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a b s t r a c t

New estimates are derived for the overall properties of linear solids with pointwise het-
erogeneous local properties. The derivation relies on the use of ‘comparison solids’ which,
unlike comparison solids considered previously, are themselves pointwise heterogeneous.
The estimates are then exploited within an incremental homogenization scheme to de-
termine the overall response of multiphase elasto-viscoplastic solids under arbitrary
loading histories. By way of example, the scheme is applied to incompressible Maxwellian
solids with power-law plastic dissipation; particularly simple estimates of the Hashin–
Shtrikman type are obtained. Predictions are confronted with full-field simulations for
particulate composites under cyclic and rotating loading conditions. Good agreement is
found for all cases considered. In particular, elasto-plastic transitions, tension-compres-
sion asymmetries (Bauschinger effect) and stress-path distortions induced by material
heterogeneity are all well-captured, thus improving significantly on commonly used
elastic-plastic decoupled schemes.

& 2015 Elsevier Ltd. All rights reserved.
1. Scope

Many problems of practical interest in solid mechanics require knowledge of the overall properties of heterogeneous
solids in terms of pointwise varying microscopic properties. Prominent examples include the role of residual stresses on the
failure processes of engineering alloys and metal composites (e.g., Withers, 2007) and the effect of spontaneous electric
polarization on the electromechanical response of ferroelectric composites (e.g., Miehe and Rosato, 2011; Idiart, 2014).
Theoretical interest on pointwise heterogeneous solids has also arisen from recent developments initiated by Lahellec and
Suquet (2003) on incremental homogenization schemes for predicting the macroscopic response and underlying field
statistics in multiphase systems with elasto-viscoplastic behavior. These schemes rely on an implicit time discretization of
the elasto-viscoplastic evolution equations together with a suitably designed variational principle governing the state of the
solid at the end of the time step, given the state at the beginning of the time step. The latter enters into the scheme as
pointwise heterogeneous stress polarizations. Incremental schemes of this sort are intended to improve on classical ap-
proaches based on the elasto-plastic tangent approximation (e.g., Hill, 1965) and the affine approximation (e.g., Masson
M.I. Idiart), lahellec@lma.cnrs-mrs.fr (N. Lahellec).
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et al., 2000), as well as on decoupled approximations treating the elastic and plastic deformation processes separately (e.g.,
Aravas and Ponte Castañeda, 2004; Segurado et al., 2012). A recent account on the various schemes so far proposed can be
found in Lahellec and Suquet (2013). In any event, central to these incremental schemes is the availability of accurate
estimates for the overall properties of pointwise heterogeneous solids with linear local behavior.

It is precisely with a view to developing improved incremental homogenization schemes for elasto-viscoplastic systems
that we focus here on linearly viscous solids with a local behavior characterized by

σ ε τ( ) = ( ) ̇( ) + ( ) ( )x L x x x , 1

where σ ( )x and ε ̇ ( )x denote the Cauchy stress and the infinitesimal strain-rate tensor fields, while ( )L x and τ ( )x denote the
local viscosity and pre-stress or stress polarization tensors, respectively, both of which can vary with position x within the
solid. The material response (1) can be written in terms of a quadratic potential function as

σ
ε

ε ε ε ε τ ε= ∂
∂˙

( ˙) ( ˙) = ˙· ( )˙ + ( )· ˙ ( )
w

wx x L x x, where ,
1
2

, 2

and, assuming that the viscosity tensor is everywhere positive-definite and that the microstructure exhibits separation of
length scales, the overall response of the solid can be written in terms of an effective potential as (see, for instance, Ponte
Castañeda and Suquet, 1998)

σ
ε

ε ε ε= ∂
∂ ̇ ( ̇) ( ̇) = 〈 ( )̇〉

( )
͠ ͠

ε ε̇∈ ( ̇)

w
w w xwhere min , .

3

In this expression, 〈·〉 denotes volume averaging over a representative volume elementΩ of the heterogeneous solid, σ σ= 〈 〉
and ε ε̇ = 〈 〉̇, and ε( ̇) denotes the set of kinematically admissible strain-rate fields with prescribed volume average ε ̇.

A general procedure to estimate the effective response (3) in terms of low-order statistics of the local properties (2) has
been recently proposed by Lahellec et al. (2011).1 The procedure relies on the use of ‘comparison solids’ with piecewise
heterogeneous properties whose effective potential can be easily estimated or computed exactly. A suitably designed var-
iational statement is used to select the optimal properties that deliver the best possible estimate for the effective potential of
the pointwise heterogeneous solid in terms of the effective potential of the piecewise-heterogeneous comparison solid. The
resulting estimates have the virtue of improving, necessarily, on elementary estimates based on first-order statistics only,
and of delivering bounds under certain conditions. It has been found, however, that the estimates can be quite inaccurate for
some classes of pointwise heterogeneous solids which, incidentally, can be relevant to the development of incremental
homogenization schemes. It is the case, for instance, of solids with strongly fluctuating polarization fields that are diver-
gence-free. A remedy is proposed in Section 2 by allowing for comparison solids with pointwise heterogeneous properties in
the variational procedure of Lahellec et al. (2011). This is achieved by making judicious use of divergence-free and com-
patible fields as comparison polarization stresses. The new linear estimates are then employed in Section 3 within a variant
of the incremental homogenization scheme of Lahellec and Suquet (2013) to estimate the overall response of elasto-vis-
coplastic multiphase systems made up of Maxwellian phases. In the case of incompressible solids with power-law plastic
dissipation, particularly simple estimates of the Hashin–Shtrikman type are obtained. Sample results for complex loading
histories are confronted with decoupled estimates and full-field simulations in Section 4. Finally, some concluding remarks
are given in Section 4.2.
2. Estimates based on pointwise heterogeneous comparison solids

2.1. Variational framework

We begin by introducing a ‘comparison solid’ with local potential

ε ε ε τ ε( )̇ = ̇· ( ) ̇ + ( )· ̇ ( )w x L x x,
1
2

, 40 0 0

where ( )L x0 and τ ( )x0 are local properties within a certain class to be specified. Then, upon defining the function

τ ε ε( ) = ( )̇ − ( )̇
( )ε ̇( )

