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1. Introduction. The study of absolute convergence of Dirichlet series
(of the form

∑
n ann

−s, where s is a complex variable) led H. Bohr to relate
absolute convergence to boundedness (on the right half-plane) of the holo-
morphic function defined by the Dirichlet series. One of his first results in
this direction is the following inequality [6, Satz XIII]: for every Dirichlet
series of the form

∑
p prime app

−s we have

(1.1)
∑

p prime

|ap| ≤ sup
Re s>0

∣∣∣ ∑
p prime

app
−s
∣∣∣.

He then established [6, 7] a close relationship between Dirichlet series and
power series in infinitely many variables (this relationship was presented in a
modern, systematic way much later by Hedenmalm, Lindqvist and Seip [14]).
Bohr then looked at holomorphic functions and proved his well known power
series theorem [8]: for every holomorphic function f on the open unit disc
D we have

(1.2)
∑
n

∣∣∣∣f (n)(0)

n!

∣∣∣∣ 1

3n
≤ ‖f‖∞,

and the number 1/3 is optimal. As a simple consequence of the maximum mod-
ulus principle, it can be seen that for each Dirichlet series

∑
n a2n2−ns we have

sup
z∈D

∣∣∣∑
n

a2nz
n
∣∣∣ = sup

Re s>0

∣∣∣∑
n

a2n2−ns
∣∣∣.

Hence (1.2) can be reformulated as follows:

(1.3)
∑
n

∣∣∣∣a2n 1

3n

∣∣∣∣ ≤ sup
Re s>0

∣∣∣∑
n

a2n2−ns
∣∣∣

for every Dirichlet series
∑

n a2n2−ns.
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The work of Dineen and Timoney [13] renewed the interest in Bohr’s
power series theorem, and Boas and Khavinson [5] defined the n-dimensional
Bohr radius Kn to be the best 0 < r < 1 such that∑

α∈Nn0

∣∣∣∣∂αf(0)

α!

∣∣∣∣r|α| ≤ sup
z∈Dn

∣∣∣∣ ∑
α∈Nn0

∂αf(0)

α!
zα
∣∣∣∣

for every bounded, holomorphic function f on Dn. That was the starting
point of a long search for the optimal asymptotic behaviour of Kn as n grows,
which was finally closed in [10] and [4] (see Section 3 for more details).

Because of the link between Dirichlet series and power series, each result
in either framework has an immediate translation into the other. This is of
course the case with the behaviour of Kn (a fact which is stated in more
detail in Example 3.6). But, as it happens, what is natural on one side may
not be as natural on the other; and while taking n variables (or, equivalently,
n-dimensional spaces) is natural in the domain of holomorphic functions, for
Dirichlet series we would rather take finite sums of (the first) n terms. So,
inspired by the Bohr radius for holomorphic functions, our main aim in this
note is to determine, for each x ≥ 2, the best r = r(x) ≥ 0 such that for
every Dirichlet polynomial

∑
n≤x ann

−s of length x,∑
n≤x
|an|rΩ(n) ≤ sup

Re s>0

∣∣∣∑
n≤x

ann
−s
∣∣∣,

where Ω(n) denotes the number of prime divisors of n ∈ N (counted with
multiplicities). We do this in our main result Theorem 2.1, which gives the
asymptotically correct order of this best radius.

We then take a general point of view, and for a given subset J of N, we
define the Dirichlet–Bohr radius L(J) of J to be the best r = r(J) ≥ 0 such
that for every Dirichlet series

∑
n∈J ann

−s convergent on the open half-plane
[Re s > 0], we have

(1.4)
∑
n∈J
|an|rΩ(n) ≤ sup

Re s>0

∣∣∣∑
n∈J

ann
−s
∣∣∣.

With this, denoting by P the set of prime numbers, we can rephrase (1.1)
and (1.3) as

(1.5) L(P ) = 1 and L({2k | k ∈ N}) = 1/3.

