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Abstract
The synthetic biology firstly refers to the design and fabrication of biological components and systems that do 

not already exist in the natural world and to the redesign and fabrication of existing biological systems. The link of 
computational tools to cell-free systems, converts to synthetic biology is an emerging field expert to build artificial 
biological systems through the combination of molecular biology and engineering approaches. Herein, most findings 
describing the differences between in vivo and in vitro reactions and systems have been extensively described. 
The specific applications of computational tools to the design of an in vitro gene expression platform known as the 
artificial cell, its components and the strategies developed to predict activities of processor modules and to control 
the expression of genes have been discussed in detail. Potential applications of artificial cells in drug delivery, 
in biosynthesis, among others, have been described. Two sources of models for the possible developing of the 
computational toolbox for cell-free synthetic biology include 

i) Physical models of single cellular components able to be created from original principles, guiding to focus on 
tools to predict structure and dynamics of particular components; 

ii) A wide-range of mathematical models for predicting system dynamics of natural cells. Regarding modeling 
algorithms, there is a broad kind of models available for synthetic biologists and some areas of potential growth 
identified for researchers interested in developing tools for cell-free systems. Among them, deterministic, exploratory, 
molecular dynamic, stochastic, all atom models, among others, have been described and discussed. By using 
computational models to set up quantitative differences between in vitro reactions and in vivo systems, could identify 
specific mechanisms in living organisms to be further used in in vitro reactions in order to facilitate their processes. 
Thus, computational modeling would bridge the gap between in vitro and in vivo reactions. 

Keywords: Biological components; Molecular biology; Exploratory; 
Molecular dynamic; Stochastic

Introduction
In the last two decades, due to synthetic biology, several goals have 

been headed for the rational design of biological systems. Since the 
start of synthetic biology in the 1990s to the explosion of genomics data 
in the early 2000s, a new discipline has emerged. The exact definition 
of synthetic biology is still an interesting question. In 1978, with the 
discovery of restriction enzymes, appeared the earlier uses of this concept. 
The engineering of microorganisms for the production of compounds 
has been followed for a long time. Now, based on the arrival of genome-
based methods, synthetic biology is a rigorous engineering discipline 
to create, control and program cellular behavior. In this perceptive the 
end goal is to finally be able to engineer a system/organism to perform 
how we want it to perform [1]. This concept has also been extensively 
used in the discovery and understanding of natural product research 
in different microorganisms. The aim of synthetic biology is to identify 
biological design principles that can be used for practical applications. 
Although the most recent innovation steps in synthetic biology have 
been centered on research, it occurred in the meeting point between 
rational design and natural complexity with a final aim to develop 
biotechnological applications. The vast increase of DNA assembly 
techniques and the genetic tools currently available for synthetic 
biologists have been recently reviewed allowing the achievement of new 
functions and the production of helpful metabolites in living cells in 
a controlled way [2]. In order to link computational tools to cell-free 
systems, synthetic biology is an emerging field that endeavors to build 
artificial biological systems through the combination of molecular 
biology and engineering approaches. The progress in the design and 
construction of synthetic genetic and protein networks has determined 

the relevant growth of this field. This has led to the possibility of 
assembling modular components to arrive at novel biological functions 
and tools. In addition, these synthetic networks give rise to insights that 
facilitate the investigation of interactions and phenomena in naturally-
occurring networks. Amalgamation of well-characterized biological 
components into higher order networks requires computational 
modeling approaches to rationally construct systems directed towards a 
wanted ending. A computational approach would improve the certainty 
about the causal mechanisms that, if not, would be difficult to be 
inferred in the course of research experiments alone. The analysis and 
understanding of both qualitative and quantitative models also becomes 
increasingly important towards taking a systems-level point of view 
on synthetic genetic and protein networks. The analogy of synthetic 
networks to circuit engineering, computational modeling approaches 
that can be applied to biological systems and how synthetic biology will 
help in the development of more precise in silico representations of 
these systems has been recently described in detail [3]. 
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The synthetic biology refers to 

• the design and fabrication of biological components and 
systems that do not already exist in the natural world and 

• the redesign and fabrication of existing biological systems. In 
the first case, unnatural molecules are used to mimic natural ones with 
the aim to create artificial life. In the second case, natural molecules 
are used and they are assembled into a system that acts artificially. 
Generally, the aim to solve problems that are not easily understood only 
by analysis and observation, it is only achieved by the manifestations 
of novel models. To date synthetic biology has produced diagnostic 
tools for diseases produced by viruses such as HIV and Hepatitis Virus 
as well as tactics from biomolecular parts with interesting functions. 
The term synthetic biology was first used on genetically engineered 
bacteria that were created with recombinant DNA technology which 
was 4 synonymous with bioengineering. Later, the term was used as a 
mean to redesign life which is an extension of biomimetic chemistry, 
where organic synthesis is used to generate artificial molecules that 
mimic natural molecules such as enzymes. Recently, the engineering 
community is seeking to extract components from the biological 
systems to test and confirm them as building units to be re-assembled 
in a way that can mimic the living nature. This engineering discipline 
builds on our mechanistic understanding of molecular biology to 
program microbes to carry out new functions. Such predictable 
manipulation of a cell requires modeling and experimental techniques 
to work together. The modeling component of synthetic biology allows 
one to design biological circuits and analyze its expected behavior. The 
experimental component merges models with real systems by providing 
quantitative data and sets of available biological “parts” that can be used 
to construct circuits. Sufficient progress has been made in the combined 
use of modeling and experimental methods, which reinforces the idea 
of being able to use engineered microbes as a technological platform 
[4]. In the engineering aspect of synthetic biology, the suitable parts are 
the ones that can contribute independently to the whole system so that 
the behavior of an assembly can be predicted. DNA consists of double-
stranded anti-parallel strands each having for various nucleotides 
assembled from bases, sugars and phosphates which are made of carbon, 
nitrogen, oxygen, hydrogen, and phosphorous atoms. The simplicity 
found as union in base pairs A with T and C with G in addition to 
minor changes in the Watson and Crick model, is not found in complex 
proteins. The analysis and observation allow researchers to persuade 
themselves that the paradigms are the truth and whether the data 
contradicts the theory, they are discarded as considered errors, while 
synthesis promotes researchers to identify new theories. Synthesis has 
long been used in chemistry. The combination of Chemistry, biology 
and engineering can therefore create Darwinian systems [5]. Synthetic 
biology based on a six-letter genetic alphabet that includes the two non-
standard nucleobases isoguanine (isoG) and isocytosine (isoC), as well 
as the standard A, T, G and C, is known to suffer as a consequence of 
a minor tautomeric form of isoguanine that pairs with thymine, and 
therefore leads to infidelity during repeated cycles of the PCR. It was 
recently determined that the A, 2-thioT, G, C, isoC, isoG alphabet is 
an artificial genetic system capable of Darwinian evolution [6]. The 
research field of synthetic biology combines the investigative nature 
of biology with the constructive nature of engineering. In synthetic 
biology, most efforts have been focused on the creation and perfection 
of genetic strategies and small modules which have been constructed 
from these devices. But to view cells as true ‘programmable’ entities, 
it is now essential to develop effective strategies for assembling 
procedures and modules into complex, customizable larger scale 
systems. The step from modules to systems represents the second 

wave of synthetic biology. Therefore, the ability to create such systems 
address to innovative approaches for a wide range of applications, such 
as bioremediation, sustainable energy production and biomedical 
therapies [7].  Finally, on one hand, it is expected that synthetic biology 
creates great opportunities in a wide range of areas, including in foods, 
therapeutics, and diagnostics subject to regulatory supervision by the 
United States Food and Drug Administration (FDA). However, on the 
other hand, there are simultaneous misgivings of precisely assessing 
the human health and environmental risks of such synthetic biology 
products. Productive Oversight Assessment (POA) will go forward 
the development of a generalizable 5 approach for making productive 
planning and decision-making about the supervision of any given 
new technology, enhancing preventive and adaptive approaches by 
providing the conditions that will make it possible and helpful data to 
support future normative discussions about the control of emerging 
technologies [8]. 

