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ABSTRACT
We present a generalized effective poroelastic model for periodically layered media
in the mesoscopic scale range, which accounts for both Biot’s global and interlayer
wave-induced fluid flow, as well as for the anisotropy associated with the layering.
Correspondingly, it correctly predicts the existence of the fast and slow P-waves as
well as quasi and pure S-waves. The proposed analytical model is validated through
comparisons of the P-wave and S-wave phase velocity dispersion and attenuation
characteristics with those inferred from a one-dimensional numerical solution of
Biot’s poroelastic equations of motion. We also compare our model with the classical
mesoscopic model of White for a range of scenarios. The results demonstrate that
accounting for both wave-induced fluid flow mechanisms is essential when Biot’s
global flow prevails at frequencies that are comparable or smaller with respect to those
governing interlayer flow. This is likely to be the case in media of high permeability,
such as, for example, unconsolidated sediments, clean sandstones, karstic carbonates,
or fractured rocks. Conversely, when interlayer flow occurs at smaller frequencies
with respect to Biot’s global flow, the predictions of this model are in agreement with
White’s model, which is based on quasi-static poroelasticity.
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1 INTRODUCTI ON

During the last two decades, significant efforts have been made
towards exploring and understanding the physical processes
governing the attenuation and velocity dispersion of seismic
waves in porous media. The primary motivation for this is
that these observables contain valuable information not only
with regard to the lithological and mechanical properties of
the probed medium but also and in particular with regard to
its elusive hydraulic characteristics. There is indeed increas-
ing evidence to suggest that wave-induced fluid flow (WIFF),
which arises in response to fluid pressure gradients and inertial

∗E-mail: marco.milani083@gmail.com

effects induced by the passing wavefield and which can pre-
vail at microscopic, mesoscopic, and macroscopic scales, is a
dominant source of energy loss and associated velocity disper-
sion throughout the seismic, sonic, and ultrasonic frequency
ranges (e.g., Pride 2005; Mavko, Mukerji, and Dvorkin 2009;
Müller, Gurevich, and Lebedev 2010).

Macroscopic, i.e., wavelength scale, WIFF arises in re-
sponse to the combined effect of the fluid pressure gradients
prevailing between the peaks and troughs and the accelera-
tions induced by the propagating wavefield. The theoretical
framework for studying wavelength-scale WIFF is generally
credited to the seminal works of Biot (1956a,b, 1962). In the
classical formulation of this theory, which is referred to as
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the theory of poroelasticity, the porous medium is assumed
spatially homogeneous at the macroscopic scale. In the pres-
ence of heterogeneities in the mesoscopic-scale range, i.e., at
scales much larger than the typical pore size but much smaller
than the dominant wavelength, WIFF is caused by fluid pres-
sure gradients related to stiffness contrasts associated with the
inhomogeneities (e.g., Müller, Gurevich, and Lebedev 2010).
Mesoscopic WIFF can be effectively analysed through Biot’s
theory by relaxing the inherent assumption of homogeneity at
the macroscopic scale (e.g., Rubino, Ravazzoli, and Santos
2009). In close analogy to mesoscopic WIFF, microscopic
WIFF (or squirt flow) is associated with the fluid pressure gra-
dients arising between the stiffer bulk part of the pore space
and its more compliant components, such as, for example,
open grain contacts or microcrack (e.g., Chotiros and Isakson
2004; Gurevich et al. 2010; Müller et al. 2010). The range
of validity of common wave propagation theories in response
to the topology of the pore space was explored by Sarout
(2012).

The interlayer flow in a periodic sequence of porous
layers represents one of the simplest forms of mesoscopic
WIFF amenable to analytical solutions. This scenario is, how-
ever, of particular relevance as layering is arguably the most
common heterogeneity in sedimentary environments. In their
pioneering work, White, Mikhaylova, and Lyakhovitskiy
(1975) derived the effective complex-valued and frequency-
dependent P-wave modulus for wave propagation normal to
an alternating sequence of gas- and water-saturated layers.
Important contributions of various authors have confirmed
and refined these theoretical results through different
methodological approaches (e.g., Norris 1993; Gurevich and
Lopatnikov 1995). Gelinsky and Shapiro (1997a) derived the
low- and high-frequency limits of the effective stiffness matrix,
which accounts for the anisotropy induced by the layering,
thus generalizing the well-known Backus average (Backus
1962) to poroelastic media. The frequency dependence linking
the low- and high-frequency limits of the stiffness coefficients
was then derived by Krzikalla and Müller (2011). The result-
ing model is valid for any angle of incidence and accounts for
the attenuation and velocity dispersion of compressional (P)
and for the so-called quasi (SV) and pure (SH) shear waves.

The characteristic frequency ωmeso corresponds to the
frequency of maximum production of attenuation associated
with the mesoscopic WIFF and separates the low-frequency
limit, where the fluid pressure in the sample is relaxed,
from the high-frequency limit, where the fluid pressure in the
sample is unrelaxed. This frequency depends on the diffusivity

parameter D and on the characteristic size of the mesoscopic
heterogeneities Lmeso

ωmeso � D/L2
meso, (1)

with

D = κ0

η

MPd

PU
, (2)

where κ0, M, and η denote the permeability, the fluid storage
modulus, and the fluid viscosity; and Pd and PU are the drained
and undrained P-wave moduli, respectively. A common as-
sumption inherent to all of the WIFF models at the mesoscopic
scale is that they are valid in the quasi-static regime, which
in turn implies that the characteristic frequency ωmeso asso-
ciated with the considered mesoscopic WIFF is much lower
than Biot’s characteristic or critical frequency, i.e.,

ωBiot = ηφ

κ0τρ f
, (3)

where ρ f , φ, and τ denote the pore fluid density, the porosity,
and the tortuosity of the porous matrix. In the proximity of
this frequency, the maximum attenuation due to Biot’s global
flow is produced. Given that the permeability tends to domi-
nate Biot’s characteristic frequency, the assumption of quasi-
static conditions is inherently valid for many, if not most,
low-permeability formations for the frequencies considered
in most practical geophysical applications. However, there
are also practically important scenarios involving formations
of intermediate to high permeability, such as, for example,
unconsolidated sediments, clean sandstones, karstic carbon-
ates, or fractured rocks, which may require accounting for
both Biot’s global and interlayer flows (e.g., Pride, Berryman,
and Harris 2004; Kudarova, van Dalen, and Drijkoningen
2013).

