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Abstract
We consider the transport of multiple ionic species by diffusion and 
migration through microstructured solid electrolytes in the presence of 
strong electric fields. The assumed constitutive relations for the constituent 
phases follow from convex energy and dissipation potentials which guarantee 
thermodynamic consistency. The effective response is heuristically deduced 
from a multi-scale convergence analysis of the relevant field equations. The 
resulting homogenized response involves an effective dissipation potential 
per species. Each potential is mathematically akin to that of a standard 
nonlinear heterogeneous conductor. A ‘linear-comparison’ homogenization 
technique is then used to generate estimates for these nonlinear potentials in 
terms of available estimates for corresponding linear conductors. By way of 
example, use is made of the Maxwell-Garnett and effective-medium linear 
approximations to generate estimates for two-phase systems with power-law 
dissipation. Explicit formulas are given for some limiting cases. In the case of 
threshold-type behavior, the estimates exhibit non-analytical dilute limits and 
seem to be consistent with fields localized in low energy paths.

Keywords: electrochemistry, composites, nonlinearity, variational methods

(Some figures may appear in colour only in the online journal)

1.  Introduction

At room temperature, the transport of ions through many solid electrolytes is believed to 
occur by a hopping mechanism whereby, under the action of an electric field, ions jump along 
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coordination sites available throughout the solid. Under moderate electric field intensities this 
mechanism results in a nonlinear relation between the current density of electric charge and 
the electric field intensity (e.g. Heuer et al (2005)). In the presence of multiple microstructural 
phases, the macroscopic conductivity is dictated to a first approximation by the local transport 
properties of each phase and their geometric arrangement.

The problem of correlating the macroscopic and local transport properties in linear electro-
lytes with an arbitrary number of ionic species has been recently addressed by Curto Sillamoni 
and Idiart (2015). Thermodynamically consistent field equations were first derived following 
the work of Xiao and Bhattacharya (2008) and then homogenized by means of the notion of 
multi-scale convergence of Allaire and Briane (1996). The resulting description of the over-
all response requires the solution of a standard conductivity problem over the representative 
volume element per ionic species. These conductivity problems are only coupled at the mac-
roscopic level, and so well-known results for linear heterogeneous conductors can be used as 
is at the microscopic level.

The above approach is generalized here, albeit heuristically, to nonlinear systems.  
Thus, the resulting description of the overall response requires the solution of several decou-
pled conductivity problems that can be treated by available homogenization techniques for 
standard nonlinear heterogeneous conductors. In this work we explore the use of a ‘linear-
comparison’ technique proposed in the mathematically analogous context of nonlinear 
heterogenous dielectrics by Ponte Castañeda (2001). This technique makes use of a linear 
comparison solid with the same microgeometry as the nonlinear solid but with linearized 
local responses whose overall response can be determined with linear approximations such as 
the well-known Maxwell-Garnett or effective-medium approximations. A suitably designed 
variational principle is then used to select the optimal linearization parameters within a given 
class of linearization schemes to produce the best possible nonlinear estimates in terms of the 
available linear estimates. A distinguishing feature of this technique is that the linearization 
scheme corresponds to a generalized secant approximation to the nonlinear local response 
which depends not only on the phase averages, or first moments of the fields in the phases, but 
also on the second moments of the intraphase field fluctuations. Consequently, the technique 
is particularly apt not only for weakly nonlinear responses but also for strongly nonlinear 
responses which allow the fields to localize along low energy paths (see, for instance, Idiart 
et al (2009)), as in the context, for instance, of dielectric breakdown. By way of example, the 
technique is applied to three-dimensional two-phase systems exhibiting power-law behavior, 
which include strongly nonlinear threshold-type behaviors as a limiting case.

2.  Ionic transport in microstructured solid electrolytes

2.1. The solid electrolyte model

We consider the transport of ions through a microstructured electrolyte medium composed 
of N different homogeneous phases and operating under low-frequency isothermal condi-
tions. The electrolyte occupies a geometric domain 3R⊂Ω , while each phase r occupies a— 
possibly disconnected—domain r( )⊂Ω Ω (r  =  1,...,N) such that r

N r
1

( )Ω =∪ Ω= . The domains 
r( )Ω  can be described by a set of characteristic functions xr ( )( )χ , which take the value 1 if the 

position vector x is in r( )Ω  and 0 otherwise. The phases contain A different ionic species with 
valencies zα ( A1, ...,α = ). In the presence of an electric field, these ions move through the 
electrolyte medium and establish an electric current.
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The balance of ions requires that

c Aj˙ 0 in , 1, ..., ,  α+∇ ⋅ = Ω =α α� (1)

where cα, cj v=α α α and vα denote, respectively, the molar concentration, the molar flux and 
the drift velocity of ions of type α within the electrolyte, and the overdot denotes time deriva-
tive. In turn, the electric potential x( )φ  in all space is solution to the Maxwell’s equations

F z cd d e p e, , in ,
A

1
0

3 R∑ φ∇ ⋅ = = + = −∇
α

α α
=

ε� (2)

where F is Faraday’s constant, 0ε  is the permittivity of vacuum, d x( ) is the electric displace-
ment, e x( ) is the intensity of the electric field, p x( ) is the electric polarization of the electrolyte 
medium, and x( )φ  is continuous and such that 0→φ  as x →| | ∞. Finally, the electric current 
density i x( ) flowing within the electrolyte is given in terms of the molar fluxes by

F zi j ṗ in .
A

1

 ∑= + Ω
α

α α
=

� (3)

Equations (1) and (2) must be supplemented by suitable constitutive relations. Following 
the work of Xiao and Bhattacharya (2008), Curto Sillamoni and Idiart (2015) derived the fol-
lowing set of thermodynamically consistent relations:

W W

c
Fz c

U
e

p
j, , .