Cell-free Synthetic Biology 
Cell-free synthetic biology is emerging as a powerful technology 

aimed to understand, connect, and increase the capacity of natural 
biological systems without using intact cells. Cell-free systems bypass 
cell walls and remove genetic regulation to enable direct access to the 
inner machinery of the cell. The unprecedented level of control and 
freedom of design, relative to in vivo systems, has inspired the rapid 
development of engineering skill for cell-free systems in recent years. 
The current characteristics of a cell-free expression system include the 
lack of spatial arrangement, protein transport, and folding, as well as 
various non-DNA binding factors that modulate gene expression in 
living organisms. Although these differences between in vivo and in 
vitro reactions are qualitative, they could produce differences capable 
to be quantified in dynamical behavior between the two systems, 
which would require different modeling approaches [3].  Mathematical 
models became more commonly integrated into the study of biology 
as the mode for describing biological processes. Several tools have 
emerged for the recreation of in vivo synthetic biological systems, 
with only a few examples of well-known work done on predicting the 
dynamics of cell-free synthetic systems [9]. All at once, the beginning of 
studying the dynamics of in vitro systems, encapsulated by amphiphilic 
molecules, opened the door for the development of a new generation 
of bio-mimetic systems. In vivo and in vitro models of biochemical 
networks are specially focused on tools that could be useful for 
producing cell-free expression systems. Quantitative studies of complex 
cellular mechanisms and pathways in synthetic systems can surrender 
important insights into the differences between cells and conventional 
chemical systems. With the aim to simplify the understanding 
of biological systems by constructing biochemical pathways and 
constructing computational models to reproduce the behavior of those 
pathway, synthetic biologists have first documented modeling and 
simulation of genetic regulatory systems as well as outlined the basic 
features of synthetic biology as a new engineering discipline, covering 
examples from the literature and reflecting on the features that make it 
exclusive among all other existing engineering fields [10]. Self-repair 
and proofreading are cellular processes that have not been considered 
when constructing cell-free synthetic systems [11-14]. The lack of these 
features of in vitro systems could complicate the adjustment to existing 
computational tools for the design of cell-free systems.

Differences between In Vitro and In Vivo Synthetic 
Reactions 

Interesting details about the architecture of biological networks were 
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revealed with the shift toward an engineering mode of conducting tests 
[15]. Firstly, this shift occurred but has mainly ignored the integration 
of older methods of biological analysis, in particular in vitro biology. 
In vitro synthetic biology is an emerging area focused on complex 
biosynthesis, directed evolution, and reconstitution of biological 
functions. Construction of a chemical system capable of replication and 
evolution, fed only by  small molecule nutrients could be achieved by 
stepwise integration of decades of work on the reconstitution of DNA, 
RNA and protein syntheses from pure components [16]. In recent 
years, the design of in vivo systems brought to the rapid development 
of engineering foundations for cell-free systems, for offering a versatile 
test-bed for understanding why nature’s designs work efficiently and 
also for enabling biosynthetic routes to novel chemicals, sustainable 
fuels, and new classes of tunable materials. The emergence of cell-
free systems open the way to novel products that until now have been 
unfeasible to produce by other means, are transformed by biochemical 
engineering or require novel bioproduction strategies [17-19]. 

In vitro reactions (sometimes named cell-free systems) are 
defined as a collection of biochemical components used to quantify 
properties of biological systems and/or produce biological Bacillus 
subtillis products, such as nucleic acids, polypeptides, or metabolites. 
Conventional in vitro systems are routinely used in biochemistry to 
measure 1) binding affinity: it was early used for Steroid and phyto-
oestrogen binding to their cognate receptors [20], for evidencing 
the binding affinity of 23 halogenated dibenzo-p-dioxins and 
dibenzofurans for C57BL/6J mice hepatic cytosol-binding species 
closely correlated with the potencies of these compounds as inducers 
of hepatic aryl hydrocarbon hydroxylase activity [21], reported the in 
vitro binding affinity of the AbrB protein, a transcriptional regulator 
of many B. subtillis genes to to six different DNA target regions; 2) 
assess reactivity for evaluating interaction between proteins, sequence 
specific interaction between DNA and chromosomal proteins, analysis 
of lipid-protein complexes by circular dichroism indicating that there 
was an increase in helical structure concomitant with lipid-protein 
binding demonstrating the interactions lipid-protein in high density 
lipoproteins [22], analysis of the distribution and evaluation of the 
in vivo and in vitro IgE to cross-reacting carbohydrate determinants, 
finding that these are common among the allergic population [23], 
and 3) determine molecular structure of cellular components, taking 
advantage of properties of formaldehyde as a DNA-protein cross-linker 
to probe the distribution of nucleosomes from chromatin structure in 
vivo [24], and the usefulness and applications of RNA chemical probing 
technologies in the last decade including new sequence-independent 
RNA chemistries, algorithmic tools for high-throughput analysis of 
complex data sets composed of thousands of measurements, new 
approaches for interpreting chemical probing data for both secondary 
and tertiary structure prediction, simple methods for following time-
dependent processes in RNA structural biology [25]. 

In Vitro and In Vivo Systems 
Early, since the discovery that a soluble ribonucleic acid intermediate 

in protein synthesis and the synthesis of a coat protein by phage 
containing RNA-E. coli extracts, reconstituted in vitro systems have 
been used to demonstrate the molecular basis of transcription and 
translation in vivo [26,27]. In vitro systems are also used in high-
throughput screening of proteins, RNA and DNA. In this sense, can be 
mentioned: 1) libraries of native folded proteins which could be 
screened and made to evolve in a cell-free system without any 
transformation or constraints imposed by the host cell by using 
ribosome display [28] the global analysis of protein activities using 