Moreover, Theorem 2.1 gives the correct asymptotic order of L({n ∈ N |
1 ≤ n ≤ x}). We will see that, following an idea of H. Bohr based on
Diophantine approximation, one can extended this study to other sets J of
indices.

Finally, we mention another estimate which seems of relevance when
motivating our results: For every ε > 0 there is C = C(ε) ≥ 1 such that for
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every x and every finite Dirichlet polynomial
∑

n≤x ann
−s,

(1.6)
∑
n≤x
|an|

e(1/
√
2−ε)

√
logn log logn

n1/2
≤ C sup

Re s>0

∣∣∣∑
n≤x

ann
−s
∣∣∣.

This result is optimal from several different aspects, and it is the final out-
come of a long series of results due to [2, 9, 10, 15, 17, 18]. Our main result,
Theorem 2.1, can be considered to be a relative of (1.6).

1.1. Notation. As already mentioned, Ω(n) denotes, for n ∈ N, the
number of prime divisors of n, counted with their multiplicity. We denote
by (pn)n the sequence of prime numbers. The set of multiindices α that

are eventually 0 is denoted by N(N)
0 . For α = (α1, . . . , αk, 0, 0, . . .) we write

pα = pα1
1 · · · p

αk
k and |α| = α1 + · · ·+ αk.

Along this note π denotes the prime counting function, i.e., π(x) is the
number of prime numbers less than or equal to x.

Given two real functions f and g we write f(x) � g(x) if there exists
a constant C > 0 such that f(x) ≤ Cg(x) for every x. If f(x) � g(x) and
g(x)� f(x), we write f(x) ≈ g(x).

For each N we denote by H∞(DN ) the space of bounded, holomorphic
functions on DN . If f ∈ H∞(DN ) and α ∈ NN0 , we write cα(f) = ∂αf(0)/α!,
the αth coefficient of the monomial expansion.

2. Main result. For any x ≥ 2, we write

L(x) = L({n ∈ N | 1 ≤ n ≤ x}),

where L is defined in (1.4), and call this number the xth Dirichlet–Bohr
radius. The main result of this note then reads as follows.

Theorem 2.1. We have

L(x) ≈
4
√

log x

x1/8
.

In particular, there is a universal constant C > 0 such that∑
n≤x
|an|

(
C 4
√

log x

x1/8

)Ω(n)

≤ sup
Re s>0

∣∣∣∑
n≤x

ann
−s
∣∣∣

for every x ≥ 2 and every Dirichlet polynomial
∑

n≤x ann
−s.

The rest of this section is devoted to the proof of this result.

2.1. Reduction I. We start with a device which reduces the estimation
of the Dirichlet–Bohr radii L(x) to the estimation of their homogeneous
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parts Lm(x) which we are going to define now. For x ≥ 2 define the finite-
dimensional Banach space

H(x)
∞ :=

{
D =

∞∑
n=1

ann
−s
∣∣∣ an 6= 0 only if n ≤ x

}
,

‖D‖∞ := sup
t∈R

∣∣∣∣∑
n≤x

an
1

nit

∣∣∣∣ = sup
Re s>0

∣∣∣∣∑
n≤x

an
1

ns

∣∣∣∣,
together with its closed subspace

H(x,m)
∞ :=

{ ∞∑
n=1

ann
−s
∣∣∣ an 6= 0 only if n ≤ x and Ω(n) = m

}
.

Then

L(x) = sup
{

0 ≤ r ≤ 1
∣∣∣ ∀D ∈ H(x)

∞ :
∑
n≤x
|an|rΩ(n) ≤ ‖D‖∞

}
,

and therefore for m ∈ N we define the m-homogeneous xth Dirichlet–Bohr
radius by

(2.1) Lm(x) := sup
{

0 ≤ r ≤ 1
∣∣∣ ∀D ∈ H(x,m)

∞ :
∑
n≤x
|an| ≤ r−m‖D‖∞

}
.

The following result is the announced reduction theorem.

Proposition 2.2. With the previous notation,
1
3 inf
m
Lm(x) ≤ L(x) ≤ inf

m
Lm(x) for all x ≥ 2.