( )
µ φ

µ
=
∂
∂

=
∂
∂
+ = −

∂
∂ ∇α

α
α α α

α
� (4)

In these expressions, the µα are continuous fields representing the electrochemical potentials 
associated with each species α, and the functions W and U are the free energy density and 
dissipation potential of the solid electrolyte, respectively. These functions can be written as

W c c W c cx p x p, , , ...., , , ...., ,A
r

N
r r

A1
1

1( ) ( )  ( )( ) ( )∑ χ=
=

� (5)

U Ux x, , ..., , ..., ,A
r

N
r r

A1
1

1( ) ( )  ( )( ) ( )∑µ µ χ µ µ∇ ∇ = ∇ ∇
=

� (6)

where the W(r)and U(r) denote the energy densities and dissipation potentials associated with 
each phase r. The functions W(r) and U(r) are assumed to be convex. In addition, the functions 
U(r) are assumed to be positive and to take the value 0 at 0µ∇ =α . These properties guarantee 
positivity of dissipation as required by the laws of thermodynamics.

In this work we assume the more specific forms

W c c W RT c
c

c
p p, , ..., ln 1 ,r

A p
r

A

r1
1 0

( ) ( )( ) ( )
( )

⎛

⎝
⎜

⎞

⎠
⎟∑= + −

α
α

α

α=
� (7)

U U, ..., .r
A

A
r

1
1

( ) ( )( ) ( )∑µ µ µ∇ ∇ = ∇
α

α α
=

� (8)

Here, W p
r( ) is the internal energy stored in phase r by electric polarizability, RT is the uni-

versal gas constant times the absolute temperature, c r
0
( )
α is a reference molar concentration 
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characteristic of phase r, and U(r) is a dissipation potential associated with the ionic mobility 
through phase r. Introducing these functions in (4) we obtain the following constitutive rela-
tions consistent with thermodynamics:

W
RT

c

c
Fz c

U
e

p
p j, ln , .

p
r

r

r

0

( ) ( )
( )

( )

( )
µ φ

µ
µ=

∂

∂
= + = −

∂
∂∇

∇α
α

α
α α α

α

α
α� (9)

These constitutive relations are suitable for solid electrolytes containing dilute solutions of 
ions whose contribution to the free energy is due entirely to the entropy of mixing (see, for 
instance, Hong et al (2010)). Any dissipation due to electric polarizability is not considered. 
Note that when the reference concentrations c r

0
( ) differ between phases, the molar concentra-

tions cα are discontinuous across material interfaces. In fact, the ratio c cr s
0 0/( ) ( )
α α fixes the ratio of 

molar concentrations of ionic species α in phases r and s under equilibrium conditions. The 
focus here is on electrolyte systems where the dissipation potentials U r( )

α  are non-quadratic 
and the length scales of the microstructural morphologies are much smaller than the charac-
teristic size of the specimen and the scale of variation of the boundary conditions. The field 
equations (1) and (2) thus constitute a system of nonlinear differential equations with highly 
oscillating coefficients. An approximate homogenization procedure to address this problem is 
considered next.

2.2. The effective response

Homogenization procedures rely on the so-called separation of length scales approximation 
whereby the characteristic length scale of the microstructural morphologies is taken to be infi-
nitely smaller than the characteristic length scale of the specimen. These procedures yield a set 
of macroscopic field equations defined over the specimen domain and involving an effective 
response which requires the solution of a set of microscopic equations defined over a repre-
sentative volume element of the microstructured solid and involving the local response. The 
effective response is formally obtained by evaluating the transport of ions through a sequence 
of material systems with fixed Ω and infinitely decreasing microstructural length scales. Curto 
Sillamoni and Idiart (2015) have recently evaluated such a limit by making use of the multi-
scale convergence approach of Allaire and Briane (1996). Even though their analysis was 
restricted to quadratic polarization energies and dissipation potentials, we assume here that the 
structure of the resulting multi-scale system of field equations is preserved for general convex 
energies and dissipation potentials. We restrict the analysis to steady-state conditions. Thus, 
the macroscopic field equations are taken to be

F z c F zj d i j0, and ,
A A

1 1
∑ ∑∇ ⋅ = ∇ ⋅ = =α
α

α α
α

α α
= =

� (10)

and the effective constitutive relations are expressed in terms of effective potentials as

c
U W

j
g

d
e

eand .e( ) ( )µ= −
∂
∂
∇ =

∂
∂

∼ ∼
α α

α
α� (11)

Here, the overbar denotes macroscopic fields and the effective potentials are defined as