proteome chips, allowing that microarrays of an entire eukaryotic 
proteome can be prepared and screened for diverse biochemical 
activities and also can be used to screen protein-drug interactions and 
to detect posttranslational modifications [29] and the  development of 
appropriate resources and expression technology necessary for human 
proteomics for converting the transcriptome into an in vitro-expressed 
proteome for research use [30] 2) regarding RNA, RNA molecular 
switches were created by a combinatorial strategy named “allosteric 
selection”, which favored the emergence of ribozymes that rapidly self-
cleave only when incubated with their corresponding effectors 
compounds [31] knowing that in the presence of the effectors, the 
allosteric ribozyme ligase generates templates that can subsequently be 
amplified using conventional amplification technologies, such as RT-
PCR, thus, by in vitro section, the allosteric ribozyme can transduce 
analytes into amplicons [32]. A broadly applicable method for coupling 
a novel, newly selected aptamer to a ribozyme to generate functional 
aptazymes via in vitro and in vivo selection was described. To this aim, 
in addition to synthetic biology, metabolic engineering was also used by 
the development of genetic control parts. Among riboswitch parts, one 
of them with great potential for sensing and regulation of protein levels 
is aptamer-coupled ribozymes (aptazymes). Thus, the dual-selection for 
evolution of in vivo functional aptazymes as riboswich parts was 
developed [33] and 3) More than two decades ago, procedures for 
facilitating the rapid study of sequence-specific interactions of proteins 
and DNA were required. A general method of in vitro obtainment and 
specific mutagenesis of DNA fragments was developed. Specific, end-
labeled DNA fragments prepared using PCR, suitable for use in DNase 
I protection footprint assays, chemical sequencing reactions, and for 
the production and analysis of paused RNA polymerase transcription 
complexes in conjunction with the introduction of a specific mutation 
at any position along the length of PCR-fragments [34]. Previous 
examples showed that a high-throughput screening of RNA compounds 
is often used in directed evolution experiments to develop riboswitches 
and other auto-catalytic RNA structures which can be useful in in vitro 
biosynthetic applications [35]. The properties related with in vitro 
systems resound with the approaches of synthetic biology and have in 
fact been subjugated to create complex circuitry in cell-free systems. 
Among them, can be mentioned 1) the construction of an in vitro 
bistable circuit from synthetic transcriptional switches; 2) the synthetic 
in vitro transcriptional oscillators and 3) the bottom-up construction of 
in vitro switchable memories. Regarding processing using biochemical 
circuits, essential for survival and reproduction of natural organisms, 
artificial transcriptional networks consisting of synthetic DNA switches, 
regulated by RNA signals acting as transcription repressors, and two 
enzymes, a T7 RNA polymerase and an E. coli ribonuclease H, were 
engineered. An in vitro bistable memory was constructed by wiring 
together two synthetic switches. Construction of larger synthetic 
circuits provides an opportunity for evaluating model prediction, and 
design of complex biochemical systems and could be used to control 
nanoscale devices and artificial cells [36]. On the topic of the three 
synthetic in vitro transcriptional oscillators, initially, a negative feedback 
oscillator comprising two switches, regulated by excitatory and 
inhibitory RNA signals were designed and showed up to five complete 
cycles. Finally, a three-switch ring oscillator was constructed and 
analyzed. Mathematical modeling guided the design process. In this 
way, an in vitro oscillator was developed by using cellular machinery to 
transcribe a pair of nicked-promoter constructs. The former one 
produces a transcript that inhibits the second construct by strand 
displacement, while the second one produces an RNA oligo that 
activates the first construct. Thus, the system forms a negative feedback 
loop that produces oscillation in the activities of the promoters. 
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Synthetic transcriptional oscillators could prove valuable for systematic 
exploration of biochemical circuit design principles and for controlling 
nanoscale devices and orchestrating processes within artificial cells 
[37]. Concerning the bottom-up construction of in vitro switchable 
memories, a bistable system, a two-input switchable memory element, 
and a single-input push-push memory circuit were reported, suggesting 
that it is possible to build complex time responsive molecular circuits 
by providing an unmatched opportunity to study topology/function 
relationships within dynamic reaction networks [38]. The integration 
between in vitro systems with other materials creates hybrid constructs: 
some examples can be described here. Chemical sensors respond to the 
presence of a specific analyte in a variety of ways, one of them considers 
a change in optical properties, particularly a visually color change, such 
as polymerized colloidal crystal range of analytes, including viruses 
[39]. In addition, novel hybrid hydrogels containing rationally designed 
single strand DNA(ssDNA) as the cross-linker have potential in 
applications such as DNA-sensing devices and DNA-triggered actuators 
[40]. Taking into account that living organisms have unique homeostatic 
abilities, a versatile strategy for creating self-regulating, self-powered, 
homeostatic materials capable of precisely tailored chemo-mechano-
chemical feedback loops on the nano- or microscale were presented 
[41]. Besides, nanometer-scale transmembrane channels in lipid 
bilayers were created by means of self-assembled DNA-based 
nanostructures. In single-channel electrophysiological measurements, 
single-molecule translocation experiments showed that the synthetic 
channels could be used to discriminate single DNA molecules [42]. 
Moreover, a second-generation glucose-driven novel chemo-
mechanical autonomous drug release system was fabricated and 
evaluated toward feedback control of blood glucose in diabetes, without 
any requirement for external energy [43]. One of the most active 
directions in synthetic protocell biology is the “reconstruction’ 
approach”, where macromolecules are encapsulated in vesicles or 
liposomes and catalyze metabolic functions necessary in the life cycle of 
the protocell [44,45]. Among them, those including the synthesis of 
poly-A RNA in self-reproducing vesicles [46] the replication of an RNA 
template in liposomes, and the compartmentalization of PCR [47,48] 
deserve to be mentioned. This work verified that enzymatic activity 
could occur inside a liposome and direct the de novo synthesis and 
replication of nucleic acids. However, some studies have shown that 
liposomes can affect gene expression [49,50]. Different from the 
reconstruction approach, the Los Alamos Bug model [51] and versions 
of it, based on the self-assembling approach, have been proved to fulfill 
this condition, an emergent property of the catalytic coupling of 
protocell’s subsystems. Opposed to these catalysis-based protocell 
models, a stoichiometric model of a protocell, the chemoton model [52] 
requires the coordinated growth of all its components by means of an 
exact imposed stoichiometry in the transformation nutrients-
metabolites-waste. Further efforts in the field yielded enzymatic 
synthesis of membrane lipids inside liposomes to increase compartment 
size [53] evidence of base pair recognition between components of a 
phosphatidyl nucleoside membrane, and poly(Phe) production inside 
liposomes loaded with ribosomal components [54,55]. With the advent 
of encapsulated protein synthesis, there was a focused attempt to 
reproduce key features of cellular systems using artificial cells [56-58]. 
An in vitro proposal providing an alternative for synthetic biologists to 
develop freeze-dried in vitro reactions stored on paper disks for 
applications in portable diagnostic systems was recently programmable 
for in vitro diagnostics, including glucose sensors and strain-specific 
Ebola virus sensors [59]. Cell-free protein synthesis is becoming a 
serious alternative to cell-based protein expression. Previous work to 
control cellular behavior have mainly based on genetic engineering. 

However, other methods of cellular control are possible. So, artificial, 
non-living cellular mimics could be engineered to regulate already 
existing natural sensory pathways of living cells through chemical 
communication. Artificial cells can perform fundamental functions 
associated with natural cells, such as formation of membrane pores a) 
via alpha hemolysin expression, a concurrent cell-free expression and 
insertion of membrane proteins into phospholipid bilayers. A model is 
presented which describes the kinetics of adsorption of the expressed 
protein on the phospholipid bilayer [60] b) execution of genetic 
programs like the introduction of a positive feedback loop into a LacI-
dependent gene expression system in lipid vesicles, producing a cell-
like system that senses and responds to an external signal with a high 
signal-to-noise ratio [61] and c) other processes associated with sensing 
and responding to the environment such as synthetic riboswitches can 
be used to control protein expression under fully defined conditions in 
vitro, in water-in-oil emulsions, and in vesicles as well as in the artificial 
cells [62,63]. The quantitation of the effects of molecular phenomena, 
such as encapsulation, molecular crowding, and reaction volumes on 
the performance of in vitro transcription and translation could provide 
insights into key molecular phenomena capable to impact on in vivo 
gene expression and also demonstrate how molecular transporters and 
secondary metabolic reactions modulate homeostasis of natural cells 
[3]. Molecular crowding, encapsulation, and reaction volumes all 
profoundly affect stochastic variation of gene expression, which in turn 
impacts the choice between mass-action and ordinary differential 
equations for prediction of protein synthesis (Figure 1). In addition, 
cell-free systems lack a continuous supply of substrates, supplementary 
transcription factors, and chaperones, which could radically alter the 
rates of peptide and/or metabolite production in vivo. These factors 
could change kinetic parameters that function in in vitro systems. 
Whereas artificial cells cannot currently undergo self-reproduction 
[64] they have been used to gain insight into features of natural cells, 
including molecular crowding, on interactions and kinetics of the 
fundamental machinery of gene expression having a direct impact on 
our understanding of biochemical networks in vivo [65] and can 
increase the robustness of gene expression by integrating synthetic 
cellular components of biological circuits and artificial cellular 
nanosystems, the effects of compartmentalization on the kinetics of 
multimeric protein synthesis, and RNA-facilitated encapsulation [66-
68]. Primordial cells presumably combined RNAs, which functioned as 
catalysts and carriers of genetic information, with an encapsulating 
membrane of aggregated amphiphilic molecules. Thus, aggregates of a 
prebiotic amphiphile bind certain heterocyclic bases and sugars, 
including those found in RNA, stabilizing the aggregates. These 
mutually reinforcing mechanisms might have driven the emergence of 
protocells [68]. 

Artificial Cells 
This section will describe and discuss the specific applications 

of computational tools to the design of an in vitro gene expression 
platform known as the artificial cell. To describe a model of artificial 
cells, the components of the system have been classified into the 
Input, Processor, Output, and Shell.  The Input has been defined as the 
starting concentrations of enzymes, metabolites, co-factors, substrates, 
inducers and chemical energy that are present in a system and used in 
the execution of in vitro reactions. It is known that these factors alter 
gene expression significantly. However, their effects on gene expression 
are not disturbed in vivo [69]. This problem was solved in mathematical 
modeling by providing a framework to evaluate the precision of Input 
concentrations. In particular, a computational model was produced 
to determine the epistatic interactions among a high number of 
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components in an in vitro system of transcription/translation [70]. 
A different model utilizing a machine learning algorithm capable to 
stochastically show discrepancies among different components of 
the Input was also reported. The patterns of protein expression levels 
showed either a rapid rise of protein production or an initial decrease 
in protein level before a rapid increase [71]. In order to develop new in 
vitro models that describe the effects of the Input on gene expression, a 
stochastic model of an in vitro transcription/translation system was used 
with different reaction components such as potassium and magnesium 
to study the effect of environmental changes on gene expression, 
and physiological and supplemented concentrations of intracellular 
components within cell-free systems were compared [66,72]. 

b) The processor is defined as the cellular circuit (DNA sequence) 
that dictates genetic composition and functional relationship between 
genes, in conjunction with the machinery required to interpret it such 
as RNA polymerase enzymes and transcription factors involved and 
translation machinery. 