Gelinsky and Shapiro (1997b) derived a dynamic-
equivalent medium approach which captures both WIFF
mechanisms, i.e., Biot’s global and interlayer flows, as well as
scattering effects for a thinly layered medium. This solution
is, however, limited to normally incident P-waves and weak
contrasts of the material properties. Pride and Berryman
(2003a,b) developed an effective theory for heterogeneous
porous media, which are assumed composed by a mixture
of two porous phases. This model does not impose any
restrictions with regard to the geometry of the mesoscopic
heterogeneities except that the overall mechanical and hy-
draulic responses of the composite medium remain isotropic.
Despite its fundamentally generic nature, this approach only
provides closed solutions for a restricted number of idealized
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model geometries. Recently, Kudarova et al. (2013) proposed
an effective poroelastic model for periodically layered media,
which allows for arbitrary contrasts of the material properties
but is limited to normally incident P-waves.

The objective of this work is to propose a generalized
poroelastic model for layered media, which is capable of ac-
counting for both Biot’s global and interlayer flows as well as
for the anisotropy induced by the mesoscopic layering. This
model therefore naturally predicts the existence of fast and
slow P-waves and of SV- and SH-waves. We quantitatively
compare the predicted phase velocity and the attenuation of
P-wave and S-wave propagating normally to the layering and
the corresponding properties obtained through numerical sim-
ulations of wave propagation. For this direction of propaga-
tion, the phase velocity and attenuation of SV- and SH-waves
are equivalent. Such comparisons, which are technically chal-
lenging and computationally expensive and correspondingly
scarce in the literature, represent an essential step for validat-
ing theoretical developments of this kind. Indeed, the reason
for limiting the comparison of the proposed model with the
numerical benchmark to the one-dimensional case is the very
high computational cost of the latter.

2 EFFECTIVE ANISOTROPIC POROELASTIC
MODEL

Effective models are based on the generic and idealized con-
cept of replacing a heterogeneous medium with an equivalent
homogeneous medium. In this work, we consider a period-
ically layered medium composed of two alternating layers.
The period of this system is thus given as H = h1 + h2 with h1

and h2 denoting the layer thicknesses. Each layer corresponds
to a homogeneous and isotropic poroelastic medium obeying
Biot’s equations. In the long-wavelength limit λ � H, it is rea-
sonable to assume that the same governing equations describe
the effective model. To account for the overall anisotropy in-
duced by the layering, Biot’s equations need to be derived for
a transversely isotropic poroelastic medium. The poroelastic
coefficients of the effective model can then be evaluated from
those of the individual layers through volume averaging. A
sketch of the overall model setup and the scale relations is
shown in Figure 1.

2.1 Biot’s equations for effective transversely isotropic
media

Assuming time dependence of the form e−iωt, Biot’s equa-
tions of poroelasticy describing wave propagation in a

homogeneous transversely isotropic medium can be written
as (e.g., Carcione 2001)

ω2
(
ρ∗

bu + ρ∗
f w

)
= −∇ · σ , (4)

ω2
(
ρ∗

f u + ρ̃∗(ω) · w
)

= −∇ pf , (5)

where u and w are the average solid and the relative fluid–solid
displacements over the period H of the layering, which in turn
defines the averaging volume of the sample. The superscript ∗

denotes the effective poroelastic parameters that need to be
expressed in terms of volume averages of the corresponding
parameters prevailing in the layers. The effective bulk and
pore fluid densities are given by (e.g., Pride et al. 2004)

ρ∗
b =< ρb >, (6)

ρ∗
f =< ρ f >, (7)

where the brackets <> denote the volume average, which is
defined for a generic function f (z) as < f >= 1

H

∫ H
0 f (z)dz =

(h1 f1 + h2 f2)/H, with f1 and f2 denoting the values assumed
by the function in the two layers.

The bulk stress tensor σ and the pore fluid pressure pf

can be written in Voigt notation as (e.g., Carcione 2001)

σI = C∗
mI J

eJ + αI pf = (C∗
mI J

+ αIαJ M̃)eJ + αI M̃∇ · w, (8)

pf = M̃(αIeI + ∇ · w), (9)

where e is the vector of the strain components of the solid
phase, and C∗

m is the stiffness tensor of the effective dry ma-
trix. The coefficients αI are the anisotropic extensions of the
Biot–Willis constant, which in a transversely isotropic medium
are given by (e.g., Carcione 2001)

α1 = α2 = 1 −
C∗

m11
+ C∗

m12
+ C∗

m13

3Ks
, (10)

α3 = 1 −
2C∗

m13
+ C∗

m33

3Ks
, (11)

α4 = α5 = α6 = 0, (12)

where Ks is the bulk modulus of the solid grains, which is as-
sumed homogeneous in this study. The corresponding exten-
sion of the fluid storage modulus M̃ is given by (e.g., Carcione
2001; Pride et al. 2004)

M̃ = Ks

⎡
⎣(

1 − K̃
Ks

)
− φ∗

(
1 − Ks

K∗
f

)⎤
⎦

−1

, (13)
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Figure 1 Sketch of the overall model setup and scale relations λ � H � Lpore with λ denoting the wavelength, H the period of the layering,
and Lpore the characteristic length scale of the pores, respectively.

where φ∗ =< φ > is the effective porosity, and K̃ = 1
9 (2C∗

m11
+

2C∗
m12

+ 4C∗
m13

+ C∗
m33

). We assume 1/K∗
f =< 1/K f > for the

effective bulk modulus of the pore fluid (e.g., Gelinsky and
Shapiro 1997a).

