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Wedeveloped a predictive Quantitative Structure–Property Relationship (QSPR) for the refractive indices of 234
structurally diverse polymers. Themodel involves a singlemolecular descriptor and a conformation-independent
approach. The most appropriate polymer structure representation was investigated by considering 1–5
monomeric repeating units. The established equations were validated and tested through various well-known
techniques, such as the use of an external test set of compounds, the Cross-Validation method, Y-
Randomization and Applicability Domain, and finally a comparison was also performed to published results
from the li terature. The developed QSPR could be useful for assisting the development of new polymeric
materials.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The most important optical property of a polymer is its refractive
index (n). This value is directly related to optical, electrical andmagnetic
properties [1]. The manufacture of waveguides, optical films, optical
fibers, and semiconductors among others is based in an extensive part
on n. Polymers having low n in the range from 1.3 to 1.4 are useful, for
example, as anti-reflective coatings for optical lenses. Transparent
high refractive index polymers with n≥ 1.5 are used in optical applica-
tions demanding strong focusing power, because the material's lens
effect increases with n. The refractive indices of organic polymers in
the range from 1.3 to 1.7 can be accurately measured to four decimals
at 23 °C through ASTM D 542-00 and ISO 489:1999 standard methods,
using a V-prism refractometer. This measurement requires contact liq-
uids to produce a planar contact between the sample and instrument's
prism. Alterations in n due to chemical interaction with the contacting
liquid must be avoided, limiting the number of contact liquids that can
be used. Moreover, the liquid's n must be higher but not below one
unit in the second decimal place when compared to the index of the
polymer being measured. These standard methods are only suitable
for isotropic materials. However, n of non-isotropic polymers may be
determined using V-prism refractometer with slight modifications of
the method, but with lower accuracy [2].

At present, the synthesis of new and more complex polymers with
specific properties for diverse uses has greatly increased. Along with it,
the range of chemical compounds involved in the polymerization pro-
cess has become immense. In order to restrict the search for newmate-
rials with particular properties, prior to costly and time consuming
synthesis, the use of predictive models is of key importance. The possi-
bility of having a simple theoretical methodology to predict in a fast and
accurateway the refractive indices of polymers are critical for the design
of new and improved material generations [3–5].

During the last years, considerable efforts have been made to find
out useful methodologies for predicting n [6], one of them being
the QSPR theory [7–9]. Within the QSPR framework, the property of
a chemical compound is completely determined by its molecular
structure [10–16]. The interestingQSPRwork of Bicerano [17] correlates
the refractive index of 183 polymers with an eleven-descriptor model
composed of topological and constitutional descriptors including con-
nectivity indices and the total number of rotational degrees of freedom.
The statistical quality involves an explained variance R2 = 0.95 and a
standard deviation S = 0.0165. In another study proposed by García-
Domenech and de Julián-Ortiz [18], using the values of 121 amorphous
linear polymers, a ten-descriptor model was obtained with the Best
Multi Linear Regression method, achieving R2 = 0.96 and S = 0.015.
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The set of graph-theoretical descriptors was calculated from the mono-
mers and include Randic–Kier–Hall subgraph connectivity indices, their
corresponding valence indices, topological charge indices, topological
geometric indices, kappa indices, atom-type electrotopological state
indices and theWiener index. Although such models have a great accu-
racy, too many descriptors are involved which make them susceptible
to overfitting and chance correlation [19].

Katritzky et al. [20] applied the Comprehensive Descriptors for
Structural and Statistical Analysis (CODESSA) software for modeling n
in a set of 95 linear polymers. These authors developed a five-descriptor
model, leading to a good correlation with R2 = 0.94 and S = 0.018.
The involved molecular descriptors are of two types: four quantum-
chemical: the HOMO–LUMO energy gap, the AM1 heat of formation,
the maximum nuclear repulsion for a carbon–hydrogen bond and the
partial negative surface area (calculated from Zefirov's partial charges);
one constitutional: the relative number of fluorine atoms. Xu et al. [21]
proposed a four-descriptor equation based on the sum of valence de-
grees, the degree of unsaturation, the relative number of halogen
atoms and the electrostatic attraction or hydrogen bond between the
main chains. Their results from 121 polymers showed R2 = 0.93 and
S = 0.018. Recently, Astray and coworkers [22] presented a four-
descriptor model with descriptors of the quantum-chemical type,
obtained with Density Functional Theory (DFT) calculations at the
B3LYP/6-31G(d) level. The set of descriptors calculated from themono-
mers in that study includes the energy of the lowest unoccupiedmolec-
ular orbital, molecular average polarizability, heat capacity at constant
volume, and the most positive net atomic charge on hydrogens. For a
set of 95 polymers, they obtained R2= 0.92 and rootmean square devi-
ation (RMSD) of 0.023. Finally, it is to be noted that only the models
established byGarcía-Domenech and Astraywere evaluatedwith exter-
nal validation sets of compounds; validation is a crucial aspect in any
QSPR study.