( ) ˆ ( ) ( ) ˆ ( )
( )

( ) ( ) ( )

( )
( ) ( ) ( )

∑ ∑θ θ= =
∼ ∼
α α

∈ = ∈ =K K
U U W Wg g e emin and min ,

r

N
r r r

e
r

N
r

e
r r

g g e e1 1�

(12)
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where the local potentials are given by

U
c

c
U W Wg g e e e eand

2
.

r
r

r
e
r

p
r0

0

0ˆ ( )
⟨ ⟩

( ) ˆ ( ) ( )( ) ( )
( ) ( ) ( )= = ⋅ +α

α

α
α

∗ε
� (13)

In these expressions, ⟨ ⟩⋅  and r⟨ ⟩( )⋅  denote volume averages over the entire representative vol-
ume element of the heterogeneous solid and over the subdomain occupied by phase r, respec-
tively, r r⟨ ⟩( ) ( )θ χ=  is the volume fraction of phase r, a( )K  is the set of gradient vector fields 
with volume average a, and ( )⋅ ∗ denotes a Legendre transformation. The ratio of reference 
concentrations in expression (13)1 emerges as a consequence of having eliminated the molar 
concentrations in expression (9)3 for the local fluxes in favor of the electrochemical potentials, 
which happen to be the primal field variables in the multi-scale analysis. If the local potentials 
are quadratic functions of their arguments the above expressions reduce to those derived by 
Curto Sillamoni and Idiart (2015).

Thus, the effective response of the electrolyte is completely determined by the effective 
potentials (12). Note that these potentials are mathematically decoupled and can therefore be 
computed independently. This is a consequence of the additive form (7) assumed for the local 
free energy density. Given our interest in nonlinear ionic transport phenomena we henceforth 
focus on estimating the dissipation potentials U

∼
α. However, it is emphasized that the method-

ology described below can be used mutatis mutandis to estimate the effective potential We
∼

 as 
well in view of its similar mathematical structure.

3.  Linear-comparison homogenization estimates

Estimates for the effective dissipation potentials are generated here by means of the linear-
comparison homogenization method proposed by Ponte Castañeda (2001). This section pro-
vides the relevant formulae to compute linear-comparison estimates for composite systems 
made up of isotropic phases. The reader is referred to the article of Ponte Castañeda (2001) 
for details on the derivation.

3.1.  Formulae for material systems with isotropic constituent phases

We consider material systems made up of isotropic constituent phases, so that

U u U ug g g gand .r r r r( ) ( ) ˆ ( ) ˆ ( )( ) ( ) ( ) ( )= | | = | |α α α α� (14)

Given that the effective potentials associated with the various ionic species are mathemati-
cally decoupled, we henceforth focus on a single species and ommit the subscript α to ease 
notation.

The linearized comparison potentials correspond to second-order Taylor-type expansions 
of the nonlinear potentials of the form

U U
U

g g
g

g g g g g M g g
1

2
,

r r r
r

r r r r r
0 0

ˆ ( ) ˆ (˘ )
ˆ

(˘ ) ( ˘ ) ( ˘ ) ( ˘ )( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )= +
∂
∂

⋅ − + − ⋅ −

�

(15)

where the reference gradients g r˘ ( ) and the linear mobilities M r
0
( ) are uniform properties in each 

phase r to be specified. These potentials can be rewritten as
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= ⋅ + ⋅ +U fg g M g J g
1

2
,

r r r r
0 0 0 0

ˆ ( )( ) ( ) ( ) ( )� (16)

where

U
J

g
g M g andr

r
r r r

0 0

ˆ
(˘ ) ˘( )

( )
( ) ( ) ( )=

∂
∂

−� (17)

f U
U

g
g

g g g M g
1

2
.r r r

r
r r r r r

0 0
ˆ (˘ )

ˆ
(˘ ) ˘ ˘ ˘( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )= −

∂
∂

⋅ + ⋅� (18)

The effective potential of the linear-comparison composite is thus

( )
( )

( ) ( ) ( ) ( )
( )

∑ θ= ⋅ + ⋅ +
∼

∈ =K
U fg g M g J gmin

1

2
.

r

N
r r r r

r

g g
0

1
0 0 0� (19)

In the case of isotropic phases, the optimal linear-comparison properties g r˘ ( ) and M r
0
( ) are given 

by

M
g g

M
g g

g g M
g g

I
g g

and ,r r r r
r

r

r

r
r

r

r

r

r0˘ ( ) ( ) ( )
∥
( )

( )

( )

( )

( )
( )

( )

( )

( )

( )

⎡
⎣⎢

⎤
⎦⎥

= = ⊗ + − ⊗⊥� (20)

where g r( ) is the average of g x( ) over phase r in the linear-comparison composite (19), 
g gr r( ) ( )=| |, and the mobilities correspond to generalized-secant linearizations of the nonlinear 
potentials as given by

u g
g

g
u g M g g

u g

g
Mandr r

r

r
r r r r r

r r

r
rˆ ( ˆ )

ˆ

ˆ
ˆ ( ) ( ˆ ) ˆ ( ˆ )

ˆ
( ) ( ) ∥

( )