The stiffness tensor of the effective dry matrix C∗
m has five

independent coefficients in a transversely isotropic medium.
These coefficients do not depend on the fluid properties and
thus can be obtained by means of Backus averaging ap-
plied to the dry frame properties of the layers (e.g., Gelinsky
and Shapiro 1997a). Their expression is explicitly given in
Appendix A. Analogously, the stiffness tensor of the effective
saturated matrix is linked to the dry frame properties through
(Gassmann 1951)

C∗
UI J

= C∗
mI J

+ αIαJ M̃. (14)

This expression is inserted into equation (8) for the bulk stress
and valid at frequencies that are sufficiently low for the fluid
pressure to be equilibrated between the pore space of the lay-
ers. Conversely, when considering wave-induced fluid flow be-
tween the layers, the frequency-dependence saturated stiffness
tensor C∗

U needs to be accounted for. As shown in Appendix B,
we therefore replace the equation (14) with the correspond-
ing analytical equation for C∗

U(ω) provided by Krzikalla and
Müller (2011). Please note that when the dry frame elastic
moduli of the layered system are homogeneous, the expres-
sions for the effective dry and saturated stiffness tensors do
indeed correctly reduce to their isotropic equivalents (e.g.,
Johnson 2001).

The remaining parameter ρ̃∗(ω) represents the effective
relative flow resistance. In a transversely isotropic medium,

ρ̃∗(ω) is a tensor with two independent components (Gelinsky
and Shapiro 1997a)

ρ̃∗(ω) =

⎛
⎜⎝ ρ̃∗

xy(ω) 0 0
0 ρ̃∗

xy(ω) 0
0 0 ρ̃∗

z (ω)

⎞
⎟⎠ . (15)

In analogy with previous works (Gelinsky and Shapiro 1997a;
Kudarova et al. 2013), it would be possible to assume the
effective relative flow resistance as

ρ̃∗
xy(ω) = i

ω

(〈
κd(ω)

η

〉)−1

, (16)

ρ̃∗
z (ω) = i

ω

〈
η

κd(ω)

〉
. (17)

These coefficients, which control the frequency dependence
of Biot’s global flow mechanism, are widely used and heuris-
tically justified by their consistency with corresponding hy-
draulic models based on Darcy’s law (e.g., Bear 1988). How-
ever, in our model, we propose for the effective components
ρ̃∗

xy(ω) and ρ̃∗
z (ω)

ρ̃∗
xy(ω) = i

ω

(
< ρ f κd(ω) >

ρ∗
f η

∗

)−1

, (18)

ρ̃∗
z (ω) = i

ω

η∗

ρ∗
f

〈
ρ f

κd(ω)

〉
, (19)

where η∗ =< η >. These coefficients allow for a better agree-
ment with respect to the numerical benchmark, as it will be
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shown later. The dynamic permeability κd(ω) is defined by the
model of Johnson et al. (1987)

κd(ω) = κ0

⎛
⎝

√
1 − i

4
nj

ω

ωBiot
− i

ω

ωBiot

⎞
⎠

−1

, (20)

where the parameter nj is taken to be 8 (e.g., Pride 2005) and
not critical in the course of our theoretical investigation.

2.2 Plane-wave solutions

We consider a general plane-wave solution for homoge-
neous waves. The displacements vectors are of the form
u = u0eik·x and w = w0eik·x, where u0 and w0 are complex
constant vectors and k is the wavenumber vector. Assuming
k = k(lx, ly, lz), where k is the magnitude of the wavenum-
ber vector and lx, ly, and lz are the direction cosines, and
substituting the plane-wave solution into the equations of
motion (4) and (5) yields the Kelvin–Christoffel equation

(D−1� − ω2

k2
I 6) · U = 0, (21)

where U = [u w]T and � = L · C · LT is the symmetric
Kelvin–Christoffel matrix with

C =

⎛
⎜⎝ C∗

UI J
(ω) M̃αJ

M̃(αJ )T M̃

⎞
⎟⎠ , (22)

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

lx 0 0 0 lz ly 0
0 ly 0 lz 0 lx 0
0 0 lz ly lx 0 0
0 0 0 0 0 0 lx

0 0 0 0 0 0 ly

0 0 0 0 0 0 lz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23)

and

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ∗
b 0 0 ρ∗

f 0 0
0 ρ∗

b 0 0 ρ∗
f 0

0 0 ρ∗
b 0 0 ρ∗

f

ρ∗
f 0 0 ρ̃∗

xy(ω) 0 0
0 ρ∗

f 0 0 ρ̃∗
xy(ω) 0

0 0 ρ∗
f 0 0 ρ̃∗

z (ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

The solution of the eigenvalue problem of equation (21),
whose characteristic equation is det(D−1� − vc

2 I 6) = 0, pro-
vides the anisotropic and complex-valued velocities vc

2 =
ω2/k2 for all the possible wave modes.