Every model that includes quantum-chemical descriptors usually
involves a relatively difficult calculation of the optimum molecular
geometry, involving high computational costs and long times. In this
context, the conformation-independent 0D, 1D and 2D-QSPR methods
emerge as an alternative approach for developingmodels based on con-
stitutional and topological molecular features of compounds [23,24].
The exclusion of 3D-structural aspects also avoids problems associated
with ambiguities, resulting from an incorrect computational geometry
optimization due to the existence of compounds in various confor-
mational states. Such kind of problems may also lead to the loose of
predictive capability of the QSPR when applied for the prediction of an
external test set of compounds.

In this work, we propose a flexible descriptor-based QSPR model
[25] for the prediction of refractive index values, in amolecular set com-
posed of 234 polymers with experimental information extracted from
specialized books. In the realms of the approach used, the calculated
flexible descriptor is a molecular descriptor which depends both on
the molecular structure and the property under analysis (n), but does
not explicitly depend on the 3D-molecular geometry. In previous
QSPR studies, we have shown the importance of the methodology
of flexible descriptors, which is able to providemodels having a com-
parable or sometimes better quality to the ones found by searching
the best descriptors in a pool containing thousands of 0D-3D descrip-
tors [26–28]. Thereby, we investigated the most appropriate molec-
ular structure representation for the flexible descriptor calculation,
which can be done in different ways such as by using a chemical
graph [29–31], using the Simplified Molecular Input Line Entry
Fig. 1. Representative dimeric structure model for poly(vinyl alcohol).
System (SMILES) [32–34], or with an hybrid representation which
includes both graph and SMILES [35,36].

2. Materials and methods

2.1. Experimental dataset

The high quality experimental refractive indices measured at 298 K
on 234 polymer compounds were collected from two published compi-
lations [17,37]. The n values range in the interval [−9.91, 9.86], and the
complete list of polymers studied here are included in Table 1S as
Supplementary material. It is appreciated that the chemical domain
analyzed is quite diverse, involving polyethylenes, polyacrylates, poly-
methacrylates, polystyrenes, polyether, polyoxides, polyamides and
polycarbonates. The chemical groups of the side chains include halides,
cyanides, carboxylates, acetates, amides, ethers, alcohols, hydrocarbon
chains, aromatic rings, and non-aromatic rings.

2.2. Model development

2.2.1. Polymer structure model
Due to the high molecular weight of a polymer compound, it results

impossible to directly calculate a molecular descriptor for the whole
structure. Therefore, an alternative consists on proposing a representa-
tive structure model for the polymer, by means of resorting to a few
number of repeating units (U). We used as basic though representative
polymer structures the following cases: U, UU, UUU, UUUU andUUUUU.
Fig. 1 offers an example for the case of poly(vinyl alcohol) in its dimeric
representation. Whenever these model types are able to correlate rela-
tively well the refractive indices, then they are assumed to be valid.

2.2.2. The flexible molecular descriptor definition
Several kinds of flexible molecular descriptors can be readily calcu-

lated with the CORAL freeware for Windows [38]. This software has
been successfully applied previously in several QSPR studies and also
for QSAR (Quantitative Structure–Activity Relationships) analyses [25].

As a first step, the repeating unit of each polymer has to be repre-
sented with SMILES notation, the chemical format used by CORAL.
Table 2S includes the SMILES notations for the U-structure model.
In the case of other structure models, the SMILES were easily pre-
pared by coupling U components. For instance, poly(ethylene) having
SMILES CC in the monomeric model results in CCCCCCCC in its tetra-
meric model. An advantage of working with CORAL in polymers is that
hydrogen atoms can be avoided in the chemical structure for molecular
descriptors calculation, which is not feasible in other software packages
like Dragon [39] or CODESSA [40]. This is especially important for ex-
ample for avoiding using terminal hydrogens in the monomeric
polymer structure model, in order to differentiate in U-polymers
like poly(ethylmethylene) and poly(1-methylethylene). Finally, the
SMILES were provided as input to the CORAL program, together
with the studied experimental property (n).