c) The output is described as the concentration of the final 
product(s) of a system. This may be defined as the product of the 
activity of the processor (metabolites for enzymatic reactions, mRNA 
for transcription systems, protein for coupled transcription/translation 
systems, etc). The integral understanding of gene expression involves 
to the processor and the output. These modules are decisive to connect 
input signals to functions of synthetic biological systems 

d) The shell is defined as the liposome barrier that controls 
interaction between artificial cells and the environment and /or isolates 
the Input and the Processor from the environment. The diameter of the 
Shell can determine the degree of molecular crowding and reaction 
rates of the Processor. In addition, the Shell controls the import of 
signals from the environment and export of Output compounds from 
intracellular space of artificial cells. With beginning of synthetic biology 
it is possible to connect functioning principles of natural membranes 
for the control of the Shell of artificial cells. Natural membranes use 
several strategies involving membrane proteins and lipid rafts to carry 
out information exchange with the environment [73]. Computational 
tools helped to reproduce the complexity of natural membranes, 
shutting the breach between natural and artificial membranes by 
simulating dynamics of lipid bilayers and their interactions with the 
environment [74-76]. Strategies developed to predict activities of 
processor modules and to control the expression of genes. Several of 
these approaches have been validated primarily in natural cells, but 
could be adapted for cell-free systems. Among them can be mentioned: 
-Sequence-based control of promoter transcriptional activity. In order 
to control the expression levels of target proteins, cells have evolved 
mechanisms to regulate both transcription and translation rates. 
Libraries of artificial promoters with different sequences, have been 
compared by measuring the accumulation of reporter proteins [77-82]. 
In some cases, in order to associate promoter sequence and its strength, 
the experimental data allowed the construction of inference models 
[83].  -Prediction of promoter strength. Various approaches are used to 
predict promoter strengths. The definition of promoter strength is the 
association rate constants of RNAP-promoter complex. It means that if 
binding affinity of RNAP to a promoter is “weak”, the binding is low, 
resulting in a reduced transcription rate. By contrast, if it is high, the 
promoter is “strong,” which increases output accumulation. Among 
cellular biochemical functions, gene transcription has been adapted to 
differential Hill functions-like equations, in order to predict the activity 
of a promoter, based on the binding affinity of RNAP and regulatory 
transcription factors to DNA, the position of the promoter, and the 

position of other regulatory sequences in the promoter [84]. In order to 
study regulatory elements in cell-free systems, a method based on the 
Hill functions demonstrated that the relative activities of promoters 
correlated well between cell-free systems and bacterial systems [85]. In 
order to predict the strength of promoter, based on its nucleotide 
sequence, different models describing the causal associations between 
promoter sequences and their affinity to RNAP were constructed. In 
thermodynamic based models, the binding energy of RNAPs to DNA 
has been considered to be a linear addition of the individual energy 
barriers of each base in the promoter sequence [79]. Some differences 
have been observed between models and experimental findings. False 
positives were reported when promoters were predicted to exhibit 
strong transcription rates, but in vivo were either weak or inactive 
[79,86]. False negatives were reported when some strong promoters 
were also not identified by the models [87]. Other models have been 
developed and used to predict bacterial RNAP-promoter activity in vivo 
based on their sequences [88]. Predictive models of promoter strengths 
in vitro are less well established when compared to in vivo models. 
Strengths of promoters with mutations in -35/-10 sequences and the 
upstream UP elements were assessed. The activity of the promoters 
both in vivo and in vitro was determined. A model to estimate the 
effects of the UP elements on promoter strengths was constructed. 
Position weight matrices for each motif were built in the promoters 
[79,89]. Based on the approach, the predicted and observed promoter 
strengths showed strong correlation between in vivo and in vitro 
systems. Modeling T7 promoter activity for cell free circuits. The use of 
bacterial RNAPs has been difficult due to their multimeric composition 
and low transcription efficiency in cell-free systems and artificial cells. 
As an alternative, the use of the monomeric phage derived RNAPs, T7-
RNAP, which is not regulated by transcription factors, and binds to 
specific T7 promoters can make easier the design and application of in 
vitro genetic circuits [90]. To our knowledge, there are still no sequence-
based and predictive models of T7 promoters strength published. 
Interestingly, T7 promoters with mutations in -11 to -8 bases were 
assayed using a split T7 RNAP, with C-terminal and N-terminal 
fragments individually expressed [82]. Additionally, a library of twenty 
one T7 promoters was characterized in cell-free platforms using an in 
vitro transcription/translation system [91]. There are reports suggesting 
that a sequence-based predictive model of T7 promoter strength could 
be developed and subsequently validated for in vitro control of gene 
expression levels [92,93]. Control of translation initiation rate by 
modification of RBS (ribosomal binding site). Translation initiation 
rates can be controlled to modulate Output protein accumulation in 
vitro. The three main steps of the translation process are initiation, 
elongation, and termination [94]. In bacteria, once the 16S rRNA, from 
the small ribosomal subunit 30S, interacts with the Shine-Dalgarno 
(SD) sequence, the initiation complex is completed with the binding of 
initiation factors and the large ribosomal subunit 50S. Additional 
sequences upstream and downstream the SD sequence determine the 
initial translation rate [95]. RBS is formed by these sequences together 
with the SD sequence. RBS strengths can be predicted using multiple 
tools, including RBS calculator and RBS Designer, among others 
[96,97]. Differences of free energy between the folded secondary 
structures of a RBS (mRNA unbound to ribosomes) and its unfolded 
state (bound to the ribosome) are computed by the mentioned tools. 
The characteristics of RBS models were reviewed in detail [98]. These 
tools have been successfully applied to fine-tune protein translation in 
natural cells [99]. The use of RBS calculator revealed that the 
modification of RBS sequence altered protein levels. However, mRNA 
accumulation was not modified [100]. UTR designer and RBS Designer 
were used in vivo to adjust translation rates of genes in metabolic 
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operons, constructed a predictive library of RBS strengths, and showed 
accumulation of reporter genes in a light-inducible expression system, 
suggesting that RBS-based models can be used to predict the 
accumulation of target proteins in vivo [101,102]. Conversely, few 
publications evaluating RBS strengths in cell-free systems were reported 
and one of them showed that relative strengths of RBS were similar for 
in vitro and in vivo systems [85], suggesting that RBS strengths in vitro 
could be estimated using existing tools developed for in vivo systems 
probably because RBS models rely only on RBS sequence and secondary 
structures, in addition to interactions between RBS and ribosomes. 
Control of gene output accumulation. Terminators are essential for the 
detachment of RNAP from DNA and release of the synthesized RNA. 
In the absence of efficient terminators, the RNAP will continue 
transcribing all through the DNA, diminishing the pool of RNAP 
available to initiate new transcription rounds. No additional factors are 
required by intrinsic terminators to be recognized by RNAP. In fact, the 
strengths of intrinsic terminators were estimated using only their DNA 
sequence in a number of biophysical models [103,104]. In this sense, a 
library containing more than 500 terminators was characterized in E. 
coli, and the strengths of the terminators were in line with predicted 
strengths based on a simple thermodynamic model [105]. In addition, 
T7-RNAP terminators with almost the maximum efficiency have been 
developed [106]. These models were tested in vivo. However, the fact 
that intrinsic terminators do not require additional factors suggests that 
they could potentially be applied to cell-free systems. Output 
accumulation can be controlled by other factors. Among them, 
translation efficiency can be altered by the target gene sequence, 
affecting the concentrations of synthesized proteins. In this sense, 
specific codons can be designed and optimized for a host or in vitro 
system [107] obtaining the highest protein production. In addition, the 
activity of a promoter and RBS depends on upstream and downstream 
sequences [95,108]. Thus, when designing cell-free systems, the 
implementation of insulator sequences that are related with surrounding 
sequences over the regulatory sequences must be taken into account 
[109,110]. Metabolites as output and cell-free metabolic pathways. 
Metabolic pathways can be predicted and controlled. Metabolites with 
high economic values, including antibiotics, chiral compounds, and 
proteins are termed biocommodities [111]. Although usually, 
biocommodities are produced using microorganisms with engineered 
metabolic pathways, the complexity of the biosynthetic pathways can 
be reduced by isolating it from cellular metabolic network and 
specifically engineered to produce the desired target at determined 
rates. Considering that potential toxicity is associated with synthesizing 
a biocommodity invivo therefore, in vitro production of metabolites 
could solve this problem. In addition, theoretical calculations of 
product-to-biocatalyst weight ratios showed that in vitro systems 
achieve total turnover number (TTNW) at several orders of magnitude 
higher than microbial-based production [111]. Cell-free systems have 
been shown to efficiently produce metabolites and proteins [97,112]. 
The development of models that precisely predict productivity of in 
vitro systems could get better synthesis of biocommodities. Several 
tools are available for the design of cell-free metabolic pathways. 
Databases for methabolic pathways. Public access databases such as 
KEGG [113], MetaCyc [114], ChEBI [115], and RHEA [116], showed to 
be useful for the design of metabolic pathways. A database containing 
molecular and biochemical data of enzymes, BRENDA [117], can be 
useful to select the core pathway capable to produce the metabolite of 
interest. Web servers, such as From-Metabolite-To-Metabolite (FMM) 
[118], and Metabolic Route Search and Design (MRSD) [119], can also 
be used for designing synthetic and unique metabolic pathways in cell-
free systems. Metabolic Tinker [120] can be used to identify and rank 