Table 1 Physical properties of the grain, matrix, and saturating pore
fluid for the water-saturated harder and gas-saturated softer layers
composing the considered periodically setup used to validate the pro-
posed methodology

Parameter Harder layer Softer Layer

Grain bulk modulus, Ks 37 GPa 37 GPa
density, ρs 2650 Kg/m3 2650 Kg/m3

Matrix dry bulk modulus, Km 16.0 GPa 8.0 GPa
dry shear modulus, μ 19.1 GPa 9.5 GPa
porosity, φ 0.2 0.3
permeability, κ0 2 D 10 D
tortuosity, τ 1.5 1.5

Fluid density, ρ f 1000 Kg/m3 1.2 Kg/m3

viscosity, η 10−3 Pa·s 10−5 Pa·s
bulk modulus, K f 2.25 GPa 0.15 MPa

3 VALIDATION

To validate the proposed model, we compare the analytical
solutions for the P-wave and S-wave phase velocities and at-
tenuation for the particular case of wave propagation per-
pendicular to layering with those obtained from numerical
simulations. To do so, we consider a model consisting of the
periodic alternation of a harder water-saturated layer and a
softer gas-saturated layer (Table 1). The thicknesses of water-
and gas-saturated layers are 4 cm and 1 cm, respectively,
which in turn corresponds to an effective gas saturation of
Sg = 20%. Please note that the primary purpose of this setup
is to validate the proposed methodology for the particularly
challenging case when the critical frequencies of mesoscopic
and macroscopic wave-induced fluid flows (WIFFs) are simi-
lar and the attenuation produced by the two mechanisms is of
comparable magnitude. As such, the parametrization of this
model is somewhat hypothetical and rather generic, which
involves a heterogeneous distribution of mechanical and hy-
draulic properties as well as two different saturating pore flu-
ids. This parameterization does not intend to reproduce any
particular geological scenario.

3.1 P- and S-wave solutions for vertical direction
of propagation

To find the solution for normally incident P- and S-waves, we
solve the eigenvalue problem of equation (21) for lx = ly = 0
and lz = 1. The three independent eigenvalues vc

2 we obtain
correspond to an S-wave and to the fast and slow P-waves.
Please note that, for this direction of propagation, there exists
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only one S-wave since the SV- and the SH-wave modes are
equivalent. The complex velocities for P-waves are given by

vcP

−2(ω) = −γ ±
√√√√γ 2 − 4

ρ∗
b ρ̃∗

z (ω) − ρ∗2

f

C∗
U33

(ω)M̃ − α3
2 M̃2

, (25)

where the plus and minus signs refer to the slow and fast
propagating modes, respectively, and

γ =
ρ∗

b M̃ + C∗
U33

(ω)ρ̃∗
z (ω) − 2ρ∗

f α3 M̃

C∗
U33

(ω)M̃ − α3
2 M̃2

. (26)

The complex velocity for the S-wave is given by

vcS

−2(ω) =
ρ∗

b − ρ∗2
f

ρ̃∗
xy(ω)

C∗
U44

(ω)
. (27)

The P- and S-wave phase velocities and inverse quality fac-
tors can then be evaluated from the corresponding complex
velocities

V(ω) = 1
�(vc

−1)
, (28)

Q−1(ω) = −2
�(vc

−1)
�(vc

−1)
. (29)

3.2 Numerical modelling

Simulations of P- and S-waves propagating perpendicular to
the layering are based on a numerical solution of Biot’s one-
dimensional equations in the space–frequency domain. We
employ a finite-element technique with standard linear basis
functions in conjunction with absorbing boundary conditions
at the edges of the numerical domain (Appendix C). The over-
all size of the considered computational domain is 100 m,
which is discretized using elements of size �z = 5 · 10−4 m.
The source has the time history of a Ricker wavelet and is lo-
cated at z0 = 45 m. We perform several numerical simulations
for a wide range of values for the source central frequency f0,
which then allows for evaluating phase velocities and attenu-
ation of P-wave and S-wave over a broad frequency range.
In order to estimate these properties, we apply the cross-
spectrum and the spectral ratio methods (e.g., Molyneux and
Schmitt 2000; Baron and Holliger 2011; Milani et al. 2015)
to the synthetic seismograms recorded for all pairwise combi-
nations of receivers, which are located at zr = 50, 52, 54, and
56 m in the computational domain. The primary reason why
we limit the validation procedure to normal incidence is that,
in conjunction with a very large domain, we need an exces-
sively fine discretization of our numerical model to uniformly

achieve the required accuracy over a very broad frequency
range covering approximately three orders of magnitude.

3.3 Biot’s global flow

In the following analyses, we describe the situations in terms
of the transition frequencies fBiot and fmeso. This allows us to
illustrate how these two frequencies are affected by changes
in permeability. Before considering the scenario depicted by
the material properties of Table 1, we validate the proposed
analytical solution in the exclusive presence of Biot’s global
flow. To realize this scenario, we increase the permeabilities
of both layers by two orders of magnitude compared with
the values given in Table 1, which shifts the attenuation peaks
associated with Biot’s global flow and interlayer flow towards
significantly lower and higher frequencies, respectively.

Figure 2 shows a comparison of the P-wave phase ve-
locity and the inverse quality factor predicted by the method
proposed in this study, the model of White et al. (1975), and
numerical simulations. There is good agreement between the
P-wave phase velocity and inverse quality factor predicted by
the proposed effective poroelastic model and those obtained
from numerical simulations over a broad frequency range.
Conversely, the solution provided by the model of White et al.

(1975) only provides a good agreement for the P-wave phase
velocity in the low-frequency limit where Gassmann’s (1951)
relation C∗

U33
= C∗

m33
+ α3

2 M̃ is satisfied by both models. The
mismatch over the remainder of the considered frequency
range is expected since the model of White et al. (1975) is
not designed for describing Biot global flow, which, in this
case, occurs at fBiot � 100 Hz. Significant discrepancies be-
tween the proposed effective poroelastic model and the numer-
ical simulations are then observed at frequencies higher than
∼ 5 kHz. Above this threshold frequency, the long-wavelength
approximation, upon which the effective model is based, be-
comes inappropriate. For visualization purposes, we there-
fore consider numerical solutions at frequencies lower than
10 kHz.

