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Abstract. In many species daily rhythms are endogenously generated by groups of coupled neurons that
play the role of a circadian pacemaker. The adaptation of the circadian clock to environmental and seasonal
changes has been proposed to be regulated by a dual oscillator system. In order to gain insight into this
model, we analyzed the synchronization properties of two fully coupled groups of Kuramoto oscillators.
Each group has an internal coupling parameter and the interaction between the two groups can be controlled
by two parameters allowing for symmetric or non-symmetric coupling. We show that even for such a simple
model counterintuitive behaviours take place, such as a global decrease in synchrony when the coupling
between the groups is increased. Through a detailed analysis of the local synchronization processes we
explain this behaviour.

1 Introduction

As an adaptation to cyclic environmental changes many
species present behavioural and physiological rhythms
with a period close to 24 h, known as circadian rhythms.
This daily rhythms are endogenously generated, and
continue to oscillate even in the absence of any envi-
ronmental cues. The generation of circadian oscillations
takes place at the individual cell level, and is driven by
transcriptional-translational negative feedback loops. Be-
havioural rhythms are controlled by groups of intercom-
municating neurons, which act as pacemakers. These neu-
rons receive information from the environment (such as
light, temperature, etc.) and transmit it for entrainment
to downstream oscillators [1].

Many animals present two bouts of activity, with peaks
that anticipate the morning and the evening. In 1976 Daan
and Pittendrigh [2] proposed that these peaks have a neu-
ronal basis, and are driven by two separate oscillators with
different responses to light. The morning (M) oscillator is
accelerated by light and synchronized by dawn, while the
evening (E) oscillator is slowed down by light and synchro-
nized to dusk. This model allows for seasonal adaptation,
increasing or decreasing the distance between the peaks
of activity according to day length. There is evidence for
and against this model, both in mice and flies, which are
two of the most important models in chronobiology [3].

In Drosophila, the fruit fly, the circadian clock is com-
posed by 150 neurons organized in very few clusters. The
clock pacemakers neurons can be divided into two main

a e-mail: gcascallares@cab.cnea.gov.ar

groups, lateral neurons (LN), also subdivided into dorsal
lateral neurons (LNd) and ventral lateral neurons (LNv),
and dorsal neurons (DN) [4]. Stoleru et al. [5] proposed
that LNv neurons function as the M oscillator, while the E
peak is controlled by LNd neurons. Much detail in known
on the circadian oscillations of individual cells in this
neural network. However, understanding the underlying
molecular details of the coupling between few cells still
remains a challenging task [6,7].

In mammals the pacemaker neurons are located in the
suprachiasmatic nucleus (SCN) of the brain. The SCN is
formed by two lobes, which can be divided in a ventro-
lateral core and a dorso-medial shell region. The core
receives information from the environment, mainly from
the retino-hypothalamic tract and transmits this informa-
tion to the shell. The synchronization properties of these
groups of neurons are different. The oscillations in clock
gene expression in the core present a low amplitude, which
allows for entrainment with the environmental cues. On
the other hand, gene expression in the shell presents ro-
bust circadian oscillations, allowing for sustained oscilla-
tions in the absence of environmental cues. Also, the core
and the shell express different neurotransmitters to syn-
chronize their signals. Core neurons use vasoactive intesti-
nal peptide (VIP) to transmit the information, while the
shell contains populations of neurons using arginine vaso-
pressin (AVP) for communication. Experimental evidence
supports the idea that both anatomical organization and
cell to cell communication allows for coupling and syn-
chronization between the neurons, in order to generate
coordinated rhythms in the SCN [8].
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Motivated by these experimental results we want to see
if changes on neuronal synchronization could be a conse-
quence of structural changes in the network, such as cou-
pling, number of oscillators and time delay. We consider
a system formed by two groups of fully coupled phase
oscillators whose natural frequencies are bimodally dis-
tributed. By changing the coupling between the oscillators
we show the emergence of different synchronized clusters.
We will focus our work on computational simulations, tak-
ing into account finite size effects and also frequency dis-
tributions that are not symmetric. Even for such a simple
system we show that counterintuitive behaviours can take
place, in particular we show that in some cases increas-
ing the coupling between the oscillators can hinder global
synchronization.