( )
( ) ( )

∥
( )

∥
( ) ( )

( ) ( )

( )
( )− = − = ⊥

′ ′
′

� (21)

with g g gr r r2 2ˆ ( ˆ ) ( ˆ )( )
∥
( ) ( )= + ⊥  and the prime denoting differentiation. In these expressions, the 

hat variables are related to the first and second moments of the gradient field g x( ) in the linear-
comparison composite (19) via

g g C g Cand ,r r r r rˆ ˆ∥
( ) ( )

∥
( ) ( ) ( )= + =⊥ ⊥� (22)

where

U f
C

U

M
g

J

1
and

2
.r

r r
r

r r
0

0
,

0

,

( )( )
( ) ( ) ∥

( )
( )

∥
( )θ θ

=
∂ −

∂
=

∂
∂

∼ ∼

⊥
⊥

� (23)

Here, f fr
N r r

1
( ) ( )θ= ∑ = , and in the first expression the derivative is taken holding M r

0
( ) fixed while 

in the second expression g r˘ ( ) is held fixed. The quantities (23)2 correspond to traces of the covari-

ance tensor C g x g g x gr r r r
g ⟨( ( ) ) ( ( ) )⟩( ) ( ) ( ) ( )= − ⊗ −  within each phase r. Thus, the linearization 

scheme depends not only on the first moments of the fields but also on the intraphase fluctuations. 
Given a linear estimate for the effective comparison potential (19), expressions (20) through (23) 

constitute a system of nonlinear algebraic equations for the quantities g r
,∥̂

( )
⊥ and M r

,∥
( )
⊥, r  =  1,...,N.

Finally, the generalized-secant homogenization estimate for the effective potential is  
given by
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U u g u g g gg .
r

N
r r r r r r r

1

( ) [ ˆ ( ˆ ) ˆ ( )( ˆ )]( ) ( ) ( ) ( ) ( )
∥
( ) ( )∑ θ= − −

∼

=

′� (24)

3.2.  Formulae for two-phase material systems with power-law dissipation

We now specialize the above formulae to two-phase material systems made up of power-law 
phases characterized by potentials of the form

u g
G

m

g

G1
,r

r

r

m
0

0

1

( )( )
( )

( )=
+

+

� (25)

where the exponent m is the same for all phases. For m  =  1 this potential corresponds to a 
linear response with ionic mobility G r

0
1( )( ) − , while for m →∞ it corresponds to a strongly 

nonlinear response whereby the molar flux is zero if the electrochemical potential gradient 
has magnitude below the threshold G r

0
( ) and is unbounded otherwise. Thus, these potentials 

provide a convenient test case to assess the capabilities of the above linear-comparison method 
within a wide range of nonlinear responses.

For simplicity, we restrict the analysis to two-phase composites exhibiting overall isotropic 
symmetry. It then follows that the effective potential must be of the form

U
G

m G
g

g
1

,
m

0

0

1

( ) =
+

∼
∼

∼

+

� (26)

where m is the same exponent as that of the constituent phases and G0
∼

 is an effective property 
which depends on the local properties G r

0
( ), the microstructure, and the exponent m.

Thus, the linear-comparison estimate (24) delivers an estimate for G0
∼

. For the special case 
of two-phase composites, expression (19) can be greatly simplified by virtue of the so-called 
Levin relations; it can be written as

( ) [ ( ) ] ( )[ ( ) ]= + ⋅ + ⋅ + + ∆ ∆ ⋅ − + ∆ ∆
∼ ∼− −U f Jg g g M g g M J M M g M J

1

2

1

2
,0 0 0 0 0

1
0 0 0 0

1
0

�

(27)

where M M M0 0
2

0
1( ) ( )∆ = −  and J J J0 0

2
0
1( ) ( )∆ = − , and M0

∼
 is the effective mobility tensor of 

the linear solid. This linear-comparison potential is thus completely specified in terms of M0
∼

. 
So by making use of any linear homogenization estimate for M0

∼
, corresponding estimates for 

the nonlinear effective potential can be obtained. In this work we make use of MGA and EMA 
estimates, which can be generated from the following expression due to Willis (1977):

∑ ∑θ θ= + − + −
∼

=

−

=

−
−⎧

⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

M M I T M M I T M M ,
r

r r r

s

s s
0

1

2

0
0

0
0 1

1

2
0

0
0 1

1

[ ( )] [ ( )]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

�

(28)

where M 0( ) denotes the mobility of a homogeneous reference material, and T 0( ) is a second-
order tensor that depends on M 0( ) and the two-point correlation functions of the microstructure. 
By setting the reference tensor M 0( ) equal to M0

1( ) (M0
2( )) we obtain MGA estimates, appropri-

ate for ‘particulate’ microstructures with phase r  =  1 (r  =  2) playing the role of a matrix.  
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On the other hand, by setting M 0( ) equal to the M0
∼

 we obtain EMA estimates, appropriate for 
‘granular’ microstructures with no continuous matrix phase.