We start with a reformulation in terms of holomorphic functions. Note
that if n = pα and 1 ≤ n ≤ x then clearly α has at most the first π(x)

coordinates different from zero; in other words α ∈ Nπ(x)0 . Then by Bohr’s
fundamental lemma (see [18]) we know that for every Dirichlet polynomial∑

n≤x ann
−s we have

(2.2) sup
t∈R

∣∣∣∑
n≤x

ann
−it
∣∣∣ = sup

z∈Dπ(x)

∣∣∣ ∑
α∈Nπ(x)0
1≤pα≤x

apαz
α
∣∣∣.

With this identity in mind we define the Banach space

H(x)
∞ := {f ∈ H∞(Dπ(x)) | cα(f) 6= 0 only if pα ≤ x}

(the norm clearly given by the right side of (2.2)) and its closed subspace

H(x,m)
∞ := {f ∈ H∞(Dπ(x)) | cα(f) 6= 0 only if pα ≤ x and |α| = m}.

Identifying Dirichlet polynomials
∑

n≤x ann
−s with functions∑

α∈Nπ(x)0 , 1≤pα≤x ap
αzα we then obtain the isometric equalities

H(x)
∞ = H(x)

∞ and H(x,m)
∞ = H(x,m)

∞ ,
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and this in turn shows that

(2.3) L(x) = sup
{

0 ≤ r ≤ 1
∣∣∣ ∀f ∈ H(x)

∞ :
∑

α∈Nπ(x)0
1≤pα≤x

|cα(f)|r|α| ≤ ‖f‖∞
}

and

(2.4) Lm(x) = sup
{

0 ≤ r ≤ 1
∣∣∣ ∀f ∈ H(x,m)

∞ :
∑

1≤pα≤x
|α|=m

|cα(f)| ≤ r−m‖f‖∞
}
.

Proof of Proposition 2.2. The upper estimate is obvious, and to prove

the lower estimate we follow [11, Section 2]. Fix f ∈ H(x)
∞ with ‖f‖∞ ≤ 1,

and write its m-homogeneous part as

fm(ω) =
∑

1≤pα≤x
|α|=m

cα(f)ωα, ω ∈ Dπ(x);

obviously, fm ∈ H
(x,m)
∞ , and using the Cauchy inequalities we see that

‖fm‖∞ ≤ 1 for all m. We now fix some z0 ∈ Dπ(x) and θ ∈ T such that
|c0(f)| = θc0(f), and define

g : D→ C, g(ω) := f(ωz0) =

∞∑
m=1

fm(z0)ω
m,

h : D→ C, h := 1− θg.
Since ‖g‖∞ ≤ 1, we have Reh ≥ 0 on D, and by Carathéodory’s theorem
(for an elementary proof, see [1, Lemma 1.1]) we have, for all m,

(2.5) |fm(z0)| =
h(m)(0)

m!
≤ 2 Reh(0) = 2(1− |c0(f)|).

We now take some r < infm Lm(x). Then for all z ∈ Dπ(x) and all m we
have, by (2.4) and (2.5),∑

1≤pα≤x
|α|=m

∣∣∣∣cα(f)

(
r

3
z

)α∣∣∣∣ ≤ 1

3m
‖fm‖∞ ≤

1

3m
2(1− |c0(f)|),

and hence for all z ∈ (r/3)Dπ(x),∑
1≤pα≤x

|cα(f)zα| ≤ |c0(f)|+
∞∑
m=1

1

3m
2(1− |c0(f)|) = 1.

The conclusion now follows from (2.3).

2.2. The tool. The following proposition is our main tool—an elabo-
ration of a result due to Balasubramanian, Calado and Queffélec [2, Theo-
rem 1.4] (see also [12, Theorem 4.2]).
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Proposition 2.3. Let m ≥ 2 and κ > 1. There exists C(κ) > 0 such
that for every m-homogeneous Dirichlet polynomial D =

∑
n≤x ann

−s we
have ∑

n≤x
|an|

(log n)(m−1)/2

n(m−1)/(2m)
≤ C(κ)mm−1(2κ)m‖D‖∞.