2 The model

We model rhythmic circadian units with phase oscillators,
whose periodic dynamic is described by a single variable,
its phase φ. These models have been extensively studied,
with diverse applications involving physical, technological
and biological systems (see [9–14] and references therein).

Perhaps the most studied model is the one proposed
by Kuramoto [9], where the interaction between the oscil-
lators is a periodic function of the phases:

dφi

dt
= ωi +

k

N

N∑

j=1

sin (φj − φi), (1)

where i = 1, . . . , N , ωi is the natural frequency of oscilla-
tor i and k is the coupling strength. This model presents
a phase transition at a critical value of the coupling, kc,
where a single cluster of synchronized oscillators emerges.

In this work we use a model of two coupled groups
of phase oscillators. The route to synchronization of two
coupled ensembles of oscillators was first studied in ref-
erence [15] where Okuda and Kuramoto considered cou-
pled populations of identical phase oscillators under noise.
This model was also investigated to find different routes
to synchronization, including asymmetry in the coupling
strength between the groups [16,17], considering different
frequency distributions [18], to describe chimera states [19]
and as an application to epileptic seizures [20]. Here we
will focus our interest in this model analyzing the role
of the interactions in the synchronization properties of
the model. In particular, we will consider the effects of
asymmetric distributions, finite-sized systems and time
delays. As stressed by Martens et al. [21] these ingredi-
ents strongly limit analytical analysis and thus we will
focus on numerical simulations.

The system is formed by two types of oscillators with
phases φ

(1)
i and φ

(2)
j which are fully coupled with intra-

group coupling ki (i = 1, 2) and intergroup coupling k
in one direction and qk in the other one. τ is the time
delay between groups. When k = 0, the two groups are
uncoupled, so the synchronization property of each group
is independent of the other, and depends only on their

intragroup couplings k1 and k2. The asymmetric coupling
allows for a change of roles between groups, and by fixing
the parameter q we can analyze how one group influences
the other. Coupling is modeled as a mean field, and the
interaction is global (all-to-all). The equations for the dy-
namics are:

dφ
(1)
i

dt
= ωi

(1) +
k1

N1

N1∑

j=1

sin
(
φj

(1)(t) − φi
(1)(t)

)

+
qk

N2

N2∑

j=1

sin
(
φj

(2)(t − τ) − φi
(1)(t)

)
(2)

dφ
(2)
i

dt
= ωi

(2) +
k2

N2

N2∑

j=1

sin
(
φj

(2)(t) − φi
(2)(t)

)

+
k

N1

N1∑

j=1

sin
(
φj

(1)(t − τ) − φi
(2)(t)

)
. (3)

We use a normalized Gaussian distribution of natural fre-
quencies

g(ω) =
1√

2πσ2
exp

−(ω − ω0)2

2σ2
, (4)

where each group has a different mean value of the fre-
quencies distribution ω

(1)
0 and ω

(2)
0 . The model allows for

analytic analysis, and the critical coupling for each group
can be shown to be kc = 2/[πg(ω0)] [9,11–14].

Interacting populations of Kuramoto-type oscillators
have been intensively studied in several recent works. In
particular, the Ott-Antonsen ansatz [22] for Kuramoto-
type oscillators with Lorentzian frequency distribution
greatly facilitated theoretical analysis of such models. Us-
ing this ansatz, in reference [21], the bifurcation analysis
for the system on the infinite-N limit was done.

In order to quantify the synchronization of each sub-
system we use the Kuramoto order parameter

r(1,2)e
iΦ(1,2) =

1
N

N∑

j=1

eiφ
(1,2)
j , (5)

where r(t) gives a measure of the coherence of the oscilla-
tors (0 ≤ r ≤ 1), and Φ(t) is the average phase.