thermodynamically favorable pathways between two compounds, 
which may include novel, non-natural pathways. The XTMS platform 
can help to rank pathways based on enzymatic efficiency and maximum 
pathway yields [121]. Flux balance analysis (FBA) is commonly used to 
calculate the relative contribution of each enzymatic step in the pathway 
when optimization of particular objective function is required [122]. 
This flux is based on the stoichiometry of the metabolic pathway and 
several computational tools are available to solve FBA [123], such as 
COBRA toolbox for MATLAB [124] and the open-source version 
COBRApy [125]. Potential applications of artificial cells in drug 
delivery. One of these cases was described by the use of pegylated 
liposomal doxorubicin (doxil) in which cumulative doses in excess of 
500 mg/ml of doxil appeared to carry a considerably lesser risk of 
cardiomyopathy as judged by serial left ventricular ejection fraction 
and clinical follow-up, that was generally associated with free 
doxorubicin [126]. In addition, liposomes are widely utilized in 
molecular biology and medicine as drug carriers. Thus, liposome-cell 
interaction through connexins was reported describing a new method 
for direct cytosolic delivery of hydrophilic molecules [127]. The 
biochemical research line approach known as semi-synthetic minimal 
cells, which are liposome-based system capable of synthesizing the 
lipids within the liposome surface consist in reconstituting membrane 
proteins within liposomes and allow them to synthesize lipids [128]. 
Current more complex models, however, require a full reconstruction 
of the biochemical pathway including the synthesis of functional 
membrane enzymes inside liposomes, followed by the local synthesis of 
lipids catalyzed by the in situ synthesized enzymes. in biosensors. In 
this sense, synthetic ribo switches were used to control protein 
expression under fully defined conditions in vitro, in water-in-oil 
emulsions, and in vesicles. The developed system could serve as a 
foundation for the construction of cellular mimics that respond to 
particular selected molecules [62]. Biochemical approaches to 
membrane receptors have been limited for years to the following 
methods: knockout or overexpression of membrane receptors by gene 
introduction and genome engineering or extraction of membrane 
receptor-surfactant complexes from innate cells and their introduction 
into model biomembranes. The development of a novel method 
involving gene expression using cell-free in situ protein synthesis inside 
model biomembrane capsules was described. This method was verified 
by synthesizing olfactory receptors from the silkmoth Bombyx mori 
inside giant vesicles finding that that they were excited in the presence 
of their cognate pheromone ligand [129]. Taking into account that all 
cells sense and respond to their environment, artificial, non-living 
cellular mimics could be engineered to activate or repress already 
existing natural sensory pathways of living cells through chemical 
communication. The construction of such a system was described. The 
artificial cells expanded the senses of E. coli by translating a chemical 
message that E. coli cannot sense on its own to a molecule that activates 
a natural cellular response. Thus, artificial and natural cells were 
integrated to translate chemical messages that direct E. coli behavior. 
This methodology could open new opportunities in engineering 
cellular behavior without exploiting genetically modified organisms 
[63]. in biosynthesis. The synthesis and the activity inside liposomes of 
two membrane proteins involved in phospholipids biosynthesis 
pathway was shown. The activities of internally synthesized glycerol-3-
phosphate acyltransferase (GPAT) and lysophosphatidic acid 
acyltransferase (LPAAT) encapsulated in liposomes by using a totally 
reconstructed cell-free system (PURE system) were confirmed by 
detecting the produced lysophosphatidic acid and phosphatidic acid, 
respectively. Through this procedure, the first phase of a design aimed 
at synthesizing phospholipid membrane from liposome was 

http://dx.doi.org/10.4172/2332-0737.10001027


Page 7 of 15

Citation: Duschak VG (2015) Synthetic Biology: Computational Modeling Bridging the Gap between In Vitro and In Vivo Reactions. Curr Synthetic Sys Biol 
3: 127.  doi:10.4172/2332-0737.1000127

Volume 3 • Issue 2 • 1000127
Curr Synthetic Sys Biol
ISSN: 2332-0737 CSSB, an open access journal 

implemented [130]. Proteoliposomes were directly prepared by 
synthesizing membrane proteins with the use of minimal protein 
synthesis factors isolated from Escherichia coli (the PURE system) in 
the presence of liposomes. The first report showing that cell-free-
synthesized water-insoluble membrane protein is directly integrated 
with a uniform orientation as a functional oligomer into liposome 
membranes was reported, indicating that a simple proteoliposome 
preparation procedure should be a valuable approach for structural and 
functional studies of membrane proteins [131]. Regarding that the 
physical interaction between the cytoskeleton and the cell membrane is 
essential in defining the morphology of living organisms, a synthetic 
approach was used to polymerize bacterial MreB filaments inside 
phospholipid vesicles. When the proteins MreB and MreC are expressed 
inside the liposomes, the MreB cytoskeleton structure develops at the 
inner membrane indicating that the fibrillation of MreB filaments can 
take place either in close proximity of deformable lipid membrane or in 
the presence of associated protein. These findings seems that might be 
relevant for the self-assembly of cytoskeleton filaments toward the 
construction of artificial cell systems [132]. In bioenergy. Active 
inclusion bodies of recombinant polyphosphate kinase were obtained 
by simple washing of E. coli cells with non-ionic detergent and then 
they were immobilized in agar/TiO2 beads. Bioenergy beads charged 
by polyphosphate acting as rechargeable supply of adenosine nucleoside 
triphosphates (ATP/NTP), a practical tool for synthesis of artificial 
receptors were obtained [133]. In conclusion, artificial cells have been 
described as unique in vitro platforms for studying fundamental 
principles of biochemical pathways. In reality, they have been used to 
measure differences in the expression and stochastic variation of gene 
circuits caused by encapsulation. In order to create predictive models of 
artificial cells, existing design tools of gene circuits could be integrated 
with models of liposomes. Modeling cell-free systems whole-artificial-
cell models could be used to predict the response of artificial cells to 
osmotic pressure and to understand plausible co-regulation of system 
dynamics by membranes and gene circuits. Computational models of 
artificial cells could unite chemical and biological theory, combining 
the defined and predictable nature of in vitro reactions with the robust 
and sensitive qualities of natural cells. To date, however, computational 
tools for modeling artificial cell systems have not been established [3]. 

Sources of Models 
The computational toolbox for cell-free synthetic biology could be 

developed using two sources of models. 

Source 1- physical models of single cellular components can be 
created from first principles, guiding to focus on tools to predict 
structure and dynamics of particular components. The primary 
blockage to consistent high-resolution de novo structure prediction for 
small proteins appears to be conformational molecular biology. By using 
a combination of improved low- and high-resolution conformational 
sampling methods, improved atomically detailed potential functions 
that capture the jigsaw puzzle-like packing of protein cores, and high-
performance computing, high-resolution structure prediction that 
can be achieved for protein domains lower than 85 residues [134]. 
The design and evolution of a strategy to change the catalytic activity 
of an existing protein scaffold was reported. An approach involving 
simultaneous incorporation and adjustment of functional elements 
through insertion, deletion, and substitution of several active site loops, 
followed by point mutations to fine-tune the activity were used. Thus, 
the enzyme glycoxylase II was re-designed to lose its original catalytic 
action and instead carry a functional beta-lactamase domain, which 
conferred antibiotic resistance to bacteria that carried the modified 