Our proof follows from a careful analysis of the original proof of [2],
which allows us to obtain the constant C(κ)mm−1(2κ)m, smaller than the
original one. Since this fact is essential for our purpose, we add the proof
for completeness. Every m-homogeneous polynomial in n variables admits
two possible representations:

P (z) =
∑
α∈Nn
|α|=m

cαz
α =

∑
1≤j1≤···≤jm≤n

cj1,...,jmzj1 · . . . · zjm for z ∈ Cn.

We need the following lemma [10, p. 492] (see also [12, Lemma 4.3] or [3,
Lemma 2.6]).

Lemma 2.4. Let n ≥ 1, m ≥ 1 and κ > 1. Then there exists C(κ) > 0
such that for every m-homogeneous polynomial P on Cn we have

n∑
jm=1

( ∑
1≤j1≤···≤jm

|cj1,...,jm |2
)1/2

≤ C(κ)
(
2κ
)m

sup{|P (z)| : z ∈ Dn}.

Proof of Proposition 2.3. We begin by fixing a Dirichlet polynomial

D =
∑
n≤x

ann
−s ∈ H(x,m)

∞ .

Now we define the following m-homogeneous polynomial in π(x) variables:

P (z) =
∑

1≤j1≤···≤jm≤π(x)

cj1,...,jmzj1 · . . . · zjm , z ∈ Cπ(x),

where cj1,...,jm = an if 1 ≤ n = pj1 · · · pjm ≤ x and 0 otherwise. Then

∑
n≤x
|an|

(log n)(m−1)/2

n(m−1)/(2m)
=

∑
1≤j1≤···≤jm≤π(x)

|cj1,...,jm |
(log(pj1 · · · pjm))(m−1)/2

(pj1 · · · pjm)(m−1)/(2m)

≤
π(x)∑
jm=1

(m log pjm)(m−1)/2

p
(m−1)/(2m)
jm

∑
1≤j1≤···≤jm−1≤jm

|cj1,...,jm |
(pj1 · · · pjm−1)(m−1)/(2m)
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≤
π(x)∑
jm=1

(m log pjm)(m−1)/2

p
(m−1)/(2m)
jm

( ∑
1≤j1≤···≤jm−1≤jm

|cj1,...,jm |2
)1/2

×
( ∑

1≤j1≤···≤jm−1≤jm

1

(pj1 · · · pjm−1)(m−1)/m

)1/2

,

where the last step follows from the Cauchy–Schwarz inequality. To bound
the last factor, we now use the fact that for 0 < α < 1 (see [16, Satz 4.2,
p. 22]), ∑

p≤x
p−α � 1

1− α
x1−α

log x
.

By taking α = (m− 1)/m, we get( ∑
1≤j1≤···≤jm−1≤jm

1

(pj1 · · · pjm−1)(m−1)/m

)1/2
≤
(∑
j≤jm

(
1

pj

)(m−1)/m)(m−1)/2

�
(
m

p
1/m
jm

log pjm

)(m−1)/2
.

Hence∑
n≤x
|an|

(log n)(m−1)/2

n(m−1)/(2m)
� mm−1

π(x)∑
jm=1

(log pjm)(m−1)/2

p
(m−1)/(2m)
jm

(
p
1/m
jm

log pjm

)(m−1)/2

×
( ∑
1≤j1≤···≤jm−1≤jm

|cj1,...,jm |2
)1/2

.

Finally, by Lemma 2.4 and (2.2), there exists C(κ) > 0 such that∑
n≤x
|an|

(log n)(m−1)/2

n(m−1)/(2m)
≤ C(κ)mm−1(2κ)m‖P‖ = C(κ)mm−1(2κ)m‖D‖∞.