We characterize the global phase synchronization using
the global order parameter S [20]

S =
1
T

∫ T0+T

T0

∣∣∣∣
r1e

iΦ1 + r2e
i(Φ2+Φ∗)

2

∣∣∣∣ dt, (6)

where Φ∗ is the most probable phase difference for a period
T , which can be measured from the maximum of the prob-
ability density distribution of the cyclic phase difference
ΔΦ(t) = mod(Φ1(t) − Φ2(t), 2π) [23]. When both groups
are phase-locked, S is the mean of r1 and r2, but if there
is no phase locking S is expected to be small.

In order to analyze the formation of locally synchro-
nized clusters we also measure the frequency synchroniza-
tion of each group, which is quantified using the mean
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Fig. 1. (Top row) Mean frequency Ωi as a function of natural
frequency ωi for oscillators in group 1 (blue) and 2 (red) for
four different intergroup coupling strengths: (A) k = 0.05, (B)
k = 0.1, (C) k = 0.2, (D) k = 0.5. Synchronized oscillators
appear as horizontal lines. (Bottom row) Snapshots of phases
for the synchronized clusters. The vectors show the value of
the phase synchronization order parameter for each group. All
figures correspond to parameters k1 = 1.8, k2 = 1.4, q = 2,

σ1 = 1, σ2 = 0.5, and Δω = ω
(2)
0 − ω

(1)
0 = 1.

oscillation frequency Ω, calculated over a time interval of
length T ,

Ω(1,2) =
1
T

∫ t+T

t

φ̇i
(1,2)

(t′)dt′. (7)

3 Results

In the top row of Figure 1 we plot the mean frequency
Ω as a function of the natural frequency ω for oscillators
in group 1 (blue) and 2 (red) for four different intergroup
coupling strengths. The figures clearly show the presence
of synchronized clusters, which appear as horizontal lines.
These are oscillators with different natural frequencies
that now have the same mean frequency. Both groups have
an intracoupling greater than the critical value, thus, as
expected, a synchronized cluster emerges with mean fre-
quency Ω(1,2), centered in the mean value of the frequency
distribution (ω(1,2)

0 ). Even for low intercoupling some os-
cillators of group 1 synchronize their frequencies with the
mean frequency ω

(2)
0 . This can be observed as a small blue

cluster in the middle of the horizontal red line in the first
panel, when k = 0.05. The first oscillators to synchro-
nize are those with natural frequencies close to Ω2. As the
intergroup coupling is increased further more oscillators
join this cluster. This effect can be reversed by tuning the
parameter q. For example, for q = 0.5 the results are qual-
itatively the same, however, in this case the oscillators of
group 2 jump to the cluster centered in Ω1.

An interesting effect can be observed for k = 0.2
in Figure 1C, where a “resonance” effect takes place. A
small cluster of oscillators is observed to emerge close to
Ω = −0.5. The formation of clusters with different av-
erage frequencies is usually observed in systems locally
connected or with a given network structure [13,23]. How-
ever, they also appear in fully connected systems when

Fig. 2. The global phase synchronization order parameter
S as a function of intergroup coupling k. S presents a non-
monotonous behaviour as a function of k. The figure corre-
sponds to parameters k1 = 1.8, k2 = 1.4, q = 2, σ1 = 1,
σ2 = 0.5, and Δω = 1.

the heterogeneities are not in the network structure, but
in the coupling strength [24–26]. These clusters were ob-
served experimentally in groups of chemical interacting
oscillators that could be described as Kuramoto phase os-
cillators with multi-peaked frequency distributions by Kiss
and coworkers [20,27]. It is important to highlight the for-
mation of these structures despite the fact that this is a
mean-field model. From a biological point of view, these
structures could be required to encode or allow for the
emergence of different hierarchies by changing the cou-
pling. In fact, it has been observed that coupling between
the neurons plays an important role in the SCN to en-
sure a robust but flexible circadian system [28]. As the
intergroup coupling is increased further the oscillators in
both groups synchronize at the same mean frequency, and
finally a single synchronized cluster formed both by oscil-
lators of group 1 and 2 is observed.