There are three different structural representation (SR) approaches
available in the CORAL program, such as: i. using a chemical graph,
like hydrogen-suppressed graph (HSG), hydrogen-filled graph (HFG)
and graph of atomic orbitals (GAO); ii. using SMILES; and iii. using a
hybrid representation which includes both graph and SMILES [25].
The SR used, ie. graph-based or SMILES-based, defines the number
and types of structural attributes (local descriptors) that are able to
take part in the QSPR analysis, and thus this specification defines the
CORALmethod. Therefore, one has to decidewhich particular combina-
tion of structural attributes should be considered the most appropriate
for the modeling process.

In the graph approach of the HSG, HFG or GAO type, the structural
attributes that can be used are the Morgan's extended connectivity
indices of kth order for vertex (atom) Z (kECZ, k = 0–3). It is noted
that the index of zero-th order 0ECZ represents the vertex degree for

image of Fig.�1


Table 1
The best QSPR models for the refractive index of polymers in their representative
structures. The selected model appears in bold.

Polymer
model

SR Structural
attributes

Rtrain
2 Strain Rval

2 Sval Rtest
2 Stest

U HFG 1EC, 2EC 0.95 0.016 0.92 0.021 0.84 0.030
UU HFG + SMILES 2EC, 3sk 0.96 0.014 0.95 0.016 0.85 0.028
UUU HFG + SMILES 2EC, 3sk 0.91 0.021 0.91 0.021 0.87 0.026
UUUU HFG + SMILES 2EC, 3sk 0.91 0.021 0.91 0.021 0.85 0.027
UUUUU HFG + SMILES 2EC, 2sk 0.90 0.023 0.90 0.022 0.85 0.028
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atom Z (number of neighbor atoms to Z in HSG), while the higher order
indices kECZ are obtained through a recursive formula based on 0ECZ (see
in Table 3S).

In the SMILES approach, the one-, two-, and three-element SMILES
attributes 1sk, 2sk, and 3sk, respectively, can be calculated. If a SMILES is
a sequence of elements as ‘ABCDE’, then such structural attributes can
be represented with Eqs. (1)–(3):

‘ABCDE’→‘A’; ‘B’; ’C’; ‘D’; ‘E’ 1sk
� �

ð1Þ

‘ABCDE’→‘AB’; ‘BC’; ‘CD’; ‘DE’ 2sk
� �

ð2Þ

‘ABCDE’→‘ABC’; ‘BCD’; ‘CDE’ 3sk
� �

: ð3Þ

In addition, the NOSP, HALO, BOND and ATOMPAIR attributes repre-
sent indices calculated according to the presence or absence of chemical
elements: nitrogen, oxygen, sulfur, and phosphorus (NOSP); fluorine,
chlorine, and bromine (HALO). The BOND is a mathematical function
of the presence or absence of double (=), triple (#), or stereo chemical
bonds (@ or @@). The ATOMPAIR is a mathematical function of the pres-
ence of seven chemical elements: F, Cl, Br, N, O, S, and P.

It is noteworthy that the way of searching for the most relevant
structural attributes in a specific structural representation approach,
in order to lead to the best statistical quality of the final model, is
done in a stepwise fashion, in other words, first search for the best sin-
gle attribute, then search for a second attribute that combines the best
with the previous one, and then continue adding in this way the next
attributes.

Within the CORAL framework, a QSPR model is obtained through a
one-variable linear correlation between n and a properly defined flexi-
ble descriptor (DCW). TheDCW descriptor is a linear combination (sum-
mation) of special coefficients, the so-called correlationweights (CW). A
CW value is calculated for each type of structural attribute of the training
set. The way for obtaining the CW values for all the structural attributes
is based on the Monte Carlo simulation method, by optimizing a target
function that depends upon the correlation coefficient (R) between n
and the DCW descriptor (Table 3S).

The DCW flexible descriptor depends upon two positive integer
values: the threshold value (T) and the number of epochs or iterations
(Nepochs) used during the numerical optimization procedure. The appro-
priate selection of the threshold parameter avoids model overfitting, by
classifying SMILES attributes into two categories: active and rare. The
influence of rare attributes can be blocked by fixing their CW to zero.
In this work, the rare attributes were the ones that take place in less
than T polymers, while T was analyzed in the range from 0 to 5.