protein. The resulting enzyme, evolved metallo beta-lactamase 8, 
completely lost its original activity and, instead, catalyzed the hydrolysis 
of cefotaxime increasing resistance to E. coli growth on 100-fold on 
cefotaxime [135]. The structural features of the chaperonin cage, crucial 
for rapid folding of encapsulated proteins, were explored. GroEL and 
GroES form a chaperonin nano-cage for proteins up to approximately 
60 kDa to fold in isolation. Small proteins (approximately 30 kDa) 
folded more rapidly as the size of the cage was gradually reduced to 
a point where restriction in space slowed folding dramatically. For 
larger proteins (approximately 40-50 kDa), either expanding or 
reducing cage volume decelerated folding. The authors suggest that the 
combination of these features, the chaperonin cage provides a physical 
environment optimized to catalyze the structural annealing of proteins 
with kinetically complex folding pathways [136]. The creation of novel 
enzymes capable of catalyzing any wanted chemical reaction was a 
grand challenge for computational protein design. Then, two novel 
algorithms for enzyme design employing hashing techniques allowed 
searching through large numbers of protein scaffolds for optimal 
catalytic site position. In silico benchmark was described, based on 
the recapitulation of the active sites of native enzymes, thus allowing 
a rapid evaluation and testing of enzyme design methodologies. 
These methods can be directly applied to the design of new enzymes, 
and the benchmark provided a powerful in silico test for guiding 
improvements in computational enzyme design [137]. The structural 
molecular dynamics of proteins was characterized at an atomic-level 
of detail by two fundamental processes in protein dynamics-protein 
folding and conformational changes. A 1-millisecond simulation of the 
folded protein BPTI revealed a small number of structurally distinct 
conformational states whose reversible inter-conversion was slower 
than local relaxations within those states by a 1000-fold factor [138]. 
A great challenge in molecular biology has been the understanding 
of  the process by which proteins fold into their characteristic three-
dimensional structures. In line with this, the results of atomic-level 
molecular dynamics simulations, over periods ranging between 100 μs 
and 1 ms, revealed a set of common principles underlying the folding 
of  structurally diverse proteins. Early in the folding process, the protein 
backbone adopts a native like topology while certain secondary structure 
elements and a small number of non-local contacts form. In most cases, 
folding follows a single dominant route in which elements of the native 
structure appear in an order highly correlated with their tendency to 
form in the unfolded state. In the simulations conducted, the proteins, 
representing all three major structural classes, spontaneously and 
repeatedly folded to their experimentally determined native structures 
[139]. Lately, computational protein design is becoming a powerful tool 
for tailoring enzymes for specific biotechnological applications. When 
applied to existing enzymes, computational re-design makes it possible 
to obtain orders of magnitude improvement in catalytic activity 
towards a new target substrate. Computational methods also allow the 
design of completely new active sites which catalyze unknown reactions 
in biological systems. Compared to established protein engineering 
methods such as directed evolution and structure-based mutagenesis, 
computational design allows for much larger jumps in sequence space; 
for example, by introducing more than a dozen mutations in a single 
step or by introducing loops that provide new functional interactions. 
Recent advances in the computational design toolbox have been 
carried out. They include new backbone re-design methods and the 
use of molecular dynamics simulations to improve the prediction of the 
catalytic activity of designed variants, and further enhance the use of 
computational tools in enzyme engineering [140]. 

Source 2 the initiation of systems biology created a wide-range of 
mathematical models for predicting system 
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Dynamics of Natural Cells
Dependent global effects, such as the abundance of RNA 

polymerases and ribosomes, on gene expression in bacteria depend 
not only on specific regulatory mechanisms, but also on bacterial 
growth. The observed growth-rate dependence of constitutive gene 
expression can be explained by a simple model using the measured 
growth-rate dependence of the mentioned relevant cellular parameters. 
More complex growth dependencies for genetic circuits involving 
activators, repressors, and feedback control were analyzed and verified 
experimentally with synthetic circuits. This mechanism can promote 
the acquisition of important physiological functions such as antibiotic 
resistance and tolerance [141]. Incorporation of kinetics and regulation 
into stoichiometric models gives pace to mass action stoichiometric 
simulation models. Thus, dynamic network models can be constructed in 
a scalable manner using metabolomic data mapped onto stoichiometric 
models, resulting in mass action stoichiometric simulation (MASS) 
models. Enzymes and their various functional states are represented 
explicitly as compounds, or nodes in a stoichiometric network. The 
feasible construction of MASS models represents a practical means to 
increase the size, scope, and predictive capabilities of dynamic network 
models in cell and molecular biology [142]. A strategy for accurate 
prediction of metabolic fluxes by Flux balance analysis FBA combined 
with systematic and condition-independent constraints that restrict 
the achievable flux ranges of grouped reactions by genomic context 
and flux-converging pattern analyses was reported. Analyses of three 
types of genomic contexts, conserved genomic neighborhood, gene 
fusion events, and co-occurrence of genes across multiple organisms, 
were performed to propose a group of fluxes that are expected to be 
on or off simultaneously. The flux ranges of these grouped reactions 
were constrained by flux-converging pattern analysis. FBA of the E. coli 
genome-scale metabolic model was carried out under several different 
genotypic and environmental conditions, resulting in flux values that 
were in good agreement with the experimentally measured fluxes. 
Therefore, this strategy might be useful for accurately predicting the 
intracellular fluxes of large metabolic networks of hard experimental 
determination [143]. The rate of cell proliferation and the level of 
gene expression in bacteria are intimately entwined. Elucidating 
these relations is important in order to understand the physiological 
functions of endogenous genetic circuits and for designing robust 
synthetic systems. A study revealed intrinsic constraints governing the 
distribution of resources headed for protein synthesis and other aspects 
of cell growth. A theory incorporating these constraints can precisely 
predict how cell proliferation and gene expression affect one another, 
quantitatively accounting for the effect of translation-inhibiting 
antibiotics on gene expression and the effect of unnecessary protein 
expression on cell growth [144]. 

Computational Tools 
These tools have been used to describe diverse biological 

functions, including somitogenesis, T-cell antigen discrimination, 
and heterogeneous vesicle formation, among others. An example 
of auto-inhibition with transcriptional delay was represented by 
a simple mechanism for the zebrafish somitogenesis oscillator. In 
zebrafish, two linked oscillating genes, HER1 and HER7, coding for 
inhibitory gene regulatory proteins, were especially implicated in 
genesis of the oscillations, while Notch signaling appeared necessary 
for synchronization of adjacent cells. It was shown by mathematical 
simulation that direct auto-repression of the genes HER1 and 
HER7 by their own protein products provided a mechanism for the 
intracellular oscillator, with a period determined by the transcriptional 
and translational delays. Although they are simple, to understand 

them, mathematics is needed [145]. No existing model accounts 
for absolute distinction between closely related T cell receptors 
(TCRs) ligands while also preserving the other canonical features 
of T-cell responses. The unexpected highly amplified and digital 
nature of extracellular signal-regulated kinase (ERK) activation in 
T cells was reported. Based on this observation and evidence that 
competing positive- and negative-feedback loops contributed to TCR 
ligand discrimination, a new mathematical model of proximal TCR-
dependent signaling was constructed. The model made clear that 
competition between a digital positive feedback based on ERK activity 
and an analog negative feedback involving SH2 domain-containing 
tyrosine phosphatase (SHP-1) was critical for defining a sharp ligand-
discrimination threshold while preserving a rapid and sensitive 
response. The combination between these findings and experiments 
performed revealed that ligand discrimination by T cells is controlled 
by the dynamics of competing feedback loops that regulate a high-gain 
digital amplifier, which is itself modulated during differentiation by 
alterations in the intracellular concentrations of key enzymes [146]. 
The generation of non-identical compartments in vesicular transport 
systems can be explained by a mathematical modeling It shows that 
a minimal system, in which the basic variables are cytosolic coats for 
vesicle budding and membrane-bound soluble N-ethyl-maleimide-
sensitive factor attachment protein receptors (SNAREs) for vesicle 
fusion, is sufficient to generate stable, non-identical compartments. The 
stable steady state is the result of a balance between this autocatalytic 
SNARE accumulation in a compartment and the distribution of 
SNAREs between compartments by vesicle budding. The resulting non-
homogeneous SNARE distribution generates coat-specific vesicle fluxes 
determining the size of compartments [147]. The distinction between 
forward and reverse modeling was pointed out, focusing in particular 
on the former one. Instead of going into mathematical procedures 
about different varieties of models, focus was located on their logical 
structure, in terms of assumptions and conclusions. A model is a logical 
machine for deducing the latter from the former. If models are based 
on fundamental physical laws, then it may be reasonable to treat the 
model as ‘predictive’, in the sense that it is not subject to falsification 
and we can rely on its conclusions. However, at the molecular level, 
models are more often derived from phenomenology and conjectures. 
In this case, the model is a test of its assumptions and must be falsifiable 
and yields biological insights [83]. The fact that these tools describe 
interactions between many biological components and emergent 
dynamics is due to the complex relationships between them, question 
whether these tools can be integrated into the modeling of complex 
cell-free systems. Experimentally validated computational tools created 
for both in vivo and in vitro systems, with the aim of build biological 
components, synthetic biologists suggest to bridge the gap between the 
understanding of complex biological networks and main biochemical 
processes by comparing modeling algorithms for both systems. Lewis et 
al, (2014) have recently proposed a framework for synthetic biologists 
to build novel artificial cellular systems and to identify underserved 
research areas for computational model development (Figure 1). 
The computational tools described by this research group establish 
a mathematical comparison between in vivo and in vitro biological 
phenomena. As the field of biology becomes increasingly quantitative, 
In vitro reactions remain a powerful tool for biologists, and, the plasticity 
of cell-free systems to test model predictions under minimal conditions 
is of relevance. This expert research group envise that studies of cell-free 
and in vivo synthetic systems will reveal cryptic non-genetic factors, 
network structures, and spatial organization of cellular components 
that may modulate robustness of synthetic biological systems [3]. 
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Modeling Algorithms 
There is a broad kind of models available for synthetic biologists 

and some areas of potential growth identified for researchers interested 
in developing tools for cell-free systems. 1-Deterministic models. 
These models usually consist of differential equations which predict 
the kinetics of a biological network based on its initial conditions 
and on past dynamics of the system [148]. They have been used to 
reproduce synthetic gene networks, including inverters, switches, 
band-pass filters, multi-cellular networks, and oscillators and have 
also been applied to simulate the behavior of tumor-invading bacteria, 
prokaryotic circuits capable of producing artificial analog computation 
and a transcriptional oscillator [149-151]. These models make use of 
Michaelis-Menten equations to describe each    