On the bottom row of Figure 1 we present snapshots of
the phases of the oscillators distributed on the unit circle.
For clarity we only show those oscillators in the largest
synchronized cluster. We also plot the Kuramoto order
parameter for each group as vectors. The length of the ar-
rows represents the degree of phase synchronization, and
the direction points towards the mean phase. In order to
compare the four snapshots we use the same initial condi-
tions. For k = 0.05 the phase synchronization in group 2
is clearly larger than in group 1. As the intercoupling is
increased the order parameter in group 1 seems to slowly
increase (k = 0.1) and then seems to decrease (k = 0.2).
Eventually both groups become synchronized at the same
mean frequency and both order parameters increase show-
ing, as expected, that a phase synchronization takes place.
This phenomenon is due to the asymmetry between the
clusters introduced by q. Note how the non-synchronized
oscillators of both groups 1 and 2, which are close to the
main cluster of group 2, synchronize with the main cluster
in Ω2. At the coupling is increased further more oscilla-
tors synchronize with this cluster. Also, the final average
frequency Ω does not match exactly Ω2 since there are
still non-synchronized oscillators which modify this efec-
tive frequency.

In order to quantitatively characterize the global phase
synchronization we show in Figure 2 the behaviour of S
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S

Fig. 3. Global phase synchronization order parameter S vs.
intergroup coupling k for three different standard deviations of
the Gaussian frequency distribution of group 2: (A) σ2 = 0.5,
(B) σ2 = 1.0, (C) σ2 = 2.0. In group 1 we fixed σ1 = 1.0. The
figures correspond to k1 = 1.8, k2 = 1.8, q = 2, and Δω = 1.
As the intracoupling becomes greater than the critical coupling
the minimum in the order parameter becomes sharper.

as a function of intergroup coupling k. We find that S
presents a non-monotonous behaviour. For k = 0 the or-
der parameter has a high value S ≈ 0.6, which is expected
since both groups have intragroup coupling above the crit-
ical value kc and synchronized clusters are already present
in the system. For small intergroup coupling (k < 0.1) the
effect on global synchronization is small, even when a de-
crease in S can already be observed. As k is increased
further S decreases, eventually reaching a minimum for
k ≈ 0.2, and then increases monotonously with k.

A non-monotonous behaviour of the phase order pa-
rameter (Eq. (5)) has been observed in the Kuramoto
model when the natural frequencies are randomly al-
located in diluted network structures, such as random
and scale-free networks [29]. This effect is due to the lo-
cal synchronization for low coupling among neighbouring
oscillators with similar natural frequencies. As the cou-
pling is increased this locally synchronized groups inter-
act and become synchronized among themselves, leading
to higher values of the order parameter.

In our model the system is fully coupled and the non-
monotonous behaviour arises from the competition be-
tween synchronized clusters of oscillators 1 and 2. As it
was observed before, when k ≈ 0.2 the oscillators of group
1 are jumping to the synchronized cluster of group 2, lead-
ing to a decrease in the value of the parameter order of
group 1. This affects the global synchronization, until the
size of the main cluster becomes sufficiently large.

We will focus our attention now on the role of the
widths of the natural frequency distributions of each
group, which are expected to have a direct relation with
the size of the synchronized clusters, since they change the
value of the critical coupling. Up to now we have presented
results where the standard deviation of the Gaussian fre-
quency distribution for group 1 was σ1 = 1.0, while for
group 2 it was σ2 = 0.5, so the critical values were
k

(1)
c ≈ 1.59 and k

(2)
c ≈ 0.79. We will analyze now the

effect of changing σ2 while maintaining the standard de-
viation of group 1 fixed to σ1 = 1.0. In Figure 3 we plot
S vs. k for: (A) σ2 = 0.5 and k2 � k

(2)
c , (B) σ2 = 1.0

and k2 > k
(2)
c and (C) σ2 = 2.0 and k2 < k

(2)
c . As a

Fig. 4. The global phase synchronization parameter S vs. in-
tergroup couplings k for four different intragroup couplings of
group 2, (A) k2 = 1.4, (B) k2 = 1.6, (C) k2 = 1.8 and (D)
k2 = 3.0. All figures correspond to parameters σ1 = 1, k1 = 1.8,
q = 2, Δω = 1 and 100 independent simulations.

guide to the eye we also show the qualitative shape of the
distributions (in black the group with σ1 and in red the
group with σ2). The parameters were fixed to k1 = 1.8,
k2 = 1.8, q = 2 and Δω = 1.