In view of the assumed overall isotropy, the phase averages g r( ) are aligned with the overall 
field g. Then, the unit vectors g gg gr r/ /( ) ( ) =  are the same for all phases, and the mobility ten-
sors (20)2 in the linear-comparison composite are all aligned. Furthermore, if the tensor M 0( ) 
is of the form (20)2, the tensor T 0( ) is also of that form, with ‘parallel’ and ‘perpendicular’ 
components given by (e.g. Ponte Castañeda (2001))

T k
k

k M
T

k k

k M
k

k k

k

1

1
and

1

2 1
with

arcsin 1

1
,0

0
0

0

( )
( )

( )
( )

( )
( )/

∥
( )

∥
( )

( )
( )

α α
α=

−
−

=
−

−
=

−

−
⊥

⊥
�

(29)

where k M M0 0/∥
( ) ( )= ⊥  is the anisotropy ratio of the tensor M 0( ). Note that in (29) the anistropy 

ratio has been assumed to be k  >  1, but corresponding expressions for k  <  1 can be obtained 
by analytic continuation. Expressions (27) through (29) completely specify the effective 
potential of the linear-comparison composite.

By virtue of (24), the linear-comparison estimate for the effective property G0
∼

 can finally 
be computed from

G
c

c
G

g

g
m

g

g

g

g

g

g
1 .

m

r

r
r

r m
r m r m r r

0
1

2
0

0
0

1

⟨ ⟩
( ) ˆ ( )

ˆ
( )

( )
( )

( ) ( ) ∥
( ) ( )⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎫
⎬
⎭

∑ θ= − + −
∼−

=

−
+

�

(30)

where c c c0
1

0
1 2

0
2⟨ ⟩ ( ) ( ) ( ) ( )θ θ= + .

3.3.  Dual estimates

Constitutive relations (11) can be inverted so that the electrochemical potential gradients are 
expressed in terms of the molar fluxes via the Legendre duals of the dissipation potentials. 
The linear-comparison technique of section 3.1 can then be used in a completely analogous 
fashion to derive estimates for the inverted constitutive relation directly from the dual form
ulation of the problem. Expressions are omitted for brevity. However, as already noted by 
Ponte Castañeda (2001), the estimates thus obtained from the primal and dual formulations 
are not in general Legendre duals of each other, i.e. they are not equivalent, as a result of cer-
tain approximations made in the optimization of the linear-comparison medium. However, the 
results provided below show that this so-called duality gap is very small and even vanishes in 
some highly nonlinear cases.

4.  Sample results of the MGA type

This section  reports sample results for two-phase power-law solids resulting from the use 
of the Maxwell–Garnett approximation (MGA)—also known as Claussius–Mossotti 
approximation—to estimate the effective potential of the linear-comparison composite. This 
approximation is known to be accurate for particulate microstructures with low to moderate 
concentrations of inclusions (e.g. Milton 2002). Henceforth, the matrix and inclusion phases 
are identified with r  =  1 and r  =  2, respectively. The focus here is on the performance of 
the above linear-comparison estimates in contexts of strong nonlinearities and heterogeneity 
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contrasts. We thus restrict the analysis to material systems with uniform reference molar con-
centrations (c c0

1
0
2( ) ( )= ) to simplify the description; hence u ur rˆ( ) ( )= .

Estimates of the MGA-type follow from setting M M0
0
1( ) ( )=  in (28). Now, this approx

imation entails uniform fields within the inclusion phase of the linear-comparison solid; hence

g g and2 2ˆ ( ) ( )=� (31)

u

G

g

G
m

g g g g
M

g g
g

g g
I

g g1
.

m

0
2

2 2
2

0
2

2

0
2

1
ˆ ( )( )

( )
( )

( )

( )

( )

⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥=

∂
∂ ∂

= ⊗ + − ⊗
−

� (32)

Moreover, for a two-phase system we have that g g g2 1 1 2( )/( ) ( ) ( ) ( )θ θ= − , and so the  
computation of the linear-comparison estimates can be reduced to a system of three algebraic 

nonlinear equations for the variables g 1
∥̂
( ), g 1ˆ( )

⊥  and g 1( ), which must be solved numerically in 

general.
The new generalized-secant estimates (GSEC+−) of the MGA type are compared next 

with the elementary bounds of Weiner+− and the secant estimates (SEC) of the MGA type 
of Ponte Castañeda (1992). It is recalled that the SEC estimates provide a strict upper 
bound for the corresponding GSEC estimates. Also included are the full-field numerical 
simulations by Barrett and Talbot (1996) for composite spheres subject to an affine poten-
tial or to a uniform current density on the external boundary. These simulations provide 
upper and lower bounds (BT+−) for the overall resistivity of a particular class of compos-
ites known as composite-sphere assemblages; when the phases are linear, the simulations 
provide the exact result.