V w wL x x, sup , , ,
5x

0 0 0

we have the inequality

ε ε τ( )̇ ≤ ( )̇ + ( ) ( )w w Vx x L, , , 60 0 0

for any set of admissible comparison properties and strain-rate field. In view of (3), this inequality generates the upper
1 The procedure was proposed in the mathematically analogous context of thermoelasticity.
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bound on the effective potential

( ) ( )ε ε ε τ τ( ̇) ≤ ( ̇) = [ ̇ + ]
( )

͠ ͠ ͠
τ

+
∈

w w w VL Linf ; , , ,
7L ,

0 0 0 0 0
0 0

where w͠0 is the effective potential of the comparison solid as given by

ε τ ε ε ε τ ε( ̇ ) = 〈 ( )̇〉 = ̇· ̇ + · ̇ +
( )

∼∼ ∼͠
ε ε̇∈ ( ̇)

w w fL x L; , min ,
1
2

.
80 0 0 0 0 0 0

In this expression,
∼
L0, τ∼0 and

∼
f0 are the effective properties of the comparison solid.

The optimization with respect to the comparison properties in (7) yields the best possible bound that can be obtained
with the class of comparison solids admitted. The larger the class, the potentially sharper the bound. Furthermore, if the
class of comparison solids admitted includes the pointwise heterogeneous solid, the bound (7) reduces to the exact result. In
any case, the optimal viscosity will be such that ≥L L0 , given that the function V is infinite otherwise. Given this inequality,
the supremum operation in the function V can be performed explicitly by differentiation giving

τ τ τ( ) = − Δ ( )·(Δ ( )) Δ ( )
( )

−V L x L x x,
1
2

,
90 0

1

where Δ ( ) = ( ) − ( )L x L x L x0 and τ τ τΔ ( ) = ( ) − ( )x x x0 . Finally, an estimate for the overall stress–strain-rate relation can be
obtained by differentiating (7). In view of the optimality of (7) with respect to the comparison properties, it can be shown
that

σ
ε

ε
ε

ε τ ε τ= ∂
∂ ̇ ( ̇) = ∂

∂ ̇ ( ̇ ) = ̇ + ( )
∼∼͠ ͠+w w

L L; , , 10
0

0 0 0 0

where
∼
L0 and τ∼0 are evaluated at the optimal values of L0 and τ0.
2.2. Estimates based on pointwise-heterogeneous comparison solids

The estimate (7) is useful provided the class of comparison solids (4) allows the effective potential (8) to be computed. In
view of this proviso, we consider comparison solids with local properties of the form:

∑ ∑τ τ γχ χ α β( ) = ( ) ( ) = ( ) + ( ) + ( ) ( )
( )=

( ) ( )

=

( ) ( )L x x L x x s x L x xand ,
11r

N
r r

r

N
r r

0
1

0 0 0
1

0 0 0 0 0 0 0

where χ ( )( ) xr
0 are prescribed characteristic functions of N – possibly disconnected – subdomains Ω Ω⊂( )r

0 , such that

Ω Ω∪ ==
( )

r
N r

1 0 , while ( )s x0 and γ ( )x0 are prescribed tensor fields satisfying the differential constraints:

Ω∇· ( ) = 〈 〉 = ( )s x 0 s 0in and , 120 0

γ γΩ( ) = ∇ ⊗ ( ) 〈 〉 = ( )x v x 0in and , 13s0 0 0

where ∇ denotes the standard nabla operator and ⊗s refers to the symmetric part of the tensor product. That is, the field s0

is divergence-free while the field γ0 is compatible.
Thus, comparison solids within the class (11) have piecewise heterogeneous viscosity but pointwise heterogeneous stress

polarization. Now, it is shown in Appendix A that, in view of conditions (12)–(13), the effective potential (8) for this class of
comparison solids is given by

ε τ ε τ τ β( ̇ ) = ^ ( ̇ ) + ^ ( ) ( )͠ ( ) ( ) ( ) ( )w w vL L L; , ; , , , , 14s s s s
0 0 0 0 0 0 0 0 0 0

where

∑ε τ ε ε τ ε ε ε τ ε^ ( ̇ ) = ̇· ̇ + · ̇ = ̇· ̇ + · ̇ + ^
( )

∼∼
ε ε

( ) ( )

̇∈ ( ̇) =

( ) ( ) ( )
( )

w c fL L L; , min
1
2

1
2 15

s s

r

N
r r r

r

0 0 0
1

0 0 0 0 0 0

and

∑τ γ γ τ γβ β β^ ( ) = · − ·
( )

( ) ( )

=

( ) ( ) ( )
( )

v cL L, ,
1
2

.
16

s s

r

N
r r r

r

0 0 0 0
1

0 0
2

0 0 0 0 0 0

In these expressions, 〈·〉( )r denotes volume average over Ω ( )r
0 with volume fraction ( )c r

0 . Note that the potentials w͠0 and ŵ0 are

quadratic functions of ε ̇ with the same
∼
L0 and τ∼0 but with different constant terms related by = ^ + ^∼

f f v0 0 0. These effective
properties can be expressed as (Willis, 1981)
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∑ ∑ ∑τ τ τ= = ( ) ^ = ·
( )

∼∼

=

( ) ( ) ( )

=

( ) ( ) ( )

=

( ) ( ) ( )c c f cL L A A a, ,
1
2

,
17r

N
r r r

r

N
r r T r

r

N
r r r

0
1

0 0 0
1

0 0 0
1

0 0

where ( )A r and ( )a r are strain-rate concentration tensors, which depend on all tensors ( )L s
0 and τ ( )s

0 , such that
ε ε〈 ̇ 〉 = ̇ +( ) ( ) ( )A ac

r r r , with εċ being the minimizing strain-rate field in the comparison problem (15).
Introducing expression (14) in (7) we obtain the bound

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥( ) ( ) ( )ε ε τ τ τβ α β( ̇) = ^ ̇ + ^ +

( )

͠
τ

α β

+
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
w w v VL L Linf ; , , , , , , ,

18

s s s s s s

L ,
,

0 0 0 0 0 0 0 0 0 0 0r r
0 0

0 0

where ŵ0, as given by (15), is the effective potential of a piecewise heterogeneous solid with N phases characterized by Ω ( )r
0 ,

