
This article was downloaded by: [McGill University Library]
On: 16 January 2012, At: 08:04
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gmcl20

Thermodynamic Modelling of Phase
Equilibrium in Nanoparticles – Nematic
Liquid Crystals Composites
Ezequiel R. Soulé a b , Linda Reven b & Alejandro D. Rey b
a Institute of Materials Science and Technology (INTEMA), University
of Mar del Plata and National Research Council (CONICET), J. B.
Justo 4302, 7600, Mar del Plata, Argentina
b Department of Chemical Engineering, McGill University, 3610
University St, Quebec, H3A2B2, Montreal, Canada
c Department of Chemistry, McGill University, 801 Sherbrooke St.
West, Montreal, Quebec, H3A 2K6, Canada

Available online: 11 Jan 2012

To cite this article: Ezequiel R. Soulé, Linda Reven & Alejandro D. Rey (2012): Thermodynamic
Modelling of Phase Equilibrium in Nanoparticles – Nematic Liquid Crystals Composites, Molecular
Crystals and Liquid Crystals, 553:1, 118-126

To link to this article:  http://dx.doi.org/10.1080/15421406.2011.609447

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/gmcl20
http://dx.doi.org/10.1080/15421406.2011.609447
http://www.tandfonline.com/page/terms-and-conditions


Mol. Cryst. Liq. Cryst., Vol. 553: pp. 118–126, 2012
Copyright © Taylor & Francis Group, LLC
ISSN: 1542-1406 print/1563-5287 online
DOI: 10.1080/15421406.2011.609447

Thermodynamic Modelling of Phase Equilibrium in
Nanoparticles – Nematic Liquid Crystals Composites
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In this work, a theoretical study of phase equilibrium in mixtures of a calamitic nematic
liquid crystal and hard spherical nanoparticles is presented. A mean-field thermody-
namic model is used, where the interactions are considered to be proportional to the
number of contacts, which in turn are proportional to the areas and area fractions of
each component. It is shown that, as the radius of the particle is increased, the effect of
the particles on the isotropic-nematic transition is less pronounced, and that for a large
radius the miscibility increases as the particle radius increases.

1. Introduction

Rational combination of nanoparticles (NPs) and a host material opens new ways to the
development of advanced materials with applications in optoelectronics, sensing, catalysis,
magnetic recording and several other fields [1]. In almost all cases, novel applications
strongly depend on the ability to control aggregation and spatial distribution of the particles
in the matrix [2–4]. Liquid crystals (LC) have received much attention as dispersing medium
for colloidal particles and NPs as a flexible method for generating and controlling self as-
sembly into complex structures [5–9]. LCs are self-organizing anisotropic soft materials
that display orientational (nematics) and partial positional order (smectics), widely used in
electro-optical applications, and relevant in many biological systems [10–12]. Embedding
colloidal particles in a LC matrix can create local distortions in the director orientation
field producing an elastic energy that can give rise to short and long range interactions
[8, 13]. This effect has been shown to result in phase separation and the formation of dif-
ferent structures, like cellular networks [5–7], linear or two-dimensional arrays of particles
[13–15] which will strongly affect material properties.

∗Address correspondence to Ezequiel R. Soulé, Institute of Materials Science and Technology
(INTEMA), University of Mar del Plata and National Research Council (CONICET), J. B. Justo
4302, 7600 Mar del Plata, Argentina. E-mail: ersoule@fi.mdp.edu.a
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Modelling Phase Equilibrium in NP-LC Composites 119

One of the major challenges in nanocomposite research involves creating the means
to control the extent of dispersion and self-assembly of the NPs in the host matrix. Under-
standing the thermodynamic principles that lead to phase separation and phase ordering is
then of fundamental importance in the design of new materials, and the ability of predicting
phase behavior and structure formation can help to avoid a trial-and-error procedure that
in most cases is used. In the case of micron-sized colloidal particles, the elastic distortions
can be strong enough as to suppress Brownian motion, consequently the self-assembly
and phase behavior is dominated by this elastic energy [13, 14]. In the case of NPs, as
particles are comparable in size with the mesogenic molecules, their capacity to distort the
director field is expected to be significantly decreased, and they can “mix” with the LC at
a molecular level, so entropic effects must be taken into account to properly describe the
phase behavior of the system. Mixing effects and entropy-driven self assembly (hard-sphere
crystallization) are expected to be relevant.