Figures 1(a) and (b) shows various predictions for the effective resistivity G0
∼

, normalized 
by the resistivity of the matrix phase G0

1( ), as a function of the nonlinearity index m 1⩾ , for the 
choice 0.51 2( ) ( )θ θ= =  and two values of the resistivity contrast. We begin by noting that for 
linear materials the SEC and GSEC estimates agree exactly with the linear MGA estimates 
on which they are based. These linear estimates are known to be attained by composites with 
isotropic composite-sphere-assemblage, and that is why the BT results also agree with these 
estimates in this case. For nonlinear materials, the various methods give somewhat different 
predictions, but the GSEC estimates are found to satisfy all bounds except the lower bound 
BT− in the case of resistive inclusions. It is worth noting, however, that the difference is very 
small and that these BT− bounds demanded heavy numerical calculations which might have 
introduced some error. As already discussed in section 3.3, the generalized-secant estimates 
exhibit a duality gap. The dual estimates (GSEC*) are also provided in figures 1(a) and (b) to 
assess the gap size. The gap is seen to be very small in general and to vanish identically not 
only in the linear case but also in the limiting case m →∞. Thus, both formulations provide 
practically equivalent predictions.

The extremely nonlinear limit m →∞ corresponds to a composite made up of phases with 
different thresholds G r

0
( ) in the electrochemical potential gradient, the composite itself having 

an effective threshold G0
∼

. In this limit the power-law potentials (25) are no longer strictly 
convex, the character of the governing equations changes, and discontinuous current density 
fields become possible. In fact, the results of Donev et al (2002) and Duxbury et al (2006) 
show that when the macroscopic field reaches the effective threshold the current flow localizes 
on a path which is the solution to a ‘shortest-path problem’.

For composites with more resistive particles (G G0
2

0
1( ) ( )> ), the GSEC estimates predict no 

effect on the effective threshold due to the addition of inclusions, i.e.
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G

G
10

0
1( ) =
∼

� (33)

regardless of the particular contrast and concentration of inclusions. According to Donev et al 
(2002), in this case the current path tries to avoid the inclusions but at the same time tries to 
remain as straight as possible. The GSEC estimates are consistent with totally straight current 
paths. The SEC and BT+ bounds, on the other hand, do predict an effect and are therefore 
consistent with current densities that are either diffuse or localized along curved rather than 
straight lines. The fact that the BT+ bound is obtained by prescribing uniform current densi-
ties on the boundary of a composite sphere actually prevents it from capturing the presence of 
localized current fields.

On the other hand, for composites with less resistive inclusions (G G0
2

0
1( ) ( )< ), the GSEC 

estimates do predict an effect on the effective threshold due to the addition of inclusions. 
These estimates can be shown to reduce to

Figure 1.  Estimates of the MGA type for the effective resistivity of two-phase 
composites as a function of material nonlinearity (m), inclusion concentration ( 2( )θ ) and 
resistivity ratio (G G0

2
0
1/( ) ( )).
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G

G k k k

f k kf k

f k f k

G

G

1

2

1

1
,0

0
1

2

2

0
2

0
1[   ( ) ]

( ) ( )

( ) ( )( )

( )

( )

∥

∥

( )

( )
θ

θ α
=
−

−

+

+
+

∼
⊥

⊥
� (34)

where the functions f∥ and f⊥ are given by

f k k k k k f k k k1 1 2 and 2 3,( ) [   ( )( ( ))] ( ) ( ) ( )∥ α α α= + − = + −⊥� (35)

and the anisotropy ratio k  >  1 is solution to the nonlinear equation

k
k

k
f k

G

G
f k f k1

2

1
.

2
0
2

0
1

( ) ( ) ( ) ( )
( )

∥

( )

( ) ∥

⎛

⎝
⎜

⎞

⎠
⎟α

θ
− =

−
− + ⊥� (36)

According to Duxbury et al (2006), in this case the current path seeks the inclusions but at 
the same time tries to remain as straight as possible. Consequently, the inclusions interact 
even when their volume fraction is infinitesimally small. This is expected to translate into 
a non-analytic dilute expansion of the effective threshold. Interestingly, this is exactly what 
the GSEC estimates predict. Figure 1(c) shows GSEC estimates for G G 0.50

2
0
1/( ) ( ) =  as a func-

tion of inclusion concentration 2( )θ , together with the corresponding SEC and Weiner bounds. 
Indeed, it is observed that, while the bounds exhibit a finite slope at 02( )θ = , the GSEC esti-
mates exhibit an infinite slope. It can be shown that the dilute expansion of (34) is

G

G

G

G
1

3

2
1

2 2
,0

0
1

0
2

0
1

4 3 2 3 2 2 3

( )

( )

( )

/ / ( ) /
⎜ ⎟

⎛

⎝
⎜

⎞

⎠
⎟ ⎛

⎝
⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟π θ

= − −
∼

� (37)

which is non-analytic at 02( )θ = . This ‘dilute-limit singularity’ has also been observed in the 
dielectric breakdown of discrete (Duxbury et al 1995) and continuum (Duxbury et al 1990) 
heterogeneous media, as well as in ductile fracture of porous media (Roux and François 1991).  
A similar dilute expansion with a 2/3 exponent has been found in two-dimensional random 
composite dielectrics (Ponte Castañeda 2001). Different singularities appear, however, in peri-
odic composites. Consider a cubic array of spherical inclusions embedded in a matrix with a 

higher threshold. In that case the shortest path corresponds to a straight line passing through the 

inclusions. It is straightforward to see that these fields imply that G G1 0 0
1 2 1 3/ ( )( ) ( ) /θ− ∼

∼ —see  
Idiart et al (2009) for a similar analysis in two-dimensional viscoplastic solids. A comparison 
with expression (37) suggests that randomness weakens the dilute-limit singularity. In any 
event, it is a remarkable fact that the generalized-secant estimates are able to capture such 
strongly nonlinear effects. We note in passing that particle-filled composites often exhibit non-
monotonic variations of resistivity with filler volume fraction, and that such variations can 
usually be ascribed to the presence of interphases surrounding the particles. While accounting 
for interphases in the context of stochastics models like the one considered here has proven 
challenging, they can be accounted for in the context of solvable microgeometries as in, for 
instance, Curto Sillamoni and Idiart (2015).

