the d-interval of ~σn(j−1).
The inequalities

2n(j)
L

log d
− 2c

log d
− 3 ≤ nd(j) ≤ 2n(j)

L

log d
+

2c

log d
+ 4

provided by the proof of Lemma 13, tell us that nd(j) grows logarithmically.
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Thus, for s sufficiently large we have

nd(s) ≤ 2ǫ(s0)
s−1
∑

j=1

nd(j).

By Lemma 9 (item 2b) we conclude that for s sufficiently large and |u1...us−1| ≤ ℓ ≤ |u1...us|,

Dd-ary
ℓ (u1...us) < 4ǫ(s0) < ǫ̃.

So, x is simply normal to base d for every d ≥ 2.

2.3 Computational complexity

We analyse the computational complexity of the algorithm described in the previous section
by counting the number of mathematical operations required to output the first k digits of
the continued fraction expansion of the computed number. We would obtain an equivalent
outcome if we counted the number of mathematical operations required to output the first
k digits of the expansion of the computed number in some prescribed base. Here we do not
count how many elementary operations are implied by each of the mathematical operations,
which means that we neglect the computational cost of performing arithmetical operations
with arbitrary precision.

Memory assumptions at step s. Let N(s) =
∑s

i=1 n(i). At the beginning of step s the
current t-brick is ~σs−1 = (σcf, σ2, . . . , σt(s−1)). Let zcf be the left endpoint of σcf and let
[a1, . . . , aN(s−1)] be is continued fraction expansion. Let zd be the left endpoint of σd. We
assume that at step s the algorithm has direct access to the following values:

1. the approximant pN(s−1)/qN(s−1) of [a1, . . . , aN(s−1)]. In this way, the algorithm has
access to the value zcf,

2. the value |σcf|,

3. the values zcf − zd, for d = 2, . . . , t(s)

We do not require direct access to any other values.

How to pick a t-brick in the good zone at step s. Lemma 13 ensures the existence of the
wanted t-brick . To effectively find it we proceed as follows. Divide the interval σcf into

⌊4e2n(s)L+2c⌋+ 1

equal intervals. Notice that every interval contained in σcf whose length is at least

1

4
e−2n(s)L−2c|σcf|

will contain as interior point an endpoint of these equal intervals. For each endpoint determine
if it belongs to a cf-ary subinterval Jcf of σcf of relative order n(s) whose length is between

1

4
e−2n(s)L−2c|σcf| and 2e2n(s)L+2c|σcf|.
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In case it does, determine if the corresponding t-brick ~J = (Jcf, J2, . . . , Jt(s)) refines ~σs−1 with
discrepancy less than ǫ. For this we need to determine the blocks that lead from the intervals
σcf, σ2, ..., σt(s−1) to the intervals Jcf, J2, . . . , Jt(s−1). Thus, given σcf , we need to determine
the block of n(s) many digits that leads to Jcf. And for d = 2, . . . , t(s− 1), given σd, we need
to determine the block of nd = order(Jd)− order(σd) many digits in base d that leads to Jd.

An upper bound for the number of mathematical operations at step s. In the worst case, to
find a wanted t-brick we have to inspect all the candidate endpoints. Since n(s) = ⌊log s⌋+nstart,
the total number T of candidate endpoints is

⌊

4e2(⌊log s⌋+nstart)L+2c
⌋

.

Thus, the number of endpoints is in
O
(

s2L
)

.

Let e0, ...eT−1 be these endpoints. We write each endpoint ej , for j = 0, . . . , T − 1, as

ej = zcf + |σcf| j/T.

Let u, v be integers such that |σcf| j/T = u/v. Then the continued fraction expansion of ej
can be written as [a1, . . . , aN(s−1)] concatenated with the continued fraction expansion of u/v.
We only need n(s) many digits of continued fraction expansion of u/v that we can obtain
by running the Euclidean algorithm on (u, v) for n(s) iterations. This gives a number of
mathematical operations in

O(n(s)).

Let Jcf be the cf-ary subinterval of σcf of relative order n(s). The computation of its length
requires computing the convergents qN(s−1)+1, . . . , qN(s−1)+n(s). Thus checking that the length
is suitable requires a number of mathematical operations in

O(n(s)).

Now we write each endpoint ej , for j = 0, . . . , T − 1, as

ej = (zcf − zd) + zd + |σcf| j/T.

Then, the base-d expansion of ej consists of the base-d expansion of zd followed by the base
d-expansion of (zcf − zd) + |σcf| j/T . By the proof of Lemma 13, for each base d, we just
need nd many digits of this expansion and nd is O(n(s)). The conversion of the rational value
(zcf− zd)+ |σcf| j/T to base d can be done by a constant number of mathematical operations.

Finally, we need to check if the discrepancy of each of the t blocks witnessed by ej is less
than ǫ(s). This can be done by a number of comparisons that is linear in the length of the
block plus a constant number of operations, hence in

O(n(s)).

We conclude that at step s in the worst case the number of required mathematical operations
to choose ~σs can be bounded as

O
(

T
(

n(s) + n(s) + t(s) constant+ t(s) n(s)
))

.
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Since T is in O(s2L), n(s) is in O(log(s)), and t(s) is in O(log1/5(s)), the total number of
mathematical operations at step s is

O
(

s2L log6/5(s)
)

.

Number of mathematical operations to compute the first k digits. After the first k steps
the number of digits of the continued fraction expansion of x obtained by the algorithm is
N(k), which is greater than k. While the number of mathematical operations performed by
the algorithm is in the order of

k
∑

s=1

s2L log6/5(s) which is less than k2L+1 log6/5(k),

and this last expesion is in O(k4). This completes the proof of Theorem 1.
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