When the intracoupling of group 2 is much greater
than k

(2)
c , as in Figure 3A, the non-monotonous behaviour

is sharper. Note that also SA
min > SB

min. As σ2 is increased
the non-monotonous behaviour is smoothed further, and
as Figure 3C shows, for σ2 = 2.0 the order parameter S
presents a monotonous behaviour. Note that in this case,
for k = 0, the value of S is much smaller than the one
observed in Figure 3A. This is due to the largest stan-
dard deviation value of σ2 that hinders the formation of
synchronized clusters for the same intracoupling k2 = 1.8.

Next, we analyze the role of the intragroup coupling
taking into account the heterogeneity in the distribution
of natural frequencies of the different groups. In Figure 4
we show the global order parameter S as a function of
the intergroup coupling k for four different values of k2

when σ1 = σ2 = 1.0. If k2 ≤ kc (first column), S has
a monotonous behaviour. Otherwise, synchronization in
group 1 is strong enough as not to be influenced by group
2, and there is no competition between synchronized clus-
ters. If k2 > k

(2)
c , a clear non-monotonous behaviour is

observed. Note that for k = 0, the value of S is increased
as the value of k2 is increased. This phenomenon is a con-
sequence of the wider distribution of frequencies that hin-
ders synchronization.

We also analyze the effect of changing the size of one
group while the size of the other group is fixed. In Figure 5
we show results when the size of group 2 is fixed to N2 =
200 and the size of group 1 is varied to (A) N1 = 40, (B)
N1 = 80 and (C) N1 = 160. We plot the average frequency
as a function of the natural frequency ω for individual
oscillators. Note that the same qualitative behaviour is
observed in the three cases. For very small k two different
synchronized clusters can be clearly distinguished. As k is
increased oscillators in group 1 move to the largest cluster
initially formed by oscillators in group 2. For sufficiently
large k all oscillators are synchronized in a single cluster.

In Figure 6 we show the temporal evolution of the
phase for 15 oscillators in each of the synchronized clus-
ters observed in Figure 5. The figure shows how the phase
relationship between the groups can be tuned by keeping
the coupling strength between the groups fixed and chang-
ing the number of oscillators in each group. Remarkably,
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Fig. 5. Average frequency Ω as a function of natural frequency
ω for three different sizes of group 1 and three different coupling
strengths: (A) N1 = 40, (B) N1 = 80 and (C) N1 = 160. The
size of group 2 was fixed to N2 = 200. The figures correspond
to k1 = 1.8, k2 = 1.4, q = 2 and Δω = 1. Note that similar
frequency synchronized clusters are observed in the three cases.

A

B

C

φ

φ

φ

Fig. 6. Temporal evolution of the phase for 15 oscillators in
each of the synchronized clusters observed in Figure 5, for (A)
N1 = 40 (B) N1 = 80 (C) N1 = 160 when k = 0.1.

experimental observations suggest that subpopulations
among SCN cells show multiple phase relationships that
could contribute to photoperiodic adaptation [30].

It has been also observed that the two hemispheres in
the SCN can split their activity and oscillate oppositely
in antiphase [31]. Li et al. [32] showed that time delay is a

φ

φ

Fig. 7. Evolution of the phase of 10 oscillators in the largest
synchronized cluster. All systems start with identical initial
conditions but different time delays: (A) τ = 0 and (B) τ = 4.
When there is no time delay, both groups are synchronized in
phase and frequency, but when τ = 4, there is an antiphase
behaviour. The value of the parameters are k1 = 1.8, k2 = 1.4,
q = 2, σ1 = 1.0, σ2 = 0.5, Δω = 1.