2.3. Proofs

Proof of the lower estimate in Theorem 2.1. We fix some x ≥ 2. By
Proposition 2.2 we only have to control each m-homogeneous part, Lm(x).
Note first that if 1 ≤ n ≤ x is such that Ω(n) = m then 2m ≤ n ≤ x, which

gives m ≤ log x
log 2 . Therefore Hx,m∞ = {0}, and hence Lm(x) = 1 for every

m > log x
log 2 . Thus

(2.6) 1
3 min
1≤m≤ log x

log 2

Lm(x) ≤ Lx.

By (1.5) we have L1(x) = 1 for every x. We then fix m ≥ 2, and observe

that for every D =
∑

n≤x ann
−s ∈ H(x,m)

∞ we have a1 = a2 = a3 = 0. By
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Proposition 2.3, for each κ > 1 there exists C(κ) > 0 such that∑
n≤x
|an| =

∑
4≤n≤x

|an| ≤
∑

4≤n≤x
|an|(log n)(m−1)/2

≤ C(κ)mm−1(2κ)mx(m−1)/(2m)‖D‖∞.
This, using (2.1), gives

m−1x−(m−1)/(2m
2) � (C(κ)mm−1(2κ)mx(m−1)/(2m))−1/m ≤ Lm(x).

But the sequence (x−(m−1)/(2m
2))∞m=2 is increasing to 1 (recall that x ≥ 2).

This implies that for all m ≥ 3,

m−1x−1/9 � Lm(x),

and hence for all 3 ≤ m ≤ log x
log 2 ,

(2.7)
4
√

log x

x1/8
� log 2

log x

1

x1/9
� Lm(x).

We finish our argument by handling the case m = 2. We observe first
that

f(t) =

√
log t

t1/4
= eg(t) with g(t) =

1

2
log log t− 1

4
log t, t ≥ 2.

Since

g′(t) =
1

2t

2− log t

2 log t
,

we see that f is strictly decreasing for t>e2. Then the sequence (
√

log n/n1/4)
is strictly decreasing for n ≥ 8. Thus there exists A > 0 such that for every
2 ≤ n ≤ x we have √

log x

x1/4
≤ A
√

log n

n1/4
.

Applying again Proposition 2.3 we see that for every D ∈ H(x,2)
∞ ,

√
log x

x1/4

∑
n≤x
|an| ≤ AC(κ)8κ2‖D‖∞,

and hence
4
√

log x

x1/8
� L2(x).

This equation combined with (2.7) and (2.6) proves the lower estimate.

Proof of the upper estimate in Theorem 2.1. By Proposition 2.2 it suffices
to show that there is a constant C > 0 such that for all x,

(2.8) L2(x) ≤ C
4
√

log x

x1/8
.
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According to (2.1), fix some x and assume that r > 0 satisfies

(2.9)
∑
n≤x
|an| ≤ r−2 sup

t∈R

∣∣∣∑
n≤x

ann
it
∣∣∣

for every Dirichlet polynomial
∑

n≤x ann
−s ∈ H(x,2)

∞ . We choose q to be

the largest natural number ≤ π(
√
x)/2. Consider the q × q matrix (ank)n,k

defined by ank = e2πink/q (sometimes called the Fourier matrix ). Then it
is well known (by a straightforward calculation) that for all n, k we have
|ank| = 1 and

∑
l alnalk = qδnk.

We define the Dirichlet series
q∑

n,k=1

ank
1

(pnpq+k)s
∈ H(x,2)

∞ .

Note that for every 1 ≤ n, k ≤ q we have pnpq+k ≤ p22q ≤ p2
π(
√
x)
≤ x, and

the Dirichlet series indeed belongs to H(x,2)
∞ . Obviously,

q∑
n,k=1

|ank| = q2.

On the other hand, for every t ∈ R we have∣∣∣ q∑
n,k=1

ankp
it
np

it
q+k

∣∣∣ ≤ q1/2(∑
k

∣∣∣∑
n

ankp
it
n

∣∣∣2)1/2
= q1/2

(∑
k

∑
n1,n2

akn1akn2p
it
n1
p−itn2

)1/2
= q1/2

(∑
n1,n2

pitn1
p−itn2

∑
k

akn1akn2

)1/2
= q1/2

(∑
n1,n2

pitn1
p−itn2

qδn1,n2

)1/2
= q
(∑

n

|pitn |2
)1/2

≤ q3/2.