Similarly, Figure 3 shows good agreement between the
S-wave phase velocity and the inverse quality factor predicted
by the proposed effective poroelastic model and those ob-
tained from numerical simulations over a broad frequency
range. Moreover, in this case, the low-frequency limit for the
S-wave phase velocity is common to both models and analyt-
ically described by Gassmann’s (1951) relation C∗

U44
= C∗

m44
.

Figures 2 and 3 show that using equations (16) and
(17) leads to an identical solution for the P-wave (dashed
blue curve), whereas for the S-wave, it produces a solution
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Figure 2 (a) P-wave phase velocity and (b) in-
verse quality factor as functions of frequency
for the model setup shown in Figure 1 and
wave propagation perpendicular to the layer-
ing. Model parameters correspond to those of
Table 1 apart from the permeability, which
has been increased by two orders of magni-
tude. Green and red curves correspond to the
analytical solution of White et al. (1975) and
the effective poroelastic model proposed in
this study, respectively. The dashed blue curve
corresponds to this effective poroelastic model
using the averaging rule of equation (17) for
the relative flow resistance. The black curve
represents the results obtained from numeri-
cal simulations.

Figure 3 (a) S-wave phase velocity and (b) in-
verse quality factor as functions of frequency
for the model setup shown in Figure 1 and
wave propagation perpendicular to the layer-
ing. Model parameters correspond to those of
Table 1 apart from the permeability, which
has been increased by two orders of magni-
tude. Green and red curves correspond to the
analytical solution of White et al. (1975) and
the effective poroelastic model proposed in
this study, respectively. The dashed blue curve
corresponds to this effective poroelastic model
using the averaging rule of equation (16) for
the relative flow resistance. The black curve
represents the results obtained from numeri-
cal simulations.

that significantly deviates from the numerical simulations.
Conversely, the coefficients of equations (18) and (19) pro-
posed in this work allow for a reconciliation of the S-wave
phase velocity and inverse quality factor with respect to the

numerical simulations. Furthermore, the proposed coefficients
are proportional to the arithmetic and harmonic averages of
the permeability for fluid–solid displacements tangential or
normal to the layering, respectively, thus naturally retaining
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1142 M. Milani et al.

Figure 4 (a) P-wave phase velocity and
(b) inverse quality factor as functions of
frequency for the model setup shown in
Figure 1 and wave propagation perpen-
dicular to the layering. Model parameters
correspond to those of Table 1 apart from
the permeability, which has been lowered
by two orders of magnitude. Green and
red curves correspond to the analytical
solutions of White et al. (1975) and
the effective poroelastic model proposed
in this study, respectively. The black
curve denotes the results obtained from
numerical simulations.

a generic characteristic of fluid flow in layered media. In this
context, it is also important to note that the coefficients that
we propose reduce to those of equations (16) and (17) for
periodically layered media saturated by a single fluid.

3.4 Interlayer flow

In analogy to the case of Biot’s global flow considered earlier,
we can validate our model for mesoscopic WIFF by reducing
the permeabilities of both layers by two orders of magnitude
with respect to the values given in Table 1. This results in a
clear separation of the interlayer and global flows by shifting
the corresponding attenuation peaks towards significantly
lower and higher frequencies, respectively. For the interlayer
flow case, we only consider the P-wave solution because the
S-wave does not produce WIFF at normal incidence to
layering.

Figure 4 shows good agreement over a broad frequency
range between the P-wave phase velocity and inverse quality
factor predicted by the proposed effective poroelastic model
(red curve) and the model of White et al. (1975) (green curve),
as well as with corresponding values obtained from the nu-
merical simulations (black curves) over a broad frequency
range. As expected, when fmeso � 200 Hz is much smaller
than fBiot � 1 MHz, the solution by White et al. (1975)

provides a proper description of the P-wave attenuation and
velocity dispersion due to interlayer WIFF. Compared with
the previously considered scenario where only Biot’s global
flow prevailed (Figure 2), scattering effects become visible at
a higher threshold frequency of ∼ 10 kHz. The reason for
this shift is that scattering effects now prevails in the high-
frequency limit of the mesoscopic WIFF where the stiffness
contrast between the layers is reduced (e.g., Johnson 2001).

3.5 Biot’s global and interlayer flows

Finally, we consider the combined effects of the two WIFF
mechanisms acting at similar frequencies by using the perme-
ability values given in Table 1. Figure 5 shows that, for fre-
quencies smaller than ∼ 4 kHz, the proposed effective poroe-
lastic model agrees well with the numerical results, whereas
the model of White et al. (1975) systematically underestimates
the attenuation at all considered frequencies. In the frequency
range between 4 kHz and 10 kHz, some discrepancies be-
tween the proposed model and the numerical solutions can be
noticed. These discrepancies are likely be related to the fact
that our analytical model is based on a superposition of the
global and interlayer flow mechanisms and hence does not
account for inertial effects arising close to Biot’s critical fre-
quency in the mesoscopic flow mechanism. However, in this
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Figure 5 (a) P-wave phase velocity and
(b) inverse quality factor as functions of
frequency for the model setup shown in
Figure 1 and wave propagation perpen-
dicular to the layering. Model parameters
correspond to those of Table 1. Green and
red curves correspond to the analytical solu-
tions of White et al. (1975) and the effective
poroelastic model proposed in this study,
respectively. The black curve denotes the
results obtained from numerical simulations.

context, it is important to note that the long-wavelength as-
sumption, upon which our model is based, looses its validity
in this frequency range, and hence scattering effects are also
likely to contribute to the observed discrepancies with regard
to the numerical solutions.