2.2.3. Model validation
The validation of theQSPR consists on testing its ability to predict the

property for molecular structures not considered during the model de-
velopment. The theoretical validation of the linear regression models is
based on the popular validation criteria based on Cross Validation using
Leave-One-Out (loo) and Leave-More-Out (ln%o, with n% being the per-
centile of molecules removed from the training set). The statistical pa-
rameters Rln % o and Sln % o (correlation coefficient and standard
deviation of Leave-More-Out) measure the stability of the QSPR upon
inclusion/exclusion of molecules. The number of cases for random
data removal analyzed in this study is 100,000. According to the special-
ized literature, the loo explained variance (Rloo2 ) should be greater than
0.5 for a validated model, although this is a necessary but not sufficient
condition for its predictive power [13].

A more reliable validation was applied, that consists on using an ex-
ternal test set of structures. The 234 polymer compounds were ranked
according to their refractive index values and every alternate compound
was assigned to the training set (train), validation set (val) and test set
(test). Each set thus included 78 compounds.

We used Y-Randomization [41] as a way of checking that the model
does not result fromhappenstance and to avoid the development of for-
tuitous (chance) correlations. This technique consists on a permutation
testing, and involves the same descriptors used in the models. New
parallel models were developed on the basis of fit to randomly Y-data
(Y-scrambling), and the process was repeated for a high number of
iterations. After analyzing 10,000 cases of randomized response, the
smallest standard deviation value obtained using this procedure
(Srand) has to be a higher (poorer) value than the one found by consid-
ering the true calibration (S).

2.2.4. Applicability domain
The applicability domain for the QSPR model was also explored, as

not even a predictive model is expected to reliably predict the modeled
property for the whole universe of molecules. The applicability domain
is a theoretically defined area that depends on the molecular descriptor
values and the experimental property analyzed [42]. Only themolecules
falling within this applicability domain are not considered model ex-
trapolations. One possible way to characterize the applicability domain
is based on the leverage approach [43], which allows to verifywhether a
new compound can be considered as interpolated (with reduced uncer-
tainty, reliable prediction) or extrapolated outside the domain (unreli-
able prediction). Each compound i has a calculated leverage value (hi)
and there exists a warning leverage value (h*); Table 3S includes the
definitions for hi and h*. When hi N h* for a test set compound, then a
warning should be given: it means that the prediction is the result of
substantial extrapolation of the model and could not be treated as
reliable.

3. Results and discussion

Weperformed theQSPR analysis by searching the best linear regres-
sionmodels on the training set of 78 polymer compounds, for each rep-
resentative polymer structuremodel U, UU, UUU, UUUU and UUUUU. In
doing so, the molecular structure representation that results the most
appropriate for the flexible descriptor calculation has to be investigated,
and also it has to be decidedwhich structural attributes are themost ef-
ficient for each SR in order to take part during the flexible descriptor de-
sign. This means to select the appropriate CORAL method. In general,
one optimizes the DCW flexible descriptor by increasing Rtrain

2 , until
the model starts to lose predictive capability in the validation set. This
is the same situation that appears when one has to decide for the
most predictive model among several multivariable linear regressions,
having descriptors being searched in a pool containing thousands of
them [44].

Table 1 contains a summary for the statistical quality of the best
QSPR models found by trying different possible CORAL methods. It
reveals that the best choice of SR for the polymer structures is a
hybrid-approach that includes both graph (HFG type) and SMILES rep-
resentations, with exception to the U-polymer that only considers a
graph approach (HFG type). It is also observed that the best statistics
(in terms of the R2 and S parameters of the training, validation and
test sets) results for the dimeric polymer structure, and keeps the



Fig. 2. Predicted (Eq. (4)) and experimental refractive indices for 234 polymer
compounds.
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polymer's size as small as possible, with percentages of explained vari-
ances of 96%, 95% and 85% in train, val and test, respectively. Finally, it is
interesting to note that the trivial monomeric model also achieves an
acceptable statistics, however, as it uses hydrogen-filled graphs, it is
not able to differentiate between i.e. poly(ethylmethylene) and
poly(1-methylethylene), and so we did not consider the U-model.