Then by (2.9) we conclude that q2 ≤ r−2q3/2. But from the prime number
theorem we deduce that there is a (universal) constant C > 0 such that√
x/log x ≤ Cq, and therefore

r ≤ C
4
√

log x

x1/8
.

Clearly, this gives the desired estimate (2.8).

3. Dirichlet–Bohr radii. The main goal of the previous section was
to find the correct asymptotic order of the Dirichlet–Bohr radius L({n ∈ N |
1 ≤ n ≤ x}).

Analysing the ideas of our proof, in the coming subsection we show how
to reduce the study of the Dirichlet–Bohr radii L(J) for index sets to the
study of Bohr radii for holomorphic functions in infinitely many variables
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with lacunary monomial coefficients. Finally, we consider a series of old and
new examples.

3.1. Reduction II. Let Λ be a subset of N(N)
0 . Consider the Banach

space

HΛ
∞(Bc0) := {f ∈ H∞(Bc0) | cα(f) 6= 0 only if α ∈ Λ},

where as usual H∞(Bc0) denotes the Banach space of all bounded holomor-
phic (= Fréchet differentiable) functions on the open unit ball Bc0 of the
Banach space c0 of all null sequences.

Now, the Bohr radius K(Λ) is defined to be the best r = r(Λ) ≥ 0 such
that for every f ∈ HΛ

∞(Bc0) we have∑
α∈Λ
|cα(f)|r|α| ≤ ‖f‖∞.

Note that, with this notation, the classical Bohr radius Kn is just K(Nn0 ).
The following result extends (2.3) to arbitrary index sets. Note that the

proof of (2.3) was based on Bohr’s fundamental lemma (2.2). We need,
then, an extension of this. Inspired by an idea of Bohr and based on the
fundamental theorem of arithmetic we consider the bijection

b : N(N)
0 → N, b(α) = pα.

We now denote by H∞ all Dirichlet series
∑

n ann
−s defining a bounded

holomorphic function on [Re s > 0]; this vector space together with the
sup norm on [Re s > 0] forms a Banach space. By [14, Lemma 2.3 and
Theorem 3.1] (a fact also essentially due to Bohr [6]) there is a unique
isometric and linear bijection Φ from H∞(Bc0) onto H∞ such that Φ(zα) =
n−s with b(α) = n:

H∞(Bc0) = H∞.
Using this general principle and a simple translation argument from Dirichlet
series into holomorphic functions and vice versa, we obtain the following
result.

Proposition 3.1. For each set J ⊂ N and Λ ⊂ N(N)
0 with J = b(Λ),

K(Λ) = L(J).

Our next device reduces the estimation of the Dirichlet–Bohr radii of a
given index set J to the estimation of the Dirichlet–Bohr radii of certain
parts of J . Given J ⊆ N and n,m ∈ N, the n-dimensional kernel of J is
defined to be

J(n) = {k ∈ J | ∀j > n : pj - k},
and its m-homogeneous kernel is

J [m] = {k ∈ J | Ω(k) = m}.
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Note that when J = N, the n-dimensional kernel consists of all the natural
numbers that factor into the first n primes, and the m-homogeneous ker-
nel consists of those which have precisely m prime divisors (counted with
multiplicities). In other words,

N(n) = {pα1
1 · · · p

αn
n | α ∈ Nn0},

N[m] = {pα1
1 · · · p

αk
k · · · | α1 + · · ·+ αk + · · · = m}.

Then clearly J(n) = J ∩ N(n) and J [m] = J ∩ N[m]. We also have

b−1(J(n)) = {α ∈ Nn0 | pα ∈ J},

b−1(J [m]) = {α ∈ N(N)
0 | pα ∈ J with |α| = m}.