4 A NGLE DEPENDENCY OF P- , S V - ,
AND S H-WAV E S

In order to compute the analytical solutions valid for any
angle of propagation, we consider wave propagation in the xz

plane and evaluate the eigenvalues of equation (21) by setting
ly = 0. The resulting linear system is associated with a 6 × 6
matrix that can be decomposed into two uncoupled linear
subsystems of dimensions 4 × 4 and 2 × 2. This mathematical
decomposition reflects the fact that the motion of the SH-
wave is decoupled from the other wave modes. The resulting
solutions for the phase velocities and inverse quality factors of
P-, SV-, and SH-waves depend on the angular frequency ω and
on the angle of incidence. This is illustrated in Figure 6 where,
for a frequency of 4 kHz, we compare the angle-dependent
solutions of the proposed model with those of the model of
Krzikalla and Müller (2011) for the scenario accounting for
both Biot’s global and interlayer flows (Table 1). At normal
incidence, the agreement between the proposed model and the
numerical benchmark is excellent at this frequency (Figure 5).

As expected, we see that, for both models, the phase
velocities of the three wave modes exhibit a pronounced
anisotropy due to the elastic contrast between the two
layers for both models (e.g., Carcione 2001). That is, the
P- and SH-wave velocities are increasing as the direction
of propagation tends to be parallel to the layering, whereas
the SV-wave velocity reaches its maximum for an angle of
propagation of 45◦. Accounting for both Biot’s global and
interlayer wave-induced fluid flow (WIFF) increases the phase
velocity with respect to the model of Krzikalla and Müller
(2011), which only considers interlayer WIFF, at all angles.
This discrepancy is expected to vanish in the low-frequency
limit and to reach its maximum in the high-frequency limit
(Figure 5). Again, the attenuation predicted by the proposed
model is significantly higher than that of Krzikalla and Müller
(2011). The reason for the differing P- and S-wave attenuation
characteristics is that the former is affected by Biot’s global
and interlayer WIFF, whereas the latter is entirely governed
by Biot’s global flow. This also explains the observation
that the S-wave attenuation level predicted by mesoscopic
model of Krzikalla and Müller (2011) is largely negligible,
whereas it is very significant for the model proposed in this
study. The moderate anisotropy of the inverse P-wave quality
factor for the effective poroelastic model is entirely caused
by mesoscopic WIFF, whereas the Biot mechanism is purely
isotropic as for the SV- and SH-waves attenuation (Figure 6).
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Figure 6 P-, SV-, and SH-wave phase velocities
and inverse quality factors at frequency of 4 kHz
as functions of the angle of incidence predicted
by the proposed effective poroelastic model (red
curves) and by the model of Krzikalla and Müller
(2011) (green curves). The setup of the model
and its parametrization are given in Figure 1 and
Table 1, respectively. Therefore, both Biot’s
global and interlayer flows are considered in this
situation (Figure 5).

The main cause for the isotropic attenuation related to Biot’s
global flow is that only the water-saturated layer contributes
significantly to the corresponding WIFF; therefore, the two
coefficients for the relative flow resistance of equations (18)
and (19) are very similar. For completeness, we have also
verified that the two solutions for the SV- and SH-waves are
equivalent for propagation perpendicular to the layering.

5 D ISCUSS ION A N D C ON C L USI ON S

We have developed a generalized effective poroelastic model
which superimposes Biot’s global and interlayer flows for
a medium composed of periodically distributed mesoscopic

layers, which also accounts for the inherent anisotropy related
to the layering. The proposed model is useful whenever at
least one of the layers is characterized by high permeability,
thus shifting the characteristic frequency of Biot’s macro-
scopic mechanism into the sonic to seismic frequency range,
including all cases producing a negligible amount of attenu-
ation due to interlayer WIFF. To include interlayer flow, we
replace the effective stiffness tensor for the undrained sample
in the low-frequency limit with a corresponding frequency-
dependent tensor, which analytically describes WIFF in the
mesoscopic scale range as well as the anisotropy associated
with the layering. The general solution resulting from this
model correctly predicts the existence of the fast and slow
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P-wave modes as well as of quasi and pure S-wave modes.
The proposed model was validated quantitatively through
comparisons with a numerical solution of Biot’s poroelastic
equations of motion for wave propagation perpendicular
to the layering and qualitatively by assessing its angle
dependence and comparing it with the mesoscopic model of
Krzikalla and Müller (2011). The reason for the limitation
of the quantitative validation to the one-dimensional case
is the high computational cost of the numerical solution,
due to the very fine spatial discretization that is required in
conjunction with the large model size and broad frequency
range of approximately three orders of magnitude.

Comparisons of the P- and S-wave phase velocities
and inverse quality factors for normal incidence with the
corresponding numerical results show very good agreement
as long as the considered frequencies fulfill the inherent long-
wavelength assumption with respect to the layer thicknesses.
When interlayer flow occurs at frequencies much lower than
those governing Biot’s global flow, the generalized model
proposed in this study is also in good agreement with the
classic mesoscopic model of White et al. (1975). For the
scenarios fBiot � fmeso and fmeso � fBiot, we were able to
quantitatively corroborate this validation only for the WIFF
mechanism prevailing at lower frequencies because, at higher
frequencies, scattering effects were increasingly contaminat-
ing the numerical solution (Figs. 2 and 4). Attempts to extend
this validation procedure to the respective higher frequent
WIFF mechanism were hampered by the virtual absence of ge-
ologically realistic models satisfying fBiot � fmeso � fscattering

or fmeso � fBiot � fscattering. A reasonably strong indica-
tion for the fundamental validity of the proposed model
is, however, provided by the fact that we observe good
agreement with its numerical benchmark for fmeso � fBiot

at frequencies close to 10 kHz , where the model by White
et al. (1975) diverges in a systematic and significant manner
(Figure 4).