Recently, Matsuyama presented a continuum model for describing phase equilibrium
in NP-LC mixtures [16, 17]. This model is simple but it captures the basic physics in these
systems: it is capable of predicting phase separation in addition to nematic ordering of
the LC and colloidal crystallization of the NPs. He analyzed the effects of the different
interaction parameters on the transition lines and phase diagrams [16, 17]. In this work, we
will use an extended version of this model [16, 17] to analyze phase behavior in a mixture of
a nematic liquid crystal and nanoparticles. We show that a slight but significant modification
of his model is able to capture the fact that when the particles are “macroscopic,” in the
absence of specific interactions they do not influence the behavior of the liquid crystal,
whereas when the size of the particles are in the nanoscale, they mix at a molecular level
with the liquid crystal, producing a dilution effect. Our model predicts that, for a large
radius, miscibility in the isotropic and in the nematic phase increases when the radius
increases, and this result can be used to explain a number of experimental observations.

2. Model

The model used in this work is based on a thermodynamic theory proposed by Matsuyama
[16, 17], with some significant modifications. We consider the system as composed of a
mixture of calamitic nematic LC, and hard spherical NPs. The geometric parameters that
characterize the two species are their specific volume, v, and their area per unit volume, a.
For the LC, vLC = πRLC

2LLC, aLC = 2/RLC + 2/LLC, and for the NP, vNP = 4/3πRNP
3, aNP =

3/RNP, where RLC and LLC are the radius and length of a LC molecule and RNP the radius of
a nanoparticle. All lengths are given in units of a reference length lR (the reference volume
is defined as l3R) so they are non-dimensional. The number of LC molecules and NPs in the
mixture is NLC and NNP, and the total volume is V . The dimensionless free energy density
f of the mixture is given by four contributions: isotropic mixing free energy (f iso), nematic
ordering (f nem), crystalline ordering (f crys) and specific interactions (f int):

f = lR
3F

VRgT
= fiso + fnem + fcrys + fint (1)

where F is the total free energy, Rg is the universal gas constant and T the absolute
temperature. The isotropic mixing free energy can be approximated by:

fiso = φLC

vLC

ln (φLC) + φNP

vNP
ln (φNP) + φNP

vNP

(
4φNP − 3φ2

NP

)
(1 − φNP)2 + χapφNPϕLC (2)
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120 E. R. Soulé et al.

where φi = Nivi/V , for i = LC, NP, are the volume fractions of each species (the system is
considered incompressible so φNP + φLC = 1). The first two terms are the Flory Huggins
mixing entropy and the third term is calculated from Carnahan – Starling equation of state
for hard spheres and it has been used in the literature to account for the excluded volume of
the particles [18–21]. The last term accounts for isotropic binary interactions and takes into
account that the interactions are proportional to the area of contact between LC molecules
and NPs, the factor φNPaNP is proportional to the total area of NPs and ϕLC = φLCaLC/
(φLCaLC + φNPaNP) is the area fraction of liquid crystal and represent the probability that
the NP surface is in direct contact with a LC molecule [20]. χ = A + B/T is the isotropic
binary interaction parameter.

The nematic free energy is calculated from the Maier-Saupe theory [22, 23]:

fnem = φLC

vLC

[
−1

2
νϕLCS2 − ln (Zn) + 3

2
�nS

]
(3)

and is given in terms of the scalar nematic order parameter, S, that measures the degree of
alignment of LC molecules along a preferential direction. The first term is the orientation-
dependent interaction energy, ν is the Maier-Saupe quadrupolar interaction parameter and
once again the area fraction is used as the probability of contact. �N and ZN are a mean-field
parameter and the partition function, given by:

S = 1

ZN

1∫
0

1

2
(3x2 − 1) exp

[
�N

2
(3x2 − 1)

]
dx (4)

ZN =
1∫

0

exp

[
�N

2
(3x2 − 1)

]
dx (5)

The logarithm of the partition function can be approximated by a polynomial ex-
pression, which is much more efficient from the computational point of view [24]. We
approximate it as a sixth-order polynomial in �n, obtaining the coefficients by a least-
squares fitting.