The statistics for the stepwise evolution of the dimeric model is pre-
sented in Table 2, where the first selected structural attribute is 2EC,
then the following ones are 3sk and HALO in that order. As we followed
the common practice of keeping the model's size as small as possible
(Ockham's razor), in order to avoid any fortuitous correlation, we did
not consider more attributes in the DCW calculation because there is
no further improvement. More complete details for the QSPR model
established are the following:

n ¼ 0:0019 DCW4 þ 1:4740 ð4Þ

Ntrain ¼ 78; R2
train ¼ 0:96; Strain ¼ 0:0137; F ¼ 2033; pb10‐4; o 3Sð Þ ¼ 0

R2
loo ¼ 0:96; Sloo ¼ 0:0142; R2

l20%o ¼ 0:95; Sl20%o ¼ 0:0158; Srand ¼ 0:0590
Nval ¼ 78; R2

val ¼ 0:95; Sval ¼ 0:0160
Ntest ¼ 78; R2

test ¼ 0:85; Stest ¼ 0:0280:

Here, F is the Fisher parameter and o(3S) indicates the number of
outlier compounds having a residual (difference between experimental
and calculated n) greater than three-times the Strain value. The parame-
ters used for the DCW4 calculation were T = 1 and Nepochs = 7.

A plot such as Fig. 2 for the predicted indices of refraction as function
of the experimental values for the training, validation and test sets
(numerical data are provided in Table 4S) reveals a tendency for the
points to have a straight line trend. The dispersion plot of residuals
(i.e. residuals as a function of predicted n) in Fig. 3 demonstrates that re-
siduals tend to obey a random pattern around the zero line, suggesting
that the assumption of the MLR technique is fulfilled. Eq. (4) has no
outliers in the training set.

The approval of the internal validation process of Eq. (4) is evi-
denced by the stability of this equation upon the inclusion/exclusion
of compounds from the training set, measured via the exclusion of one
molecule at a time in leave-one-out (Rloo2 = 0.96, Sloo = 0.0142) and
also by excluding 20% of the observations in leave-more-out (15
molecules, Rl20 % o

2 = 0.95, Sl20 % o = 0.0158). A further step to assess
the robustness of present equation is the application of Y-
Randomization, demonstrating that Strain b Srand and thus the calibration
does not result from happenstance and results in a valid structure–
refractive index relationship. Eq. (4) also satisfies the necessary external
validation conditions reported in [13,45]:

R2
testN0:5

1−R2
0=R

2
test b 0:1 and 1−R

02
0 =R

2
test b 0:1

0:85≤k≤1:15 and 0:85≤k0≤1:15
R2
m N 0:5:

The R0
2, R0' 2, k, k' and Rm

2 parameters appear defined in Table 3S and,
according to Table 5S, the proposed QSPR fulfills all these conditions.

An analysis of the applicability domain of Eq. (4) (with leverage
values provided in Table 6S) suggests that all the compounds included
in the test set belong to the applicability domain of the model (hi b h*)
Table 2
The stepwise search for finding the best QSPR model in a dimeric polymer. The selected
model appears in bold.

Structural attributes Rtrain
2 Strain Rval

2 Sval Rtest
2 Stest

2EC 0.94 0.018 0.90 0.023 0.84 0.029
2EC, 3sk 0.96 0.014 0.95 0.016 0.85 0.028
2EC, 3sk, HALO 0.97 0.011 0.96 0.014 0.86 0.027
with exception to 225, poly(sulfone). After an exhaustive control of this
compound in the source, we did not find anymistake in its experimental
n value or its molecular structure. Hence, we assume that this particular
behavior is due to the complexity of the data set, i.e. the structural hetero-
geneity of the molecules considered in this study. Thus, the predicted
indices of refraction for all with exception to one test set polymer can
be considered as reliable as they fall within the applicability domain.

The structure–refractive index parallelism established by Eq. (4)
succeeds in predicting the tendencies in data, i.e. high n values
tend to be predicted as high and low n values as low. Now, although
only one test set compound 225 is outside the applicability domain
of Eq. (4), it is appreciated from the dispersion plot of residuals of
Fig. 3 that four test set compounds have high residuals, and this
can also be explained in terms of the data set heterogeneity: 231
(poly(p-xylylene)), 234 (poly(pentabromophenyl methacrylate)), 210
(poly(1,1-dichloroethylene)) and 183 (poly(2,3-dibromopropyl meth-
acrylate)). In an attempt to improve these results, we considered the
situation when these four polymers take part of the training set and
themodel was recalculated. This is justified, as the four compounds ex-
hibit a higher residual than the rest of the test set compounds, and thus
they should take part of the training set. The statistical quality found
was somewhat better, with percentages of explained variances of 96%,
95% and 90% in train, val and test, respectively:

n ¼ 0:0020DCW5 þ 1:4759 ð5Þ
Fig. 3. Dispersion plot of residuals (Eq. (4)) for 234 polymer compounds.
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Fig. 5. Dispersion plot of residuals (Eq. (5)) for 234 polymer compounds.
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Ntrain ¼ 82; R2
train ¼ 0:96; Strain ¼ 0:0155; F ¼ 1872; pb10‐4