A limitation of the proposed model is that, for fBiot �
fmeso, it simply superimposes Biot’s global and interlayer WIFF
without being able to account for inertial effects on inter-
layer flow. The reason for this is that the analytical solutions
of White et al. (1975) and Krzikalla and Müller (2011) for
mesoscopic WIFF, which are employed in our model, are ex-
act only for frequencies lower than fBiot and only provide
approximate solutions for higher frequencies. The magnitude
of the associated inaccuracies is as of yet unknown and inher-
ently difficult to quantify through comparisons with numer-
ical solutions as scattering effects become important in the

same frequency range. In the view of the fact that the corre-
sponding error is caused by the influence of the unaccounted
dynamic terms associated with the global flow mechanism on
WIFF in the mesoscopic scale range, it is reasonable to assume
that its magnitude is likely to be related to that of the corre-
sponding attenuation. In this context, it is important to note
that, despite the rather high attenuation level, the proposed
model provides a solution that is not too far from its numeri-
cal benchmark in the frequency range where both inertial and
scattering effects are expected to be at play (Figure 5).

Finally, it is important to note that the proposed method-
ology can be further generalized to account for the effects
of squirt flow. To this end, one needs to replace the cur-
rent dry frame elastic moduli by those resulting from the
considered squirt flow model (e.g., Gurevich et al. 2010).
A corresponding approach has, for example, been taken by
Milani et al. (2015) when investigating the potential impor-
tance of this mechanism in unconsolidated sediments. Given
the methodological character of this work, we chose to ig-
nore this mechanism as its inclusion would make a rigorous
numerical benchmarking impossible.
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APPENDIX A: STIFFNESS TENSOR OF THE
EFFECTIVE DRY MATRIX

The elastic stiffness tensor for the dry matrix of a layered
medium in the long-wavelength limit is effectively transversely
isotropic and given by the so-called Backus average (Backus
1962). For the symmetry axis in the z-direction, i.e., horizon-
tal layering, the stiffness tensor C∗

m can be written in Voigt
notation:

C∗
m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C∗
m11

C∗
m12

C∗
m13

0 0 0

C∗
m12

C∗
m11

C∗
m13

0 0 0

C∗
m13

C∗
m13

C∗
m33

0 0 0

0 0 0 C∗
m44

0 0

0 0 0 0 C∗
m44

0

0 0 0 0 0 C∗
m66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.1)

where

C∗
m11

=
〈

4μ(λm + μ)
Pd

〉
+

〈
1
Pd

〉−1 〈
λm

Pd

〉2

, (A.2)

C∗
m12

=
〈

2μλm

Pd

〉
+

〈
1
Pd

〉−1 〈
λm

Pd

〉2

, (A.3)

C∗
m13

=
〈

1
Pd

〉−1 〈
λm

Pd

〉
, (A.4)
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C∗
m33

=
〈

1
Pd

〉−1

, (A.5)

C∗
m44

=
〈

1
μ

〉
, (A.6)

C∗
m66

=
C∗

m11
− C∗

m12

2
= 〈μ〉 , (A.7)

with Pd = λm + 2μ and λm denoting the dry frame P-wave
modulus and Lamé coefficient.

APPENDIX B: STIFFNESS TENSOR OF THE
E F F E C T I V E S A T U R A T E D M A T E R I A L

The poroelastic extension of the Backus average (Backus
1962) provides the relaxed and unrelaxed limits for fluid-
saturated porous layered media (Gelinsky and Shapiro
1997a). At intermediate frequencies, interlayer flow, which
causes velocity dispersion and attenuation, may occur due to
stiffness contrasts between the layers. The complex-valued
and frequency-dependent effective undrained stiffness tensor
C∗

U(ω) can be written in Voigt notation (Krzikalla and Müller
2011)

C∗
U (ω) =⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C∗
U11

(ω) C∗
U12

(ω) C∗
U13

(ω) 0 0 0

C∗
U12

(ω) C∗
U11

(ω) C∗
U13

(ω) 0 0 0

C∗
U13

(ω) C∗
U13

(ω) C∗
U33

(ω) 0 0 0

0 0 0 C∗
U44

(ω) 0 0

0 0 0 0 C∗
U44

(ω) 0

0 0 0 0 0 C∗
U66

(ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B.1)

where C∗
UI J

(ω) = Cunrelaxed
I J − R(ω)[Cunrelaxed

I J − Crelaxed
I J ], and

R(ω) = C33(ω)−Cunrelaxed
33

Crelaxed
33 −Cunrelaxed

33
is the scalar complex-valued relaxation

function. White et al. (1975) derived the equivalent P-wave
modulus C33(ω) based on Biot’s (1956a, 1956b) theory for
periodically layered media with two alternating porous layers

C33(ω) =
⎡
⎣〈

1
PU

〉
+

2
(

α1 M1
PU1

− α2 M2
PU2

)2

iωL
2∑

j=1

η j
κoj

ks j

coth(ks j

Lj
2 )

⎤
⎦

−1

, (B.2)

where the subscripts refer to the properties of the two layers.
In this equation, α is the so-called Biot–Willis constant, PU =
Pd + α2 M is the undrained P-wave modulus, and M is the
fluid storage modulus. These parameters are given by

α = 1 − Km

Ks
, (B.3)

M =
(

α − φ

Ks
+ φ

K f

)−1

, (B.4)

where Km denotes the bulk modulus of the dry matrix.
The remaining parameter ks = √

iω/D is the wavenumber of
Biot’s slow wave. The pressure diffusivity D is given by

D = κ0

η

MPd

PU
. (B.5)

The set of equations for the relaxed moduli Crelaxed
I J is given

by (Gelinsky and Shapiro 1997a)

Crelaxed
11 = C∗

m11
+ X2

Z
, (B.6)

Crelaxed
12 = C∗

m12
+ X2

Z
, (B.7)

Crelaxed
13 = C∗

m13
+ XY

Z
, (B.8)