The crystalline free energy is written according to the mean-field model presented by
Matsuyama [16, 17], and it is analogous to the nematic free energy;

fcris = φNP

vNP

[
−1

2
gφP σ 2 − ln Zc + �cσ

]
(6)

where the first term accounts for excluded-volume interactions and g is an excluded-
volume interaction parameter which for hard spheres is 14.95. Unlike the case of energetic
interactions that can be considered to be proportional to the number of contacts, excluded-
volume interactions are proportional to the probability that the volume is occupied by the
spheres and consequently volume fraction is used. �C and ZC are a mean-field parameter
and the partition function, which for a face-centred-cubic structure are given by

σ = 1

2πZc

2π∫
0

2π∫
0

2π∫
0

cos (x) cos (y) cos (z) exp [�c cos (x) cos (y) cos (z)] dxdydz (7)
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Modelling Phase Equilibrium in NP-LC Composites 121

Zc = 1

2π

2π∫
0

2π∫
0

2π∫
0

exp (�c cos (x) cos (y) cos (z)) dxdydz (8)

As in the nematic case, the crystalline partition function was approximated with a
polynomial obtained from a least-squares fitting.

Finally, the last contribution to the free energy is due to specific interactions, following
Matsuyama we write this term as:

fint = wS2aP φP ϕLC (9)

where w is a binary nematic interaction that accounts for anchoring at the NP surface
and distortions in the nematic director at a nanoscale in the vicinity of a NP. We consider
these interactions to be proportional to the area of contact and we neglect the coupling
interactions between nematic and crystalline ordering.

At equilibrium, the free energy must be a minimum with respect to the order parameters
S and σ . In this conditions, �n = νϕLCS – 2wvLCaLCϕNPS - cvLCaLCϕNPσ and �c = gφNPσ –
cvNPaNPϕLCS [16, 17]. These expressions can be inserted in Eq. (1) to calculate the minima.

In addition, the condition of phase coexistence in equilibrium is that the chemical
potentials of both components are the same in all the coexisting phases.

3. Results and Discussion

As already discussed by Matsuyama [16, 17], four different phases can be distinguished
based in this mean-field model: isotropic (I) characterized by S = 0 and σ = 0; nematic (N),
where S > 0 and σ = 0, crystal (C), where S = 0 and σ > 0, and nematic-crystal (NC), where
S > 0 and σ > 0. Two first-order transition lines can be defined in the T-φ plane: a nematic-
isotropic transition (NIT) line, that divides the plane in a region where the equilibrium value
of S is 0 and a region where it is greater than 0; and a crystal-isotropic transition (CIT) line,
dividing the plane in regions where σ = 0 and σ > 0. Matsuyama calculated phase stability
and phase coexistence regions for different values of the interaction parameters [16, 17].

Firstly we discuss an important difference between the predictions of our model and
Matsuyama’s model, regarding the NIT. In his model, the nematic quadrupolar interaction
term (first term in the right-hand side in Eq. 3) is written as νφLC

2S2, which implies
an “effective” quadrupolar interaction parameter νφLC, while in our model this term is
νφLCϕLCS2, with an effective quadrupolar interaction parameter νϕLC. This apparently small
difference has actually a very significant impact on the nature of the model predictions.
The form νφLC, without the use of other specific interactions, would predict that for any
size of the particle, the quadrupolar interaction, and consequently the NIT temperature,
depends only on the concentration. Nevertheless, as the size of the particle increases, it
is expected that, at some point, they start to behave essentially as “macroscopic” solid
bodies. In the case that RNP � RLC,LLC (when the larger particles are not “nano” anymore
but approach micron-sized colloids) the liquid crystal will behave essentially as a pure
substance, confined to the free volume between the particles. The particles could affect the
properties of the nematic phase by anchoring effects (anisotropic contact energy, distortion
of the director field, generation of defects, in our model this the last term in the right-hand
side in Eq. 1) but the quadrupolar interaction in the nematic phase should be identical to that
of the pure liquid crystal. In the absence of anchoring effects (w = 0), the NIT should be
not affected by the presence of particles. This is the hypothesis used to model mixtures of
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122 E. R. Soulé et al.
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Figure 1. NIT lines for a system with RLC = 0.5, LLC = 3.5 and RNP = 0.65 (corresponds to
aLC = aNP), 2, 6, 30 and 300, increasing in the direction of the arrow. Temperatures are normalized
with respect to TNI of the pure LC. These lines correspond to a system without specific interactions
(w = 0).

submicron colloidal particles and liquid crystals [6, 21]. The original model by Matsuyama
does not include this behavior, but our model captures it because ϕLC approaches 1 when
RNP � RLC, LLC. In Fig. 1 we show the NIT line for different values of RNP for a system
without specific interactions (w = 0). The straight line represents the “ideal” case, where
aLC = aNP, as RNP is increased, the line becomes a curve and it shifts towards TNI = 1,
meaning that infinitely large particles does not affect the NIT temperature. It has to be
pointed out that our full model is valid only for true nano-particles, with a size in the order
of magnitude of molecular size. For micron or sub-micron particles (much larger than a
molecule), as discussed before, the liquid crystal will behave as if it was pure so there is
no contribution to the mixing energy coming from the liquid crystal, and only the entropy
of the “particle gas” remains; consequently the first term in Eq. (2) should be removed
[6, 21]. For intermediate cases, a more complex model should be used. Nevertheless, this
affects only the calculation of phase coexistence, but the mixing entropy doesn’t affect the
calculation of the NIT line shown in Fig. 1.