( )L r
0 and τ ( )r

0 , and the function V is given by

( )( ) ( )∑τ τ τ γ τ τ γα β α β α β( ) = − − − − · − − − −
( )

( ) ( )

=

( ) ( ) ( ) ( ) − ( ) ( )
( )

V cL s L L L s L, , ,
1
2 19

s s

r

N
r r r r r r

r

0 0 0 0
1

0 0 0 0 0 0 0 0
1

0 0 0 0 0 0

with a slight abuse of notation. Thus, expression (18) allows the use of available upper bounds or exact results for piecewise
heterogeneous solids to generate bounds for pointwise heterogeneous solids. The bound contains information about the
properties of the pointwise heterogeneous solid in the form of the first and second moments within each phase domain Ω ( )r

0
and of pondered first moments within the entire domainΩ, of certain combination of ( )L x and τ ( )x . To see this, note that the
objective function in (18) is convex in the comparison properties so that any stationary point satisfying the inequality ≥L L0

is an extremal point. The stationarity conditions are given by

ε τ γβ−〈 ̇ 〉 = Δ Δ − 〈 〉 ( )( ) − ( ) ( )L , 20c
r r r1

0 0

ε ε τ τ γ τ γ γβ βΔ Δ Δ〈 ̇ ⊗ ̇ 〉 = Δ Δ ⊗ Δ − ⊗ − 〈 ⊗ 〉 ( )( ) − − ( ) − ( ) ( )L L L2 , 21c c
r r

s
r r1 1

0 0
1

0
2

0 0

τΔ Δ= · ( )−s L0 , 220
1

∑γ τ γ γ τ γβΔ Δ= · + 〈 · 〉 − ·〈 〉
( )

−

=

( ) ( ) ( )cL L L0 ,
23r

N
r r r

0 0
1

0 0 0 0
1

0 0 0

where εċ is the strain-rate field in the optimal comparison solid; in deriving these conditions, use has been made of the
stationarity condition in the function V and of the well-known identities (e.g., Ponte Castañeda and Suquet, 1998)

ε
τ

ε ε〈 ̇ 〉 = ∂
∂

〈 ̇ ⊗ ̇ 〉 = ∂
∂ ( )

͠ ͠( )
( ) ( )

( )
( ) ( )c

w
c

w
L

1
and

2
.

24
c

r
r r c c

r
r r

0

0

0 0

0

0

Expressions (20) through (23) constitute a coupled system of non-linear algebraic equations for the comparison properties
( )L r
0 , τ ( )r

0 , α0 and β0 which must be solved numerically, in general. Once the solution is determined, the overall response of the

pointwise heterogeneous solid can be estimated via (10) with
∼
L0 and τ∼0 being the effective properties of the optimal pie-

cewise heterogeneous solid (15).
A few facts regarding the bound (7) are worth noting. Firstly, it is noted that the fields ( )s x0 and γ ( )x0 have been taken

here as prescribed. Potentially sharper bounds would certainly result from optimizing with respect to these fields, but the
optimality conditions will not be algebraic in view of the differential constraints imposed by the divergence-free and
compatibility conditions. Sharper bounds would also result from optimizing with respect to the characteristic functions
χ ( )( ) xr

0 , that is, with respect to the microstructure of the comparison solid, but this is also likely to lead to complicated
optimality conditions. In practice, heterogeneous solids usually have a certain microstructural morphology with distinct
domains which can be taken as the microstructure of the comparison solid. Secondly, if the effective potential ŵ0 of the
piecewise heterogeneous solid is estimated approximately rather than computed exactly or bounded from above, expression
(7) ceases to be an upper bound but expression (10) still delivers an estimate for the overall stress–strain-rate response.
Thirdly, a corresponding lower bound can be derived by replacing the supremum by an infimum operation in the definition
of the function V, as given by (5), and following a completely analogous derivation. Fourthly, we note that a weaker but
considerably simpler bound results from use of the subclass of comparison solids with β = 00 . In this case, the bound
reduces to

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )ε ε τ τ α′ ( ̇) = ^ ̇ +

( )
͠

τ α
+

( ) ( ) ( ) ( )
( ) ( )

w w VL Linf ; , , , , 0 ,
25

s s s s

L , ,
0 0 0 0 0 0r r

0 0 0

and the associated optimality conditions reduce to
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ε τ ε ε τ τ−〈 ̇ 〉 = Δ Δ 〈 ̇ ⊗ ̇ 〉 = Δ Δ ⊗ Δ Δ ( )( ) − ( ) ( ) − − ( )L L Land , 26c
r r

c c
r r1 1 1

together with (22). These conditions imply that

ε τ( ̇ ) = (Δ Δ ) ( )( ) ( ) −C C L , 27r
c

r 1

where ( ) ≐ 〈( − 〈 〉 ) ⊗ ( − 〈 〉 )〉( ) ( ) ( ) ( )C a a a a ar r r r denotes the fluctuation tensor of a field ( )a x within phase r. Bounds based on
piecewise-heterogeneous comparison solids can be obtained by further restricting the above class of comparison solids to
those with α β= = 00 0 in (11):

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )ε ε τ τ″( ̇) = ^ ̇ +

( )
͠

τ
+

( ) ( ) ( ) ( )
( ) ( )

w w VL Linf ; , , , 0, 0
28

s s s s

L ,
0 0 0 0 0r r

0 0

with optimality conditions given by (26). This is the bound originally proposed by Lahellec et al. (2011), which, in general,
should be weaker than the bounds (18) and (25).

The improvement of the new bounds (18) and (25) over the earlier bound (28) can be particularly notorious when the
stress polarization field τ ( )x is divergence-free and strongly heterogeneous. In this case, Hill's lemma implies that the exact
overall response (3) depends solely on the average value τ〈 ( )〉x . It is easy to see that by identifying ( )s x0 with τ τ( ) − 〈 ( )〉x x ,
the bounds (18) and (25) for this class of solids also depend on the stress polarization field through its average value only. By
contrast, the bound (28) will, in general, depend on phase averages and intraphase fluctuations of the stress polarization
field through conditions (26) and (27), and can therefore differ significantly from the sharper bounds (18) and (25) when the
polarization stress field exhibits strong spatial fluctuations.
3. Application to elasto-viscoplastic multiphase solids

The estimates derived in the previous section are exploited here in the context of an incremental homogenization
scheme to estimate the overall response of elasto-viscoplastic multiphase solids. We assume the solids are made up of N
homogeneous phases occupying domains Ω Ω⊂ ( = … )( ) r N1, ,r with characteristic functions χ ( )( ) xr , and exhibiting se-
paration of length scales.