Crelaxed
33 = C∗

m33
+ Y2

Z
, (B.9)

Crelaxed
44 = C∗

m44
, (B.10)

Crelaxed
66 = Crelaxed

11 − Crelaxed
12

2
= C∗

m66
, (B.11)

with

X = −Z

(〈
2αμ

Pd

〉
+

〈
α

Pd

〉 〈
λm

Pd

〉 〈
1
Pd

〉−1
)

, (B.12)

Y = −Z

(〈
α

Pd

〉 〈
1
Pd

〉−1
)

, (B.13)

Z =
(〈

1
M

〉
+

〈
α2

Pd

〉
−

〈
α

Pd

〉2 〈
1
Pd

〉−1
)−1

. (B.14)

The corresponding set of equations for the unrelaxed moduli
Cunrelaxed

I J is given by (Gelinsky and Shapiro 1997a)

Cunrelaxed
11 =

〈
4μ(λU + μ)

PU

〉
+

〈
1
PU

〉−1 〈
λU

PU

〉2

, (B.15)

Cunrelaxed
12 =

〈
2μλU

PU

〉
+

〈
1
PU

〉−1 〈
λU

PU

〉2

, (B.16)

Cunrelaxed
13 =

〈
1
PU

〉−1 〈
λU

PU

〉
, (B.17)
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Cunrelaxed
33 =

〈
1
PU

〉−1

, (B.18)

Cunrelaxed
44 = Crelaxed

44 , (B.19)

Cunrelaxed
66 = Crelaxed

66 , (B.20)

where λU = λd + α2 M is the undrained Lamé coefficient.

APPENDIX C: NUMER I C A L MODE LI N G
P R O C E D U R E

In the following, we derive the finite-element equations used
in the numerical experiments for the compressional mode.
The derivation of the shear mode equations is analogous and
can be easily obtained following the same analytic strategy
depicted below.

Biot’s equations for the solid and relative fluid–solid dis-
placements of a P-wave propagating in the z-direction are
given by

ω2
(
ρbuz + ρ f wz

) = −∂σ3

∂z
− F s

z z ∈ �, (C.1)

ω2
(
ρ f uz + ρz (ω) wz

) = −∂pf

∂z
− F f

z z ∈ �, (C.2)

where we have included two seismic sources F s and F f acting
on the solid and fluid phases, respectively. Here, � = [0, L] is
the 1D domain of total length L. The constitutive equations
in this case reduce to

σ3 = PU
∂uz

∂z
+ αM

∂wz

∂z
, (C.3)

pf = M
(

α
∂uz

∂z
+ ∂wz

∂z

)
, (C.4)

where PU is the undrained P-wave modulus, α is the Biot
coefficient, and M is the fluid storage modulus, as defined
in Appendix B. To solve equations (C.1)-(C.4), we impose
absorbing boundary conditions on the boundaries of �:

σ3 = −iω
(
d11uz + d13wz

)
, z = 0 and z = L, (C.5)

pf = −iω
(
d31uz + d33wz

)
, z = 0 and z = L. (C.6)

The coefficients d31 and d33 are elements of D = (di j ), which
correspond to a 3 × 3 positive definite matrix that depends
on the porous medium properties (Zyserman et al. 2010).

Multiplying equations (C.1) and (C.2) by a function
v ∈ H1(�) = {

v ∈ L2(�) : ∂v

∂z ∈ L2(�)
}

and integrating over
the entire domain � yields

∫
�

ω2ρbuzvd� +
∫

�

ω2ρ f wzvd� = −
∫

�

∂σ3

∂z
vd�

−
∫

�

F svd�, (C.7)

∫
�

ω2ρ f uzvd� +
∫

�

ω2ρz(ω)wzvd� = −
∫

�

∂pf

∂z
vd�

−
∫

�

F f vd�. (C.8)

We integrate by parts the first terms of the right-hand side of
both equations (C.7) and (C.8), which leads to the weak form
of the problem

ω2 (
ρbuz, v

) + ω2 (
ρ f wz, v

) =
(

σ3,
∂v

∂z

)
− 〈

σ3, v
〉 − (F s, v) ,

(C.9)

ω2
(
ρ f uz, v

) + ω2
(
ρz(ω)wz, v

) =
(

pf ,
∂v

∂z

)
− 〈

pf , v
〉

−(F f , v). (C.10)

We use (·, ·) and 〈·, ·〉 to denote the inner product over the
entire domain � and over its boundary ∂�, respectively.

The solution for the displacements uz(z) and wz(z) of
the weak form (C.9) and (C.10) subjected to the absorbing
boundary conditions (C.5) and (C.6) can be numerically ap-
proximated by using a finite-elements approach. To this end,
we first define a partition τ of the entire domain � into N

elements n = 1, 2, . . . , N:

τ = {
[zn−1, zn], n = 1, . . . , N

}
. (C.11)

We also define piecewise linear basis functions over the finite-
element mesh that are globally continuous in �

νn(z) =

⎧⎪⎪⎨
⎪⎪⎩

z−zn−1
hn

if z ∈ [zn−1, zn]
zn+1−z
hn+1

if z ∈ [zn, zn+1]

0 otherwise

(C.12)

where hn = zn − zn−1 is the length of the nth element.
Then, we can approximate uz(z) and wz(z) by a linear

combination of the basis functions {νn(z)} and solve the weak
form of the problem using the constitutive relations (C.3) and
(C.4) and boundary conditions (C.7) and (C.8). The conver-
gence of this solution is demonstrated by Douglas, Sheen,
and Santos (1994). The unknowns correspond to the solid
and fluid displacements in each node of the mesh. The finite-
element approach outlined above leads to a linear system of
2N + 2 equations characterized by a positive definite hepta-
diagonal matrix for each angular frequency ω.
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