Next, we analyze the effect of varying RNP on the phase coexistence for small RNP (in
the nanoscale). We will consider the case where the isotropic interaction parameter is high
enough for I + I phase coexistence to exist for some values of RNP.

Figure 2 shows phase diagrams for different values of RNP (in the same order of
magnitude than the LC molecule), for a system with w = 0 and χ = 2.5/T . For a very small
radius (Fig. 2a) the system is very miscible in the isotropic and nematic states, and only
narrow regions of I + N and I + C coexistence exist in the analyzed range of temperature.
The NIT line is, as discussed in Fig. 1, a straight line. For larger radius the I + N regions
become broader, and (due to the fact that χ > 0) the metastable I + I equilibrium, buried
below the NIT is shifted to higher temperature and can be seen in the range of temperatures
analyzed (Fig. 2b). This buried I + I equilibrium induces a phase separation in the nematic
phase, and as a consequence the N + N coexistence region appears. As the NP radius
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Figure 2. Phase diagrams calculated for RLC = 0.5, LLC = 3.5 and different values of nanoparticle
radius: (a) RNP = 0.65, (b) RNP = 0.9, (c) RNP = 1.2, (d) RNP = 2, (e) RNP = 4, (f) RNP = 6. The
interaction parameters are χ = 2.5/T and w = 0. The different phases that exist in each region of
the phase diagram indicated by solid lines are: homogeneous isotropic (I), nematic (N) and crystal
(C) phases; phase coexistence between isotropic and nematic (I + N), isotropic and crystal (I + C),
nematic and crystal (N + C), two nematic (N + N) and two isotropic (I + I) phases. The dotted line
denotes a metastable L-L phase equilibrium.

keeps increasing, the metastable I + I coexistence temperature increases so the N + N
temperature increases until intercepting the I + N (Fig. 2c), then it merges completely with
the I + N region (not shown in the figures), and finally, a stable I + I coexistence region
is observed (Fig. 2d). The I + I equilibrium temperature is maximum for a given value of
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124 E. R. Soulé et al.

RNP, further increasing the radius beyond this point starts to shift the I + I region to lower
temperatures (Fig. 2e). This behavior is produced because miscibility is a balance between
entropic effects and enthalpic effects, both of which depend on the radius with a different
functionality; as shown in Eq. (2), entropy is a function of 1/vp (1/ RNP

3) and enthalpy
is a function of ap (1/RNP) [20]. For large enough radius, the I + I coexistence becomes
metastable again (Fig. 2f).

An interesting observation is that for large RNP, the range of existence of the homo-
geneous nematic phase becomes broader and the I + N region becomes narrower, so the
solubility in the nematic state is increased. This is caused by a combination of the facts that,
as discussed before, the mixture is becoming more miscible and the effect of the particles
on the NIT becomes less important as the radius increases. This prediction can explain
some experimental observations by Qi and Heggman [25]. In their work they analyzed the
transition between planar and homeotropic alignment in cells containing LCs doped with
NPs. They argued that when the NPs reside at the glass interface, they induce homeotropic
alignment at that interface. So, as they outline in their work, the effect of the NPs on the
alignment can be explained in terms of solubility in the nematic phase: when the particles
are soluble they reside in the bulk and they produce no effect on the surface alignment;
when the particles are not very soluble, the excess of particles migrates to the glass inter-
face and induces vertical alignment. In one of their experiments, they analyzed the effect
of NPs of different sizes, in a cell with a treated surface that induces planar alignment. For
smaller particles, they observed vertical alignment (NP segregation) at NP concentration
>5% in weight, and planar alignment (complete solubility) at lower NP concentrations,
independently of temperature. For larger particles, at a concentration of 10%, they observed
a thermal switch, meaning that the alignment is planar (solubility) at high temperatures and
homeotropic (segregation) at low temperature. This implies that the maximum solubility of
the smaller NPs in the nematic phase is about 5%, in the whole temperature range analyzed,
and large particles in a concentration of 10% are soluble at high temperature, meaning that
larger particles are more soluble in the nematic phase than smaller particles. The phase
diagrams shown in Fig. 2 are consistent with this behavior. Obviously a full theoretical
description of this phenomenon would require taking into account surface and gradient
terms in the free energy, but the trend of the calculated bulk phase diagrams can provide
a qualitative explanation for the experimental behavior. For example, their case of small
particles could correspond to a phase diagram similar to Fig. 2c, where the line separating
the N and N + I regions (which represents the maximum solubility in the nematic phase),
is essentially vertical (temperature independent); and their case of large particles can be
analogous to Fig. 2f, where the solubility at high temperature is increased, but it is temper-
ature dependent and, when temperature is decreased, the I + N region will be intercepted
and particle segregation will be observed.