3.1. Local response of constituent phases

The elasto-viscoplastic response of the local constituents is described within the framework of generalized standard
materials by constitutive relations of the form (Germain et al., 1983)

σ
ε

ε α
α

ε α
α

αφ= ∂
∂

( ) ∂
∂

( ) + ∂
∂ ̇

( ̇) = ( )
w w

x x x 0, , and , , , , 29

where

∑ ∑ε α ε α α αχ φ χ φ( ) = ( ) ( ) ( ̇) = ( ) ( ̇)
( )=

( ) ( )

=

( ) ( )w wx x x x, , , and , .
30r

N
r r

r

N
r r

1 1

In these expressions, α is a tensorial internal variable representing the plastic strain, and the functions ( )w r and φ( )r denote,
respectively, the free-energy density and the dissipation potential of phase r. Even though the homogenization scheme
considered below admits quite general constitutive relations, to ease the presentation we restrict attention to isotropic
phases characterized by

⎧⎨⎩ε α ε α ε α α
α

φ
ϕ α

( ) = ( − )· ( − ) ( ̇) =
( ̇ ) ̇ =

+ ∞ ( )
( ) ( ) ( )

( )
w ,

1
2

and
if tr 0

otherwise 31
r r r

r
eq

with κ μ= +( ) ( ) ( )J K3 2r r r , where κ( )r and μ( )r denote, respectively, the bulk and shear elastic moduli of the solid, J and K are
fourth-order tensors corresponding to the standard hydrostatic and shear isotropic projections, and ϕ( )r is a positive, convex
function of the equivalent plastic strain rate α αα ̇ = ( ) ̇· ̇2/3eq , such that ϕ ( ) =( ) 0 0r . Note that, in view of (29), the potentials
(31) correspond to the Maxwellian constitutive relation

ε σ
σ

σφ̇ = ( ) ̇ + ∂
∂

( ) ( )
( ) −

( ) ⋆
, 32

r
r

1

where φ( ) ⋆r is the Legendre dual of φ( )r .

3.2. Overall response of multiphase solid and field statistics

We now make use of the variational representation of Lahellec and Suquet (2013) for the overall response of multiphase
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solids with local behavior (29). In this representation, the field equations are discretized in time
( = … … = )+t t t t t T0, , , , , ,n n N0 1 1 and the constitutive relations (29) are expressed as

σ
ε

ε ε α= ∂
∂ ̇

( ̇ ) ( )
Δ

+
w

x, ; , , 33n n n1

where σ +n 1 is the stress at time +tn 1, εn and αn are the strain and plastic strain at time tn, ε ̇ is the strain rate during the time
interval ( )+t t,n n 1 , and

⎧⎨⎩
⎫⎬⎭ε ε α ε ε α α ε α αφ( ̇ ) =

Δ
[ ( + Δ ̇ + Δ ̇) − ( )] + ( ̇)

( )α
Δ

̇
w

t
w t t wx x x x, ; , min

1
, , , , ,

34n n n n n n

is an incremental rate potential for the time step Δ = −+t t tn n1 . The minimization condition with respect to the plastic strain
rate in this expression implies the discretized evolution law (29)2.

The constitutive relation (33) is akin to that of a non-linearly viscous solid. Therefore, the relation between the mac-
roscopic stress at time +tn 1 and the macroscopic strain rate during the interval ( )+t t,n n 1 can be expressed as

σ
ε

ε ε α= ∂
∂ ̇ ( ̇ ) ( )

͠ Δ
+

w
; , , 35n n n1

where

ε ε α ε ε α( ̇ ) = 〈 ( ̇ )〉
( )

͠
ε ε

Δ Δ
̇∈ ( ̇)

w w x; , min , ; ,
36n n n n

is an incremental effective potential. This variational representation based on strain rates is a convenient alternative to the
representation of Miehe (2002) and Lahellec and Suquet (2003, 2007a,b) based on strains. In any case, note that the effective
incremental potential depends on the strain and plastic strain fields within the solid from the previous time step. Our
purpose is to derive approximate estimates that depend on low-order statistics of these fields rather than on the entire
fields, thus providing a description of the overall response in terms of a finite number of macroscopic internal variables.

In the case of constituent phases characterized by (31), the incremental effective potential (36) is given by

ε σ ε α ε α σ ε α ϕ α( ̇ ) = Δ ( ̇ − ̇)· ( )( ̇ − ̇) + ( )·( ̇ − ̇) + ( ̇ )
( )

͠
ε ε α

Δ
̇∈ ( ̇) ̇∈

w
t

x x x; min min
2

, ,
37

n n eq

where denotes the set of traceless plastic strain-rate fields, σ ε α( ) = ( )( ( ) − ( ))x x x xn n n is the stress field within the solid
from the previous time step, and χ( ) = ∑ ( )=

( ) ( )x xr
N r r

1 . The estimates derived in section 3.4.1 below will depend on the

first and second moments of the deviatoric stress field σ ( )xn
d within each phase r. Their time integration thus requires the

computation of these statistics at time step +tn 1. To that end, use can be made of the identities

σ σ μ〈 〉 = 〈 〉 + Δ
∂
∂ ( )

͠
+

( ) ( ) ( )
( )

Δ
( )

=( )
t
c

w
p

2
1

38
n
d r

n
d r r

r
p

r
p 0

1
s

and
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where

ε σ ε α ε α σ σ ε α ϕ α( ̇ ) = Δ ( ̇ − ̇)· ( )( ̇ − ̇) + [ ( ) + ( ) ( ) + ( )]·( ̇ − ̇) + ( ̇ )
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is a perturbed effective potential with perturbation parameters χ( ) = ∑ ( )=
( ) ( )p x x pr

N r r
1 and χ( ) = ∑ ( )=

( ) ( )p px xr
N r r

1 such that
( ) =( )tr p 0r , and σ ( )xn

s denotes the spherical stress field from the previous time step. These identities follow from arguments
given in Idiart and Ponte Castañeda (2007).