Chemical Reaction
For the modeling of in vivo systems, a baseline level of expression is 

typically integrated to model leaky activity of promoters. Conversely, 
cell-free systems have well-defined parameters, easily controlled inputs, 
and fewer unknown interactions. Thus, cell-free systems may be more 
precisely simulated than in vivo reactions using deterministic models. 
These cell-free systems can perform a lot of the same functions of 
natural organisms with circuits including oscillators, switches and logic 
elements [38,152,153]. The construction of computational models of in 
vitro systems can also provide insights into the effects of network 
architecture on the dynamic behavior of genetic circuits. Earlier work 
has shown that biological pathways can achieve oscillatory behavior via 
bi-stable, hysteretic loops, and demonstrated in vitro that these 
mechanisms could be used in living systems to control the transition to 
the mitotic phase in embryogenesis [154]. Afterward research into the 
modeling of synthetic in vitro transcriptional oscillators was used to 
determine the optimum system parameters required for continuous 
circuit behavior [37]. Later, this same model was applied to simulate the 
behavior of an in vitro oscillator after compartmentalization in emulsion 
droplets and was found to exactly represent the trend observed in 
individual encapsulated circuits [152]. Models of in vitro systems are 

useful to explore the impact of biological phenomena that are absent in 
reconstituted systems. For example, molecular crowding has been 
included into models of gene expression to explain some of the wanted 
properties of biological systems. It was demonstrated that molecular 
crowding, either induced by dextran as crowding agent or by 
coacervation of encapsulated circuits which greatly increase the 
expression rate and total protein production of in vitro systems [65,66]. 
2-Stochastic modeling. The effect of random fluctuations was studied; 
stochastic models of cellular processes can be formulated following the 
master equations. On behalf of in vivo systems, noise is due to intrinsic 
and extrinsic factors. The variation caused by incomplete distribution 
of reactants within a system is the extrinsic noise, whereas intrinsic 
noise is the variation caused by the discrete nature of small-scale 
chemical reactions [155]. A deep impact on biological systems was 
observed due to both classes of noises during replication, during 
variation observed at small reaction volumes within a cell and by bursts 
of translation caused by limited transcriptional activity [156-158]. 
Stochastic models have been applied to understand: sporulation 
dynamics of Bacillus subtilis, heftiness of a genetic circuit in response to 
divergent environmental conditions, exoprotease levels in bacterial 
populations and control of a bacterial population composition with a 
gene circuit [159-162]. Although In vitro systems are minimal, which 
seems that should simplify the development of computational models; 
due to this minimalistic, in vitro systems do not contain intrinsically the 
mechanisms of natural cells that could facilitate a strong behavior. The 
absence of these mechanisms could augment the sensitivity of in vitro 
systems to non-genetic factors. Among them, partial degradation 
products, stochastic variation at femtoliter volumes, and molecular 
crowding can be mentioned [37,66,156]. Additionally, in vitro systems 
lack cellular infrastructure, sub-cellular compartments, transport 
proteins, and a replication cycle, which seems to complicate the 
application of computational tools produced for natural cells to in vitro 
systems, needing the development of stochastic models to predict and 
control noise in cell-free systems. In cell-free expression, the process of 
encapsulation, could be simulated using stochastic models. It was 
reported that during the compartmentalization of the pure system in 
small liposomes, the distribution of reactants between compartments 
does not follow as previously described a Poisson distribution [163]. 
On the other hand, in vitro systems encapsulated in larger liposomes, 
predicted resulting reactant concentrations via a stochastic model 
following the Gillespie algorithm [164]. Another stochastic variation in 
an encapsulated in vitro system detailed the behavior of a 
compartmentalized transcriptional oscillator. Although the 
performance of the circuit within an emulsion was variable and was 
shown to be the result of intrinsic noise of the system acting 
stochastically at small volumes, the model of the reaction demonstrated 
that intrinsic noise was insufficient to describe the variability exhibited 
by the system; instead, the dominant cause of the deviation from the 
deterministic model was more probably to be extrinsic noise caused by 
heterogeneous distribution of reactants within the emulsion [152]. This 
discrepancy from the deterministic model was also reported during 
replication when cytoplasm components are not equally distributed 
between daughter cells [152,157,165]. The significant effect of extrinsic 
noise on this minimal system suggests that reactant distribution is an 
important factor in encapsulated in vitro reactions, which could be 
ignored when considering the source of stochastic variation within in 
vivo systems [152,157,165]. Molecular crowding increases expression 
levels in vitro. The study of molecular crowding revealed how molecular 
distribution can impact stochastic variation in vitro. Stochastic models 
of in vitro systems have also shown decreased variation of gene 
expression rates in the presence of molecular crowding conditions 

Figure 1: Modeling-based questions of cell-free and in vivo synthetic systems. 
A hypothetical synthetic pathway (boxes and arrows) is modeled on a computer. 
The simulated expression dynamics are compared to biological and cell-free 
interactions of the process of interest. By using computational models to 
establish quantitative differences between in vitro reactions and in vivo systems, 
mechanisms in living organisms that contribute to desirable network behavior 
could be identified. These mechanisms could be added to in vitro reactions, 
conferring useful properties on their processes. This way, computational 
modeling would bridge the gap between in vitro and in vivo reactions (Adapted 
from Lewis et al., [3]). 
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[65,66,166]. 3-Exploratory models. This type of model is used to guide 
the design of biological circuits. To imitate strategies, they changed 
from the engineering disciplines to automated biological design, 
combining known modules into more complicated architectures [167]. 
Firstly, an automated design algorithm registered a library of 
biochemical parts with defined kinetic parameters and interactions 
described as ordinary differential equations [168]. Next, the algorithm 
selected certain parts and arranged them into motifs [169-173]. 
Exploratory models can also be used to analyze the effect of intrinsic 
noise, extrinsic noise, and variation of kinetic parameters on synthetic 
genetic machinery [160,174]. These exploratory models have been used 
to design in vivo pathways, such as a Boolean network of transcriptional 
switches implemented in yeast, a multiplexor circuit in E. coli and an 
inducible bi-stable system of fluorescent reporters in mammalian cells 
[170,173,175]. Transcriptional networks in vivo and in vitro have the 
same circuit architecture and basic components. The parameters used 
by these automatic genetic design programs are actually determined in 
vitro, which would make the assembly of in vitro circuits more accurate 
than in vivo circuits. Alternatively, genetic design programs optimized 
for in vivo conditions may not account for the chemical conditions 
experienced by in vitro expression systems. It was reported that these 
type of models for in vitro pathways could considerably speed the 
assembly of cell-free circuits, and provide platforms for testing 
hypotheses of how self-repair and proofreading complex processes 
influence dynamical behavior of synthetic circuits. In addition, these 
automatic in vitro network assemblers could also form the fundamental 
tools for creating an integrated model of artificial cells [3]. 4-Molecular 
dynamic models. All-atom (AA) and coarse-grained (CG) models are 
categorized by the level of detail. The degree of detail addressed by each 
algorithm is determined by force fields, consisting of a set of 
mathematical functions and parameters that describe interactions 
between molecules that construct these models. Different force fields, 
such as CHARMM, GROMOS, AMBER, and MARTINI can be 
described in detailed reviews or some comparisons [176-178]. The 
selection of AA or CG model depends on the context of the research 
study. In the case that the detailed atom-atom interactions are not 
required, then, CG models are appropriate and the computational cost 
must be taken into account. However, as computational hardware and 
software continue to progress, it is possible to use AA models to 
describe dynamics over a longer time range [179]. All-atom models. 
AA-models are useful tools in lipid membrane simulation, where every 
atom of the solute and solvent in the system is explicitly simulated. 
Thus, when applied to the simulation of lipidic bilayers, these models 
can provide fine details at the molecular level. AA-models are often 
limited to small-scale simulations due to the computational costs 
[176,178]. This type of model has been applied to simulate membrane 
defection by an electrical field and pore-forming agents [180-182]. An 
AA-model illustrated that pore formation and closure could be induced 
by ionic charge imbalance [183]. Coarse-grained models. CG models 
are simpler and contain fewer details than AA-models. These models 
consist of groups of atoms representing “beads”, which potentially 
reduce the resolution of the simulation and decrease computer 
resources required to simulate AA models [176,184]. As a result, CG 
models are preferable when simulating large scale dynamics where 
atomic details may not be critical, to simulate lipid phase behaviors, 
such as phase separation and phase transition [185,186]. Phase changes 
can alter mechanical properties of membranes, such as fluidity and 
rigidity. Thus, phase behaviors may need to be considered when 
designing the Shell to achieve certain mechanical properties. CG-
models have also been used to study interactions between lipid bilayers 
and other molecules. The effect of nanoparticles on fluid-gel 