; o 3Sð Þ ¼ 1
R2
loo ¼ 0:96; Sloo ¼ 0:0159; R2

l20%o ¼ 0:95; Sl20%o ¼ 0:0171; Srand ¼ 0:0649
Nval ¼ 78; R2

val ¼ 0:95; Sval ¼ 0:0158
Ntest ¼ 74; R2

test ¼ 0:90; Stest ¼ 0:0218:

In this equation, the parameters used for the DCW5 calculation are
T = 1 and Nepochs = 8. The QSPR of Eq. (5) represents an improvement
over Eq. (4), as the 2EC and 3sk structural attributes of the flexible de-
scriptor are able to predict better the four aforementioned polymers
having high residuals. The new model satisfies the necessary internal
(Table 5S) and external validation conditions. Figs. 4 and 5 plot the pre-
dictions of Eq. (5) and its dispersion plot of residuals, respectively. There
is only one outlier in the training set, 231 (poly(p-xylylene)), the same
compound that appears previously posing a high residual in the test set.
For the case of this newderivedQSPR, all the compounds included in the
test set belong to the applicability domain of the model (Table 6S). The
correlation weights produced by the Monte Carlo simulation appear
listed in Table 7S, while Table 8S includes an example for calculating
DCW5 for 1 (poly(pentadecafluorooctyl acrylate)).

Froma total number of 249 structural attributes based on 2EC and 3sk
that can be obtained for the 234 polymers (Table 7S), only 190 of them
contribute to the DCW5 calculation. Furthermore, structural attributes
with higher positive CW values, like EC2-S…9…, EC2-S…4…, 1…(…(…,
S…(…C…, EC2-S…13…, O…=…C… or 2…c…1… tend to predict higher DCW5

values and thus higher refractive indices. Here, EC2-Z…X… means that
2ECZ takes the value X, while A…B…C… is a three-element attribute. In
addition, attributes with higher negative CW values as C…O…C…, Si…[…
O…, EC2-N…13…, EC2-N…12…, EC2-Cl…6…, EC2-Si…19…, c…C…(… or C…
N…C… lead to the opposite situation.

The 2ECZ index depends on the number of neighboring atoms to
atom Z; when this index has zero-th order, then it equals the vertex de-
gree in HSG. It is also known that theMorgan extended connectivity can
be associatedwith themolecular symmetry. The higher the order of this
index is, then the higher the atomic neighborhood features are seen by a
considered atom. Finally, the 3sk index is a three-element SMILES attri-
bute, revealing the importance of fragment elements in the prediction
of n instead of individual SMILES elements.

The QSPR given by Eq. (5) predicts the refractive index of 234 struc-
turally diverse polymers with a good accuracy, and compares favorably
to previous published results. For instance, Eq. (4) analyzes a higher
number of polymer compounds than other reported studies [20,22],
and only involves a single descriptor when compared to the work
of Bicerano [17] which uses 11 descriptors, or the work of García-
Fig. 4. Predicted (Eq. (5)) and experimental refractive indices for 234 polymer
compounds.
Domenech and de Julián-Ortiz [18] having 10 descriptors. Furthermore,
the developed model was properly internally and externally validated.
Finally, another important result is that the calculated flexible descrip-
tor does not require structural information on polymer molecular con-
formation, which means that the method is able to model the physical
property by representing themolecular structure aspects with a similar
or better degree of details as when using a 3D-geometry dependent
approach [20,22].

4. Conclusions

The refractive index is considered a fundamental physical property
of polymer compounds. In this work, we succeeded in proposing a poly-
mer structure model that correlates the refractive index values with a
good accuracy, and demonstrated that such model is predictive in the
validation process. It is emphasized that the novelty of present work
relies on the development of a structure–refractive index relationship
for polymer macromolecules, through a computational technique that
does not require the knowledge of the molecular conformation during
the structural representation. The procedure employed here can be
readily applied to the study of other polymer properties, which will be
investigated in the near future.
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