Figure 3 shows the effect of w, the binary nematic interaction parameter, on the phase
diagrams (they should be compared to Fig. 2c that corresponds to the same value of RNP,
and w = 0). For a negative value (Fig. 3a), as shown by Matsuyama [16,17], the NIT line
is shifted to higher temperatures and the I + N region becomes narrower, meaning that the
particles become more soluble in the nematic phase. The range of existence of the nematic
and the nematic-crystal phases is increased, and regions of phase coexistence involving this
phase appear in the analysed range. The presence of a buried I + I equilibrium gives rise
to a N + N coexistence, as in the case of Figs. 2b and 2c. For positive values of w, (not
analyzed by Matsuyama), the opposite happens (Fig. 3b): the NIT line is shifted to lower
temperatures and the I + N coexistence region becomes broader. The range of existence
of a homogeneous nematic phase is reduced, as the specific interactions tend to decrease
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Figure 3. Phase diagram for RLC = 0.5, LLC = 3.5 RNP = 1.2. The isotropic interaction parameter
is χ = 2.5/T and the nematic interaction parameter is (a) w = −0.2/T and (b) w = 0.2/T . The
different phases that exist in each region of the phase diagram are as in Fig. 2, in addition there exist:
homogeneous nematic-crystal phase (NC), coexistence between nematic and nematic-crystal (N +
NC), and between nematic-crystal and crystal (NC + C) phases.

the solubility in the nematic phase. This is as observed in submicron colloidal systems [6,
21], where the specific interaction arises from elastic distortions on the nematic director
produced by the particles, giving rise to a positive free energy that leads to phase separation
between a nematic and a isotropic phase. In the case analyzed here, the metastable I + I
equilibrium is inside the I + N coexistence region, so no N + N phase coexistence is found.
Even if it is completely buried and does not affect significantly the shape of the phase
diagram, the presence of a metastable I + I equilibrium buried inside the I + N coexistence
region can nevertheless have a significant impact on the dynamics of phase separation,
leading to the possible formation of double interfaces, as was shown in a previous work
[26], so the position of this metastable curve can be relevant for material processing.

4. Conclusions

In this work, the phase behavior of mixtures of spherical nanoparticles and calamitic
nematic liquid crystals was analyzed by means of a mean-field thermodynamic model.
The model used in this work is an extension of that proposed by Matsuyama [16, 17].
We showed that, by considering the nematic quadrupolar interactions to be proportional
to the number of contacts between LC molecules (estimated as proportional to the area
fraction), the correct effect of the particle radius on the NIT can be reproduced: in the
absence of specific interactions (due to anchoring and elastic distortions), as the particles
grow in size and become “macroscopic,” the effect that they have on the LC becomes less
pronounced and the NIT temperature approaches the value corresponding to a pure liquid
crystal. The effect of the radius of the particle (in the scale) and the specific interaction
(both positive and negative) were analyzed, showing that they affect significantly the phase
diagrams. For small particles and negative (attractive) specific interactions, the existence
of the homogeneous nematic phase is favoured and a N + N phase coexistence can be
induced by a buried metastable I + I equilibrium. As found in previous work for similar
systems, the miscibility in the isotropic phase is not a monotonic function of the particle
radius: when the particle radius increases, the I + I equilibrium temperature first increases
and then decreases. For large enough radius, the NP solubility in the nematic phase is found
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to increase, a prediction which is consistent with some experimental results found by Qi
and Heggman [25].
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[19] Soulé, E. R., Borrajo, J., & Williams, R. J. J. (2007). Macromol., 40, 8082.
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