In particular, b−1(N(n)) = Nn0 and b−1(N[m]) = {α ∈ N(N)
0 | |α| = m}. Let

us finally observe that

N(n)[m] = {pα1
1 · · · p

αn
n | α ∈ Nn0 and α1 + · · ·+ αn = m} = N[m](n),

and from this J(n)[m] = J ∩ N(n)[m] = J ∩ N[m](n) = J [m](n) for every
J ⊆ N and all n,m.

We can now exhibit our announced reduction device.

Proposition 3.2. Let J be a subset of N. Then

(i) L(J) = infn L(J(n));
(ii) 1

3 infm L(J [m]) ≤ L(J) ≤ infm L(J [m]).

Proof. The proof of (ii) is a word for word copy of the proof of Propo-
sition 2.2. The argument for (i) is easy after a translation to holomorphic
functions via Proposition 3.1.

Of course, (i) and (ii) can be combined to show that the infimum of each
of the double sequences (L(J [m](n)))m,n and (L(J(n)[m]))m,n equals L(J)
up to the constant 1/3.

3.2. Examples. We first recover, in this systematic language, the fun-
damental examples (1.5) that were already mentioned in the introduction.

Example 3.3.

(i) L(N[1]) = L({p | p prime}) = 1;

(ii) L(N(1)) = L({2k | k ∈ N}) = 1/3.

We remark that (i) is nothing else than Bohr’s inequality (1.1), whereas
(ii) is just a reformulation via Proposition 3.1 of Bohr’s power series theorem
(1.2) (see also (1.3)). Basically, these and the one in the following example
are the only precise values of Dirichlet–Bohr radii we know.

Example 3.4. L({pk` | k, ` ∈ N}) = 1/3.

This turns out to be an immediate consequence of the following more
general result. Given a subset A of N, we will denote its cardinality by |A|.
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Proposition 3.5. Let Pk, k ∈ N, be disjoint sets of primes such that

n = max
k
|Pk| <∞.

Define JPk to be the set of all natural numbers which are finite products of
primes in Pk, that is,

JPk = {pα |αj = 0 if pj /∈ Pk}.
Then

L
(⋃
k

JPk

)
= L(N(n)).

Clearly, Example 3.4 is an immediate consequence of this result: set Pk =
{pk} (the kth prime) and apply Example 3.3 together with Proposition 3.5.

Proof. Define Λk = b−1(JPk) ⊂ N(N)
0 . Looking at Proposition 3.1, since

Nn0 = b−1(N(n)), it suffices to prove that

K
(⋃
k

Λk

)
= K(Nn0 ).

Let Ik =
⋃
α∈Λk supp α ⊂ N be the support of Λk. Clearly, nk := |Ik| = |Pk|

for all k. We identify span{ei : i ∈ Ik} with Cnk .
By considering bounded holomorphic functions with support in any Ik

of length n, we get K(
⋃
k Λk) ≤ K(Nn0 ). We have to prove now the reverse

inequality

(3.1) K(Nn0 ) ≤ K
(⋃
k

Λk

)
.

Now, we want to show that∑
α∈

⋃
k Λk

|aα|K(Nn0 )|α| ≤ sup
z∈Bc0

∣∣∣ ∑
α∈

⋃
k Λk

aαz
α
∣∣∣

for every function
∑

α∈
⋃
k Λk

aαz
α ∈ H∞(Bc0). Since the Λk’s are disjoint,

we have

sup
z∈Bc0

∣∣∣ ∑
α∈

⋃N
k=1 Λk

aαz
α
∣∣∣ ≤ sup

z∈Bc0

∣∣∣ ∑
α∈

⋃
k Λk

aαz
α
∣∣∣

for all N , and so it will be enough to show that

(3.2)
∑

α∈
⋃N
k=1 Λk

|aα|K(Nn0 )|α| ≤ sup
z∈Bc0

∣∣∣ ∑
α∈

⋃N
k=1 Λk

aαz
α
∣∣∣.