3.3. Estimates based on a decoupled scheme

A common approximation often employed to estimate the overall elasto-viscoplastic response (35) consists in homo-
genizing the elastic and viscoplastic responses in a decoupled fashion (see, for instance, Aravas and Ponte Castañeda, 2004;
Segurado et al., 2012). While this approximation is always introduced as ad hoc, it actually amounts to bounding from above
the incremental effective potential (36) as follows.

Introduce an effective dissipation potential

α αφ φ( ̇) = ( ̇)
( )

∼
α α̇∈ ( ̇)

xmin , ,
41
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where α( ̇ ) is the set of traceless compatible (plastic) strain-rate fields with average α ̇ . Denote by α α̇ ( ̇ )⁎ x; the minimizer in
(41) for a given α ̇ . The use of this minimizer as a trial field in (37) then implies the inequality

ε σ ε σ ε α ε α σ ε α αφ( ̇ ) ≤ ( ̇ ) = Δ ( ̇ − ̇ )· ( )( ̇ − ̇ ) + ( )·( ̇ − ̇ ) + ( ̇ )
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͠ ͠
α ε ε

Δ Δ+ ̇ ̇∈ ( ̇)
⁎ ⁎ ⁎ ⁎w w

t
x x x; ; min min

2
, .

42
n n n

dc

Since ε ̇ and α̇⁎ are both compatible, the (elastic) strain rate ε ε α̇ = ̇ − ̇⁎e is also compatible. Thus, we can write

⎡
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⎤
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Noting that σ ε σ ε σ ε α〈 · ̇ 〉 = 〈 〉·〈 ̇ 〉 = ·( ̇ − ̇ )n
e

n
e

n by Hill's lemma, and that

ε ε ε α ε αΔ ̇ · ( ) ̇ = Δ ( ̇ − ̇)· ( ̇ − ̇)
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where ͠ is the effective elastic moduli of the solid, we conclude that

⎡
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45n n

dc

Alternatively, the inequality (42) can be obtained by making use of Helmholtz decomposition for α̇ ( )x in (37) and restricting
the divergence-free component to zero. Note that the upper bound (45) depends on the stress field from the previous time
step only through the macroscopic average σn. The associated overall response

σ
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ε σ σ ε α=
∂

∂ ̇ ( ̇ ) = + ( ̇ − ̇)Δ ( )
͠͠ Δ

+
+w

t; 46n n n1
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together with the optimality condition in (45) with respect to α ̇ (which is traceless)
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t
, 48
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where φ∼⋆ denotes the Legendre dual of φ∼. This is precisely the macroscopic relation assumed by the decoupled scheme:
since the effective elasticity tensor is independent of the local dissipation potential and the effective dissipation potential is
independent of the local elasticity tensor, the scheme effectively decouples the homogenization problem into a purely
elastic problem and a purely viscoplastic problem. In practice, the effective elasticity tensor and dissipation potential cannot
be computed exactly so that bounds, such as those of Willis (1981) for ͠ and of Ponte Castañeda (1992) for φ∼, must be
employed. In any event, the above derivation endows the decoupled scheme with a variational character, at least in the
context of infinitesimal deformations. Note that according to this scheme a multiphase solid made up of Maxwellian phases
is also Maxwellian, cf. Eq. (32) and (48).
3.4. Estimates based on pointwise-heterogeneous comparison solids

Refined estimates should account for the coupling between the energetic and dissipative processes. Given the non-
linearity of the dissipation potential ϕ and the pointwise heterogeneity of the stress field σ ( )xn , the computation of the
coupled, incremental effective potential (37) amounts to solving a non-linear pointwise-heterogeneous homogenization
problem. With a view to exploiting available results for linear piecewise-heterogeneous homogenization problems, we follow
Lahellec and Suquet (2013) and introduce the function

η ϕ α η α( ) = ( ̇ ) − ( ) ̇
( )

Δ
α ̇ ≥

V x xsup ,
3
2

,
49

eq eq0
0

0
2

eq

where η0 is a linear viscosity field. This definition implies the inequality

ϕ α η α η〈 ( ̇ )〉 ≤ ( ) ̇ + ( )
( )ΔVx x,

3
2 50eq eq0

2
0

for any combination of scalar fields η0 and αėq. This amounts to linearizing the dissipation potential ϕ by means of the secant
linearization scheme of Ponte Castañeda (1992) and Suquet (1995). The inequality is useful provided the dissipation po-
tential is sub-quadratic, which is the case of common viscoplasticity models. Eq. (37) and (50) then imply the inequality
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where the infimum condition yields the best possible bound in terms of the effective potential
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of a linearly viscous comparison solid. Carrying out the minimization with respect to α̇ in this comparison problem we
obtain

ε ε ε τ ε σ ση
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where κ μ( ) = ( )Δ + ( )ΔΔ Δt tL x x J x K3 2 is a viscosity tensor,
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Eq. (51) allows the use of available upper bounds or exact results for effective potentials of pointwise-heterogeneous linear
solids of the form (53) to bound effective potentials of nonlinear heterogeneous solids of the form (37). But the minimum
problem (53) is precisely the problem considered in Section 2. Thus, by combining the bound (51) with the bound (18) for
the comparison problem (53), we can obtain an expression that allows the use of available bounds and exact results for the
effective potential of piecewise-heterogeneous linear solids to bound the incremental effective potential of non-linear
elasto-viscoplastic solids. For simplicity, however, in this work we make use of the weaker bound (25) rather than the
general bound (18). Furthermore, we take the microstructure of the elasto-viscoplastic solid as the microstructure of the
comparison solid, that is χ χ( ) = ( )( ) ( )x xr r

0 for = …r N1, , , and we restrict the class of comparison properties to

∑ σ ση χ η κ μ( ) = ( ) = Δ + Δ ( ) = ( ) −
( )=

( ) ( ) ( ) ( ) ( )t tx x L J K s x x, 3 2 and .
55r
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Note that the divergence-free field ( )s x0 is thus identified with the fluctuation of the stress field from the previous time step.
The bound for the incremental effective potential (51) then takes the form
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It is recalled that the superscripts s and d denote the spherical and deviatoric parts of a tensorial magnitude, respectively,
and that
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When the infimum in (56) corresponds to a stationary point, the various comparison properties are solution to the non-
linear system of algebraic equations arising from the stationarity conditions with respect to the comparison properties κ ( )r