transformation of lipid bilayers was studied. Nanoparticles were shown 
to induce local disorder of a lipid bilayer and delay the transformation 
of the lipid bilayer from fluid to gel states [186]. Other computational 
studies have shown that amphiphilic nanoparticles and nanotubes 
interact with lipid membranes to form controllable pores and channels 
[187,188]. CG models have been first used to perform large time-scale 
simulation and then switched to AA models by mapping “beads” to 
single atoms. A large amount of simulation tools are focused on 
dynamics of the lipid membrane itself. So far, models integrating the 
Shell and the Processor/Output modules have not been established. The 
main obstacle for this integration is the difficulty of connecting physical 
concepts used in membrane modeling with chemical dynamics utilized 
in transcription/translation modeling. It is worth mentioning that the 
described models only consider atomistic scale of membrane dynamics, 
but integrated simulation should be necessary for predicting dynamics 
of artificial cells. Further than the atomistic scale, mesoscopic models 
(about 0.1-10 μm) where individual molecules are CG to single fluid 
volume are potential options for simulation of lipid bilayers [189]. 
Some studies have also combined AA and CG models to do long, yet 
fine time-scale simulation [178,190]. Hybrid models. In all the 
mentioned models, atomistic scale information is obtained and further 
“transformed” to lower resolution representations to achieve 
simulations at larger time- and/or length-scales [191]. A framework has 
been developed attempting to incorporate physical and chemical 
methods to simulate cellular functions [192]. Interestingly, experts 
predict that computational modeling of interactions between lipid 
membranes and transcription/translation machinery will provide 
unique insights into robustness of gene expression and enhance their 
capacity to control artificial cells [3]. Parameters used in models. The 
difficulty of modeling in vivo systems stems from the context-
dependency of reaction parameters. A wide diversity of equations 
describing the behavior of synthetic biological systems, parameters of 
these equations are generally unknown. Among databases for obtaining 
enzymatic reaction constants, KEGG [113], BRENDA [117], SABIO-
RK [193], and ExPASy [194] can be mentioned. BioNumbers have also 
collected measurements of biological systems [195] and have been used 
in the modeling of a yeast-bacteria ecosystem, in a predictor of anti-
microbial protein efficacy and in a computational representation of 
distributive metabolic networks [196-198]. The kinetic constants of 
biological molecules used in modeling in vivo systems are often 
measured in vitro, however, conditions may not reflect the pH or 
molecular crowding conditions experienced by those molecules in 
natural cells. In contrast, these kinetic constants that are quantified in 
vitro could be directly applied to cell-free reactions, thus creating 
models with high precision and prediction. 

Novel Perspectives for the Near Future 
Engineering complexity and refactoring cell capabilities were 

detailed recently considering that currently is a critical moment for 
synthetic biology, because the initial fervor for the main achievements 
attained gives way to a deeper understanding of the complexity of 
biological systems in order to significantly progress in the applicability 
of design principles for living organisms [199]. A recent review 
considered the role of synthetic biology in supporting biosensor 
technology, reflecting on the features that make it a useful tool for 
designing and constructing engineered biological systems for sensing 
application and reporting examples from the literature [200]. Another 
revision describes the current therapeutic delivery tools, the limitations 
that hamper their use in human applications, the biological tools and 
strategies that are at the vanguard of synthetic biology discussing their 
potential to advance the specificity, efficiency, and safety of the current 
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generation of cell and gene therapies, including how they can be used 
to confer curative effects improving those of conventional therapeutics 
[201]. On the other hand, recent discoveries in understanding 
extracellular electron transfer pathways, and the creation of customized 
and novel exoelectrogens for biotechnological applications were 
summarized. Engineering efforts to increase current production in 
native exoelectrogens, as well as efforts to create new exoelectrogens were 
described. These approaches will continue to expand and genetically 
modified organisms will continue to improve the outlook for microbial 
electrochemical technologies due to the development of genetic tools 
[202]. A new perspective for the combinatorial biosynthesis of natural 
products that could reinvigorate drug discovery by using synthetic 
biology in combination with synthetic chemistry was recently also 
described [203]. Lately, approaches for using computational modeling 
of synthetic biology perturbations to analyze endogenous biological 
circuits have been developed, with a particular focus on signaling 
and metabolic pathways. A bottom-up approach in which ordinary 
differential equations were constructed to model the core interactions 
of a pathway of interest was reported. Methods for modeling 
synthetic perturbations that can be used to investigate properties of 
the natural circuit as well as experimental methods for constructing 
synthetic perturbations to test the computational predictions have 
been discussed in detail. In particular, a case study of the p53 tumor-
suppressor pathway was presented, illustrating the process of modeling 
the core network, designing informative synthetic perturbations in 
silico, and testing the predictions in vivo [204]. In addition, taking 
into account the demand for accurately quantization the expression of 
genes of interest in synthetic and systems biotechnology, a quantitative 
method based on flow cytometry and a super-folder green fluorescent 
protein was developed for the first time to at single-cell resolution 
in Streptomyces. This work presents a quantitative strategy and 
universal synthetic modular regulatory elements, which will facilitate 
the functional optimization of gene clusters and the drug discovery 
process in these organisms [205]. On the other hand, searching for 
alternative strategies as antibiotic therapies become obsolete due to 
bacterial resistance, mathematical models and simulations guide 
the development of complex technologies, such as aircrafts, bridges, 
communication and transportation systems. In this sense models that 
guide the development of new antibiotic technologies span multiple 
molecular and cellular scales, and facilitate the development of a novel 
technology [206]. 

Regarding systems biology, developing mechanistic models has 
become an integral aspect of them, because it is needed to differentiate 
them from alternative models. Interestingly, “parameterizing” 
mathematical models has been widely perceived as a challenge, which 
has spurred the development of statistical and optimization routines for 
parameter presumption. However, focus is now increasingly shifting to 
problems that require synthetic biologists to choose from among a set 
of different models to determine which one offers the best description 
of a given biological system. In particular, approaches that are both 
practical as well as built on solid statistical principles are selected for 
application in systems biology [207]. Finally, computer simulation 
allows researchers to accelerate the velocity of scientific questions and 
build a common framework for designing biological networks. In vitro 
reactions remain a powerful tool for experimental biologists, and as 
the field of biology becomes ever more quantitative, it is important 
to take advantage of the plasticity of cell-free systems to test model 
predictions under simplified and minimal conditions. Experts envisage 
that studies of cell-free and in vivo synthetic systems will reveal cryptic 
non-genetic factors, network structures, and spatial organization 

of cellular components capable to modulate robustness of synthetic 
biological systems [3]. Interestingly, mathematical models of biological 
systems take the form of chemical reaction networks. The relevance of 
stochasticity methods and to simulate stochastic reaction networks has 
been recently reviewed. It is worth mentioning that the master equation 
is a complete model of randomly evolving molecular populations. In 
this sense, a closure scheme solution has been recently presented for 
the master equation of chemical reaction networks. Thus, a wide range 
of experimental observations of biomolecular interactions might be 
mathematically conceptualized. The authors anticipate that models 
based on this closure scheme might assist in rationally designing 
synthetic biological systems [208]. 
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