Finally, in figure 1(d) the GSEC estimates are plotted as a function of the heterogeneity 
contrast, with G G0

2
0
1⩾( ) ( ), for several values of the nonlinearity index (m 1, 3, 10,= ∞). These 

estimates are compared with the Weiner upper bound, which is insensitive to m, and the exact 
second-order asymptotic expansion (SOE) of Blumenfeld and Bergman (1991). It should be 
noted that the range of validity of this expansion vanishes as m →∞, whereas the GSEC esti-
mates, which are also exact to second order in the contrast, do not degenerate. It is observed 
that as the nonlinearity increases the GSEC estimates tend to saturate at smaller contrasts. 
Thus, nonlinearity amplifies the effect of heterogeneity contrast.
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5.  Sample results of the EMA type

This section  reports sample results for two-phase power-law solids resulting from the use 
of the effective-medium approximation (EMA) of Bruggeman (1935) to estimate the effec-
tive potential of the linear-comparison composite. This approximation is more appropriate 
for granular microstructures (e.g. Milton 2002). Estimates of the EMA-type are obtained by 
setting M M0

0
( ) =
∼

 in expression (28). Unlike the MGA approximation, this approximation 
does not entail uniform fields in any of the phases. Furthermore, expression (28) is no longer 
explicit for M0

∼
, thus rendering two nonlinear equations for the effective mobilities M ,∥

∼
⊥, in 

addition to the five equations for the variables g r
,∥̂

( )
⊥ and g 1( ). This system of nonlinear equa-

tions must be solved numerically.
The new generalized-secant estimates (GSEC) of the EMA type are compared next with 

the elementary bounds of Weiner and the secant estimates (SEC) of the EMA type of Ponte 
Castañeda (1992). Recall that the SEC estimates provide strict upper bound for the corre
sponding GSEC estimates. Figures 2(a) and (b) shows various predictions for the effective 
resistivity G0

∼
, normalized by the resistivity G0

1( ), as a function of the nonlinearity index m 1⩾ , 
for 0.252( )θ =  and the two extreme values of resistivity contrast. In the linear case, the SEC 
and GSEC estimates agree exactly with the linear EMA estimates on which they are based. 
In the nonlinear case, however, these estimates give different predictions with the GSEC esti-
mates always lying below the SEC estimates as they should. A comparison with the previous 
results of figure 1 shows that, unlike the elementary bounds of Weiner, the linear-comparison 
estimates are able to capture a certain interplay between the microstructure and the material 
nonlinearity. The dual generalized-secant estimates (GSEC*) are also included to assess the 
magnitude of the duality gap. Once again, the gap is found to be very small in general but 
to vanish identically as m →∞ only when G 00

2( ) = . When G0
2( ) = ∞ a duality gap persists in 

the limit m →∞, even though it is so small that both estimates can be considered virtually 
equivalent also in this case.

Unlike the GSEC estimates of the MGA type, the GSEC estimates of the EMA type for 
m →∞ predict a finite effect on the effective threshold due to the addition of a second phase 
regardless of the contrast in the local thresholds. In this extremely nonlinear limit, the GSEC 
estimates for material systems with phase r  =  2 being a perfect ionic conductor (G 00

2( ) = ) can 
be shown to reduce to

G

G

g k

g k

g k

g k
1 1

2 2
,0

0
1

2
2

2
2

1 2

( )
( )
( )

( )
( )( )

( )
( ) ∥ ( )

/⎡

⎣

⎢
⎢
⎢

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎤

⎦

⎥
⎥
⎥

θ
θ θ

= − + +
∼

⊥

−
�

�

�

�� (38)

where the functions g are too cumbersome to include here and are given in the appendix; these 

are functions of the effective anisotropy ratio k M M/∥=
∼ ∼

⊥� , which solves the nonlinear equation

g k

g k k2

1

1

2

2

( )
( ) ( )

( ) ∥θ
=

−

�

�� (39)

with the anisotropy ratio k of phase r  =  1 given by

k
k k

k

k k k

k k k

1

1

1

1 2 1
.