0 ,
μ ( )r

0 , τ ( )r
0 , α0 and η ( )r

0 .
Differentiation of (56) with respect to the macroscopic strain rate yields an estimate for the overall stress–strain-rate

relation; in view of the stationarity conditions, it is given by

σ
ε

ε σ ε τ= ∂
∂ ̇ ( ̇ ) = ̇ + ( )

∼∼͠ Δ
+

+w
L; , 60n n1 0 0

where
∼
L0 and τ∼0 are the effective properties of the piecewise heterogeneous solid (15), evaluated at the optimal comparison

properties. It is easy to see that in the limiting case of κ μ{ } → ∞( ) ( ),r r the various material parameters are such that
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μ ηΔ →Δ
( ) ( )tr r

0 , τ ( ) →x 0, ^ →V 00 , and →V 0, so that the estimate (56) reduces to that of Ponte Castañeda (1992) and Suquet
(1995) for purely viscoplastic solids.

Whether the bound (56) is always sharper than the decoupled bound (45) – assuming the same linearization scheme is
employed for the non-linear dissipation potential – is not evident. However, the associated overall response (60) does
predict a non-Maxwellian coupling between energetic and dissipative deformation processes in accordance with well-
known theorems of homogenization theory (Suquet, 1997). This bound is thus expected to be more accurate than the
decoupled bound (48). The comparisons provided in Section 4 for a specific class of material systems are in line with this
expectation.
3.4.1. Simple estimates of the Hashin–Shtrikman type for incompressible power-law solids
Particularly simple expressions result when the constituent phases are incompressible power-law solids characterized by
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where σ ( )r
0 is a flow stress, ε0̇ is a reference strain rate, and m is a strain-rate sensitivity exponent such that ≤ ≤m0 1; the

limiting values m¼1 and m¼0 correspond to linearly viscous and ideally plastic behaviors, respectively.
In this case, κ → ∞( )r
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For the special case of statistically isotropic microstructures, suitable bounds of the Hashin–Shtrikman type for piece-
wise-heterogeneous linear solids are available from the work of Willis (1981). Assuming ≤( ) ( )L Lr

0 0
1 , the upper bound for ŵ0 is

given by (15) and (17) with
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If the condition ≤( ) ( )L Lr
0 0

1 does not hold, the result ceases to be an upper bound for the effective potential but it can still be
used to generate an estimate for the overall stress–strain-rate relation. In fact, Eq. (65) are known to be quite accurate for
material systems with particulate microstructures, provided the matrix phase is identified with r¼1 and the −N 1 inclusion
phases are identified with = …r N2, ., .

Now, Eq. (66) imply uniform mechanical fields within the inclusion phases. So, if the initial stress distribution within the
elasto-viscoplastic solid is uniform – e.g., nil – then σ ( )xn will remain uniformwithin those phases ( = … )r N2, , at every time
step. Consequently, the polarization field (54)3 takes the form
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in view of the identity χ χ( ) = − ∑ ( )( )
=

( )x x1 r
N r1

2 . It is now evident that, in this case, the material properties of the com-

parison solid (53) are within the class (11). Therefore, the optimal comparison parameters will be such that =( ) ( )L Lr r
0 and

τ τ( ) = ( )x x0 , namely
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so that the effective potential (53) is being uniformized exactly. Note that this is possible by virtue of the term α ( )s x0 0 in the
class of comparison polarizations τ0 admitted. In fact, if the optimal α0 given by (68)3 is replaced by α = 00 and the same
values for the other comparison properties are kept, the comparison polarization τ0 becomes piecewise heterogeneous and
the resulting bound reduces to the first-moment approximation of Lahellec and Suquet (2013), which is known to be
inaccurate.

Finally, given (68), the bound (56) reduces to
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and the overall stress–strain-rate relation follows from differentiation according to (60). Finally, the first and second mo-
ments of the stress field σ ( )+ xn

d
1 within each phase r can be estimated by applying the above procedure to the perturbed

problem (40) and using the resulting estimate for the incremental effective potential in the identities (38)–(39). The op-
timality conditions with respect to the viscosities η ( )r

0 in this bound can be written as
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where σ ( )xc
d is the deviatoric stress field associated with the comparison potential ŵ0. In the limit of ideal plasticity ( → )m 0 ,

these conditions reduce to yield conditions of the form

σ σ σ〈 · 〉 = = …
( )

( ) ( ) r N
3
2

1, , .
71c

d
c
d r r

0

4. Sample results for particulate composites

4.1. Preliminaries

Sample results are provided here for two-phase composites made up of an elasto-viscoplastic matrix (r¼1) containing an
isotropic dispersion of elastic inclusions (r¼2). Both phases are taken to be isotropic and incompressible, and the dissipation
potential of the matrix material is taken to be of the power-law form (61). The shear moduli are chosen to be μ σ=( ) ( )101 3

0
1

and μ μ=( ) ( )R2 1 , and the inclusion volume fraction is fixed at =( )c 0.32 ; the parameter R thus denotes the elastic contrast of
the composite.

Specimens are assumed to be initially free of internal stresses and are subjected to deformation histories of the form
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relative to an orthonormal basis { }ei , where the first term corresponds to a simple shear along the axis e1 and the second
term corresponds to an axisymmetric shear about that axis. Three different loading programs are studied:

LOADING 1. Radial deformation consisting of a triangular axisymmetric shear:
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where ⌊·⌋ denotes the floor function.
LOADING 2. Radial deformation consisting of an axisymmetric loading ramp up to a constant value:
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⎩ε ε

γ
γ
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LOADING 3. Rotating deformation:

ε γ ω ε γ ω( ) = [ − ( )] ( ) = ( ) ( )t t t t
3

4
1 cos and sin . 75ss as

The constants γ, γ ,̇ T0, and ω are loading parameters specified below.
The new estimates are compared with the earlier estimates of Lahellec and Suquet (2003, 2007a,2013). These earlier

estimates are all based on piecewise-heterogeneous comparison solids and hinge upon different uniformization schemes.