Fig. 8. Order parameter S as a function of the intergroup
coupling k for: (A) τ = 0, (B) τ = 2, (C) τ = 4 and (D) τ = 6.
For larger values of time delay, the non monotonous behaviour
is less sharp. Parameters have the same values as Figure 7.

key factor in order to get antiphase oscillation patterns. So
now we are going to consider τ �= 0. In Figure 7 we show
that we can achieve this antiphase pattern by tuning the
time delay between the groups. When there is no delay,
both groups oscillate in phase, but if we increase τ we can
get antiphase behaviour with the same initial conditions
and parameters.

Next, we analyzed the effect of delay in the global syn-
chronization of the system. In Figure 8 we plot the order
parameter S as a function of intergroup coupling k for
four different values of time delay τ and 500 independent
realizations. As in the case with τ = 0 a non monotonous
behaviour can be clearly observed. However, the presence
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Fig. 9. The color indicates the value of the order parameter
S for: (A) τ = 0, (B) τ = 2, (C) τ = 4 and (D) τ = 6. In these
k1-k2 diagrams it is possible to see how the region of stronger
synchronization changes according to the time delay. For larger
delays, the synchronization region is smaller and a stronger
coupling in group 2 does not ensure global synchronization.
The figures correspond to k = 0.5, q = 2, σ1 = 1.0, σ2 = 0.5,
Δω = 1 and 10 simulations.

of a delay is detrimental for global synchronization. As
τ increases, the trough decreases and also for larger cou-
plings S presents smaller values. Also, for larger delays,
the system presents stronger fluctuations which are re-
flected in the behaviour of the order parameter.

Figure 9 illustrates the regions of global synchroniza-
tion for four different time delays with k = 0.5. We find
that the synchronization region reduces with increasing
values of τ . In (A), almost for any intragroup coupling the
system has a high global order parameter value, including
values both above and below the critical intragroup cou-
pling. Note also that, as the time delay increases, for ex-
ample in (D), the synchronization region is limited almost
to intragroup coupling for group 2 below its critical value
(k(2)

c ≈ 0.79).

4 Summary

Our work was motivated by behaviours observed in the
circadian pacemaker neurons of the fly and mammals.
Specific groups of neurons, labeled as morning (M) and
evening (E) oscillators, track dawn and dusk and thus al-
low for anticipation of activity in the morning and evening.
An interesting open question is related to the fact that
behavioural outputs such as locomotor activity are not
necessarily correlated with the synchronization properties
of a single neuronal group, and rather seem to depend on
the interactions between these neuronal groups [6,7]. In
the brain of the fly, the neuropeptide pigment-dispersing
factor (PDF) plays the role of a synchronizing factor [33],
coupling the circadian oscillations of the clock neurons. A
similar role is played in mammals by vasoactive intestinal

polypeptide (VIP). The role that PDF and VIP play is far
from trivial, for example, PDF can shorten or lengthen the
period of specific clock neurons in a dose-dependent man-
ner [34]. In order to gain insight into this problem we an-
alyzed the synchronization properties of two fully coupled
groups of Kuramoto oscillators. Using numerical simula-
tions we studied how different coupling intensities between
the two groups affects global and local synchronization.
We showed that even for such a simple model counterin-
tuitive results can emerge, and in some conditions increas-
ing the coupling between the oscillators can hinder global
synchronization. We showed that this is due to the emer-
gence of frequency synchronized clusters, whose competi-
tion leads to a non-monotonous behaviour of the global
order parameter. We analyzed the dispersion of natural
frequencies and different intergroup couplings and showed
under which condition the global order parameter presents
a monotonous or non-monotonous behaviour. Finally we
showed how the phase relation between frequency syn-
chronized clusters can be tuned by changing the number
of oscillators in each group and the time delay.

The authors gratefully acknowledge financial support from
CONICET (Project PIP 11220120100495).
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