2 2

2

  ( )
( )

  ( )   ( )
   ( )   ( )

( ) ( )

( )
α
α

θ θ α
θ α

=
−
−

+ − −
− − −

� �
�

� � �
� � �� (40)
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On the other hand, the GSEC*3 estimates for material systems with phase r  =  2 being a perfect 
ionic insulator (G0

2( ) = ∞) can be shown to reduce to

G

G

h k

h k

h k

h k

h k

h k
1 ,0

0
1

2

2

2

1 2

2( )
( )

( )
( )

( )
( )( )

( ) ∥ ( )

/

( ) ∥
⎡

⎣

⎢
⎢
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦

⎥
⎥θ θ θ= + + −

∼
⊥

�

�
�
�

�

�� (41)

where the functions h are given in the appendix; these are functions of the effective anisotropy 
ratio k�, which solves the nonlinear equation

h k

h k

h k

h k

k

k

h k

h k
1 1

12

2

2 2

2
( )
( )

( )
( )

( )
( )

( ) ∥ ( ) ( ) ∥
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟θ θ θ+ + = +

−⊥
�

�
�
�

�

�� (42)

with the anisotropy ratio k of phase r  =  1 given by

Figure 2.  Estimates of the EMA type for the effective resistivity of two-phase 
composites as a function of material nonlinearity (m) and inclusion concentration ( 2( )θ ).

3 In this case the mathematical expressions obtained with the dual formulation are much simpler than those obtained 
with the primal formulation.

I J Curto Sillamoni and M I Idiart﻿Modelling Simul. Mater. Sci. Eng. 24 (2016) 075008



14

k k k k
k k k

k k k k k
1

1 2 2 1

1 1 1 2
.

2

2
(   ( ) )     ( ( ) )    ( )

[(   ( ) )  ( )] [ ( ( ) ) ]

( )

( )
α

α θ
α θ α

= −
+ − + −
− − − + −

� � �
� � �

� � � � �� (43)

The estimates are plotted in figures 2(c) and (d) versus volume fraction 2( )θ . In the dilute 
limit 02 →( )θ  these estimates agree exactly to ‘first’ order with the dilute expansions of the 
corresponding estimates of the MGA type. This is because the EMA and MGA linear esti-
mates on which they are based exhibit the same dilute behavior. Thus, GSEC estimates of 
the EMA type also exhibit dilute singularities and are consistent with localized fields as 
discussed in the context of the MGA estimates. For large concentrations 2( )θ , however, the 
GSEC estimates of the EMA type exhibit percolative behavior near a critical volume fraction 

1c
2( )θ < . This percolation threshold is the same as that of the linear EMA theory on which the 

GSEC estimates are based, thus depending on the spatial dimensionality of the fields but not 
on the material nonlinearity, as it should. In the case of phase r  =  2 being a perfect insula-
tor (G0

2( ) = ∞) percolation occurs at the critical value 2 3c
2 /( )θ = , while in the opposite case 

of phase r  =  2 being a perfect conductor (G 00
2( ) = ) percolation occurs at the lower critical 

value 1 3c
2 /( )θ = . Near these percolation thresholds the effective nonlinear resistivity behaves 

like G G c
s

0 0
1 2 2( )( ) ( ) ( )θ θ∼ −

∼ ± , where s is a critical exponent. Given the bounding property of 
the SEC estimates, which also percolate, this exponent must satisfy the lower bound s 1 2⩾ /  
for G0

2( ) = ∞ and the upper bound s 1 2⩽ /  for G 00
2( ) = . By expanding expressions (38) and 

(41), it can be verified that the GSEC estimates exhibit percolative behavior with exponents 
s 1 2/=± , which are identical to those bounds. In this connection, it is worth noting that an 
earlier linear-comparison technique proposed by Ponte Castañeda and Kailasam (1997) and 
based on a tangent linearization about the phase averages yielded critical exponents of s  =  0 
for G0

2( ) = ∞ and s  =  1 for G 00
2( ) = , thus violating the bounds. As already noted by Ponte 

Castañeda (2001), this improvement of the generalized-secant estimates relative to the tangent 
estimates is directly linked to the use of the field fluctuations—which become unbounded at 
percolation—in the linearization scheme.

We conclude this discussion by noting that the linear-comparison solid underlying the 
GSEC estimates of the EMA type can exhibit negative-definite mobility tensors when the 
nonlinearity is sufficiently high. Indeed, even though k 0>�  for any value of m, the associated 
anisotropy ratio k becomes negative for sufficiently large values of m. In rigour, the corre
sponding effective potential U0

∼
, as given by (19), is no longer a minimum but a stationary 

value. This raises some questions about the validity of these EMA estimates for power-law 
composites with sufficiently high nonlinearities, even though the issue is not exclusively due 
to the use of the linear EMA estimates—Idiart and Ponte Castañeda (2005) already identified 
this issue in generalized-secant estimates for viscoplastic composites resulting from the use 
of a different linear scheme. Nevertheless, the estimates for the effective nonlinear resistivity 
still satisfy rigorous bounds and give reasonable predictions. In the course of this work, Ponte 
Castañeda (2015) proposed a reformulation of the generalized-secant technique which could 
deliver more accuracte predictions and be free of this mathematical deficiency. While this 
reformulation is thus far available for crystalline solids only, it can be adapted to other types 
of solids including those considered here. Further efforts should be directed towards this goal.
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Appendix.    Expressions for nonlinear estimates of the EMA type

The g functions appearing in expressions (38) and (39) are given by

θ θ θ θ α

θ θ α
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= − − + + + +
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− − + + +
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The h functions appearing in expressions (41) and (42) are given by
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