Fig. 1. Loading programs considered: (a) Radial deformation consisting of a triangular axisymmetric shear (program 1), (b) radial deformation consisting of
an axisymmetric loading ramp up to a constant value (program 2), (c) rotating deformation (program 3). The functions ( )tœas (continuous lines) and ( )tœss
(dotted lines) yield the time-dependent axisymmetric and simple shear components, respectively.
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The estimates of Lahellec and Suquet (2003, 2007a) make use of an incremental variational principle with strains as primal
variables – rather than strain rates as in (36) – and uniformize the plastic strain field at the current time step; we refer to
them as “effective internal variable” estimates. The more recent estimates of Lahellec and Suquet (2013) make use of the
incremental variational principle (36) with strain rates as primal variables, but uniformize the stress field from the previous
time step; we refer to them as “effective stress” estimates. The new estimates, by contrast, uniformize the polarization field
at the current time step; we refer to them as “effective polarization” estimates. In all cases, the same secant linearization and
linear Hashin–Shtrikman estimates are employed. Thus, the new estimates are computed by means of the expressions
provided in Section 3.4.1, which require the numerical solution of one non-linear equation for the optimal comparison
viscosity η ( )

0
1 in the matrix phase, as given by Eq. (70) with r¼1.

The accuracy of the predictions is assessed by confronting them to full-field simulations of periodic composites with unit
cells containing a monodisperse distribution of fifty spherical inclusions randomly placed at the prescribed volume fraction,
see Fig. 2a. The field equations are solved by means of a computational method based on the Fast Fourier Transform ori-
ginally proposed by Moulinec and Suquet (1998) and implemented in the software CRAFT (available at http://craft.lma.cnrs-
mrs.fr). The results provided below make use of a regular array of 2563 Fourier points. To obtain representative results for
material systems exhibiting statistical homogeneity and overall isotropy, the macroscopic responses of ten different reali-
zations were evaluated. Fig. 2b shows the maximum, minimum and average stress levels obtained for a rate-independent
elasto-plastic composite with compliant inclusions (m¼0, R¼0.2) subject to the loading program 1 of Fig. 1a. Given the
negligible dispersion observed, only the softer realization is considered henceforth.

4.2. Results and discussion

Fig. 3 shows predictions for rate-independent elasto-plastic specimens (m¼0) subjected to the radial loading program 1 of
Fig. 1a with γ ̇ = · − −5 10 s4 1 and =T 10 s0 , see parts (a)–(c), and to rotating loading program 3 of Fig. 1c with γ = −10 3 and
ω π= /20 rad/s, see parts (d)–(e). Three values of elastic contrast R corresponding to compliant (R¼0.2), uniform (R¼1) and stiff
Fig. 2. Full-field simulations: (a) A unit cell realization containing a monodisperse distribution of fifty spherical inclusions at a volume fraction =( )c 0.32 ;
(b) overall responses of ten realizations with m¼0, μ σ=( ) ( )101 3

0
1 and μ μ=( ) ( )0.22 1 , subject to loading program 1 of Fig. 1a.

http://craft.lma.cnrs-mrs.fr
http://craft.lma.cnrs-mrs.fr


Fig. 3. Results for elasto-plastic solids (m¼0) with three elastic contrasts ( = )R 0.2, 1, 5 , subjected to the loading programs 1 (left) and 3 (right) of Fig. 1a,c.
The new estimates (continuous lines) are compared with estimates based on the decoupled scheme (dotted lines), FFT full-field simulations (symbols), and
the monolithic matrix response (dashed lines). The volume fraction of inclusions is =( )c 0.32 .
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(R¼5) inclusions are considered. The new “effective polarization” estimates (continuous lines) are compared with estimates based
on the decoupled scheme (dotted lines) and FFT full-field simulations (symbols). The time step employed in the computations of all
estimates is Δ = −t 10 s3 . The response of the monolithic matrix material (dashed lines) is also included for reference.

We begin by noting that in the absence of second-phase inclusions the (matrix) response under loading program 1 is
elastic-perfectly plastic with tension-compression symmetry and no elastic–plastic transition nor plastic hardening, and



Fig. 4. Results for elasto-viscoplastic solids (m¼0.2) with two elastic contrasts ( = )R 0.2, 5 , subjected to loading programs 1 (with two different strain
rates), 2 and 3. The new estimates (continuous lines blue) are compared with EIV estimates (continuous lines green), ES estimates (continuous lines
brown), FFT full-field simulations (symbols) and the monolithic matrix response (dashed lines). The volume fraction of inclusions is =( )c 0.32 . (For in-
terpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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under loading program 3 stabilizes on a circular path in stress space. By contrast, the FFT results show that in the presence of
second-phase inclusions the response under loading program 1 can exhibit significant tension-compression asymmetry
(Bauschinger effect) and wide elasto-plastic transitions, see parts (a)–(c), and under loading program 3 can describe non-
circular stress paths, see parts (d)–(f). These macroscopic constitutive features induced by microscopic material hetero-
geneity are pronounced in the case of compliant inclusions but subtle in the case of stiff inclusions. In fact, the case of
compliant inclusions is somewhat peculiar for it corresponds to inclusions exhibiting a low elastic modulus but an infinite
plastic strength. Such a combination of material properties induces a wide elasto-plastic transition in the macroscopic
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response, for the initial elastic limit must be lower than that of the matrix material but the plastic limit must be higher, see
part (a). In any event, regardless of its relevance to real material systems, this peculiarity makes it a particularly stringent
test case for approximate estimates like the ones proposed in this work.

The new estimates are found to be in good agreement with the FFT results for all cases considered. Thus, these estimates
are able to capture elasto-plastic transitions, tension-compression asymmetries, and stress-path distortions induced by
material heterogeneity. Furthermore, under loading program 1, they correctly asymptote deep in the plastic range to the
stress level predicted by the corresponding rigid-plastic estimates, as shown in Appendix B. By contrast, estimates based on
the popular decoupled scheme are seen to be accurate in the case of stiff inclusions, see parts (c) and (f), but to deteriorate
significantly in the case of compliant inclusions. This is because the decoupled scheme predicts a macroscopic Maxwellian
response and is therefore completely unable to capture elasto-plastic transitions, tension-compression asymmetries and
stress-path distortions regardless of microscopic material heterogeneity.