We proceed by induction on N . For N = 1, (3.2) is just a consequence of
K(Nn0 ) ≤ K(Nn1

0 ) = K(Λ1). For the inductive step, we write∑
α∈

⋃N
k=1 Λk

aαz
α = a0 + f1(u1) + · · ·+ fN (uN ),
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where uk is the projection of z on the Λk-coordinates and

fk(w) =
∑
α∈Nnk0
|α|≥1

akαw
α

for w ∈ Cnk . Note that fk(0) = 0 for every k. By inductive hypothesis we
know that

(3.3)

|a0|+
N−1∑
k=1

∑
α∈Nnk0
|α|≥1

|aα|K(Nn0 )|α| ≤ sup
u1∈Dn1 ,...,uN−1∈DnN−1

∣∣∣a0 +
N−1∑
k=1

fk(uk)
∣∣∣.

Fix now uk ∈ Dnk for k = 1, . . . , N − 1 and set ã0 = a0 +
∑N−1

k=1 fk(uk).
Since K(Nn0 ) ≤ K(NnN0 ) = K(ΛN ), we have

|ã0|+
∑

α∈NnN0
|α|≥1

|aNα |K(Nn0 )|α| ≤ sup
uN∈DnN

|ã0 + fN (uN )|,

which just means that

(3.4)
∣∣∣a0 +

N−1∑
k=1

fk(uk)
∣∣∣+

∑
α∈NnN0
|α|≥1

|aNα |K(Nn0 )|α|

≤ sup
uN∈DnN

∣∣∣(a0 +
N−1∑
k=1

fk(uk)
)

+ fN (uN )
∣∣∣.

Combining (3.3) and (3.4) we obtain (3.2).

In the following results we present asymptotically correct estimates on
Dirichlet–Bohr radii.

Example 3.6.

(1) limn
L(N(n))√
(logn)/n

= 1;

(2) there is a constant C > 1 such that

1

C

(
m

n

)(m−1)/(2m)

≤ L((N(n))[m]) ≤ C
(
m

n

)(m−1)/(2m)

for n ≥ m,

1/C ≤ L((N(n))[m]) ≤ 1 for n < m.

Both results follow from Proposition 3.1 and their counterparts for Bohr
radii:

lim
n

K(Nn0 )√
(log n)/n

= 1
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and

1

C

(
m

n

)(m−1)/(2m)

≤ K({α ∈ Nn0 | |α| = m}) ≤ C
(
m

n

)(m−1)/(2m)

for n ≥ m,

1/C ≤ K({α ∈ Nn0 | |α| = m}) ≤ 1 for n < m.

The first formula is due to Bayart, Pellegrino and Seoane-Sepúlveda [4],
who improved an earlier result from [10]. The lower estimate in the second
result follows from [10], and the upper one is a consequence of the Kahane–
Salem–Zygmund inequality (or [11, Lemma 2.1 and (4.4)]). It would be of
interest to know the precise values of L(N(n)), L(N[m]) and L((N(n))[m])
for all/some n,m > 1.

Example 3.6 combined with Proposition 3.2 yields the following.

Example 3.7.

(1) L(N) = 0;
(2) L(N[m]) = 0 for all m > 1.
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[18] H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series,

Harish-Chandra Research Inst. Lecture Notes 2, Hindustan Book Agency, New
Delhi, 2013.

Daniel Carando
Departamento de Matemática
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Valencia, Spain

E-mail: psevilla@mat.upv.es

Received on 16.8.2014
and in revised form on 15.1.2015 (7900)

http://dx.doi.org/10.4064/aa134-2-5
http://dx.doi.org/10.4007/annals.2011.174.1.13
http://dx.doi.org/10.1007/s00605-013-0600-4
http://dx.doi.org/10.1215/S0012-7094-97-08601-4



	1 Introduction
	1.1 Notation

	2 Main result
	2.1 Reduction I
	2.2 The tool
	2.3 Proofs

	3 Dirichlet–Bohr radii
	3.1 Reduction II
	3.2 Examples

	References