Fig. 4 shows predictions for elasto-viscoplastic solids with strain-rate sensitivity m¼0.2, subjected to radial loading
program 1 with various strain rates γ( ̇ = · · )− − − −5 10 s , 5 10 s5 1 3 1 and =T 10 s0 , see parts (a)–(b), to rotating loading program
3 with γ = −10 3 and ω π= /20 rad/s, see parts (d)–(e), and to radial program 2 with γ ̇ = · − −5 10 s4 1 and =T 40 s0 . Two values of
elastic contrast R corresponding to compliant (R¼0.2) and stiff (R¼5) inclusions are considered. The new estimates are
compared with the “effective internal variable” (EIV) estimates of Lahellec and Suquet (2007b) and “effective stress” (ES)
estimates of Lahellec and Suquet (2013), and with FFT full-field simulations. Once again, the response of the monolithic
matrix material (dashed lines) is also included for reference.

We begin by noting that all estimates give virtually the same predictions – within numerical accuracy – for radial loading
programs 1 and 3, and that these predictions are in good agreement with the FFT results for both elastic contrasts. Thus, all
estimates correctly capture the effect of material heterogeneity on the rate-dependent elasto-plastic transition, tension-
compression asymmetry and stress relaxation of the composite solid. Differences are found, however, between the pre-
dictions for rotating loading program 2. For this loading condition, the EIV estimates are seen to be quite off the FFT results
and, more strikingly, predict a lobular stress path for the case of compliant inclusions which is at odds with the FFT results,
see part (b). The EP and ES estimates, on the other hand, remain in good agreement with the FFT results. The improvement
of these last two estimates over the earlier EIV estimates is therefore attributed to the use of incremental variational
principles based on strain rates rather than strains, and not to the use of a pointwise-heterogeneous comparison solid.
However, the use of pointwise-heterogeneous comparison solids in the EP estimates does prove convenient in view of the
fact that the EP and ES estimates exhibit similar accuracy but the EP estimates involve a single non-linear equation while the
ES estimates involve two. In other words, the use of pointwise-heterogeneous comparison solids can lead to simplified
optimality conditions without loss of accuracy. In this connection, Badulescu et al. (2015) have recently applied the “effective
stress” estimates of Lahellec and Suquet (2013) to a model class of linear viscoelastic polycrystals. Acceptable predictions
were obtained for monotonic loadings but technical issues related to optimality conditions with multiple roots were
identified for cyclic loadings. The above observations suggest that the use of more general pointwise-heterogeneous
comparison solids in the context of polycrystalline systems may simplify the optimality conditions and consequently re-
medy the alluded technical issues. Efforts to clarify this point are currently under way and will be reported upon
completion.
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Appendix A. Effective potential of pointwise-heterogeneous comparison solid

Let

∑τ τχ( ) = ( )
( )=

( ) ( )x x ,
76

p

r

N
r r

0
1

0 0

and note that the constraints (12)–(13) imply that
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Then,



M.I. Idiart, N. Lahellec / J. Mech. Phys. Solids 97 (2016) 317–332 331
ε τ ε ε ε τ ε ε ε τ γ ε

ε ε τ γ ε ε γ ε γ

τ γ ε γ ε ε τ ε

γ γ τ γ ε τ τ

α β

β β β

β β

β β β

( ̇ ) = 〈 ( )̇〉 = ̇· ( ) ̇ + ( )· ̇ = ̇· ( ) ̇ + [ ( ) + ( ) + ( ) ( )]· ̇

= ̇· ( ) ̇ + [ ( ) + ( ) ( )]· ̇ = ( ̇ − )· ( )( ̇ − )

+ [ ( ) + ( ) ( )]·( ̇ − ) = ̇· ( ) ̇ + ( )· ̇

+ ( )· ( ) ( ) − ( )· ( ) = ^ ( ̇ ) + ^ ( )

͠
ε ε ε ε ε ε

ε ε ε ε

ε ε

̇∈ ( ̇) ̇∈ ( ̇) ̇∈ ( ̇)

̇∈ ( ̇) ̇∈ ( ̇)

̇∈ ( ̇)

( ) ( ) ( ) ( )

w w

w v

L x L x x L x x s x L x x

L x x L x x L x

x L x x L x x

x L x x x x L L

; , min , min
1
2

min
1
2

min
1
2

min
1
2

min
1
2

1
2

; , , , ,

p

p

p p

p s s s s

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0
2

0 0 0 0 0 0 0 0 0 0 0 0 0

where the potential ŵ0 is given by (15) and the function v̂0 is given by (16).
Appendix B. Asymptotic behavior of new estimates deep in the plastic range

At time step nþ1, the macroscopic stress σ σ= 〈 〉+ +n
d

n1 1 and stress statistics σ〈 〉+
( )

n
d r

1 and σ σ〈 · 〉+ +
( )

n
d

n
d r

1 1 predicted by the new
estimates of the Hashin–Shtrikman type for elasto-viscoplastic solids derived in Section 3.4.1 are equal to the corresponding
volume averages of the stress field σc associated with the linear-comparison solid in (69). This follows from the facts that the
estimate (69) is stationary with respect to the η ( )r

0 's and that the Hashin–Shtrikman estimate for the linear-comparison solid
is realizable. The stress field σc solves the equations

σ∇· ( ) = ( )x 0, 78c

σ ε τμ( ) = ( )Δ ̇ ( ) + ( ) − ( ) ( )t px x x x x I2 , 79c c0 0

ε ε ε ε̇ ( ) = ∇ ⊗ ̇ ̇ ( ) = 〈 ̇ ( )〉 = ̇ ( )x u x x, tr 0, , 80c s c c c

defined over the representative volume element. In view of (54) and (68), the deviatoric part of the constitutive law (79) is
given by

σ ε σμ
η

μ η
η

μ η
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81
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d0

0

0

0

Deep in the plastic range the stress reaches a steady state. Thus, σ σ( ) = ( )x xc
d

n
d and in view of (81)

σ εη( ) = ( ) ̇ ( ) ( )x x x2 , 82c
d

c0

where η0 is the optimal viscosity that solves Eqs. (70). The quantities η0 and σ +n
d

1 thus reduce exactly to those of Ponte
Castañeda (1992) and Suquet (1995) for purely viscoplastic solids.
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