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Volumen XXIII, No. 1, Año 2016

I.S.S.N. 1315–4125

Editor
Oswaldo Araujo

Editores Asociados
Carlos Di Prisco y Henryk Gzyl
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ca en Venezuela. Para más información ver su portal de internet:
http://www.ivic.gob.ve/matematicas/?mod=boletines.php
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Solution of a functional equation related to the

Pythagorean Proposition

Lucio R. Berrone

Abstract. The functional equation

f(x+ y) = f(x) + f(y) + 2f(Φ(x, y)), x, y > 0,

is solved for pairs (f,Φ) constituted by a strictly monotonic func-
tion f and a sufficiently regular Lagrangian mean Φ. Some related
questions stated in a recent paper by R. Ger ([5]) are answered.

Resumen. La ecuación funcional

f(x+ y) = f(x) + f(y) + 2f(Φ(x, y)), x, y > 0,

es resuelta para pares (f,Φ) constituidos por una función estricta-
mente monótona y un Lagrangiano suficientemente regular Φ. Al-
gunas preguntas formuladas en un reciente art́ıculo de R. Ger ([5])
son respondidas.

2010 Mathematics Subject Classification: 39B22.

Keywords and Phrases: composite functional equations in several variables, Lagrangian means,

reduction to differential equations.

1 Introduction

The composite functional equation

f(x+ y) = f(x) + f(y) + 2f(Φ(x, y)), x, y > 0, (1)

for the unknown pair of functions (f,Φ) was settled in [3] in connection with a
functional approach to the Pythagorean Proposition. Indeed, the equation (1)
admits the pair

f(x) = cx2, (c 6= 0), Φ(x, y) =
√
xy (2)

as a distinguished solution and then, the associative operation 4 defined on R+

by
x4 y = f−1(f(x) + f(y)) (3)



38 Lucio R. Berrone

gives the length
√
x2 + y2 of the hypotenuse of a right triangle in terms of the

lengths x, y of its legs. Theorem 1 in [3] can be stated in the following way.

Theorem 1. The pair (2) is the unique solution to equation (1) in the class of
pairs (f,Φ) consisting of a reflexive function Φ (i.e., Φ(x, x) = x, x > 0) and a
continuous and strictly monotonic function f such that the operation 4 defined
by (3) is homogeneous (i.e. λx4 λy = λ(x4 y), x, y, λ > 0).

The study of the equation (1) was deepen by R. Ger in [5]. In this article,
equation (1) is extracted of its originating geometric frame and then, suitable
analytic hypotheses on its solutions are freely imposed to characterize the pair
(2). Several orders of differentiability and existence of the limit lim x↓0f(x)/x2

are among the assumptions made on the function f . As a matter of fact, once
suppressed the hypothesis of homogeneity on the operation 4, the reflexivity
of the function Φ turns out to be an insufficient condition to characterize the
pair (2) and it must be consequently reinforced. To this purpose, the functional
form

Φ(x, y) = h−1

(
h(x) + h(y)

2

)
(4)

with h : R+ → R a strictly monotonic and continuous function is prescribed to
the function Φ by R. Ger, so that the equation (1) becomes

f(x+ y) = f(x) + f(y) + 2f

(
h−1

(
h(x) + h(y)

2

))
, x, y > 0. (5)

Before continuing it will be useful to remind some basic terminology and
facts concerning means. Let I be a real interval. A function M : I × I → I is
said to be a mean (defined on the interval I) when the inequalities

min{x, y} ≤M(x, y) ≤ max{x, y}, x, y ∈ I,

are satisfied by M . Note that a mean M is a reflexive function. M is said sym-
metric provided that M(y, x) = M(x, y), x, y ∈ I. By a strict mean (defined
on the interval I) is understood a continuous function M : I × I → I which is
reflexive and strictly increasing in both variables. The strict inequalities

min{x, y} < M(x, y) < max{x, y}, x, y ∈ I, x 6= y,

are clearly satisfied by a strict mean M ; whence a strict mean is a (continuous)
mean.

A function Φ of the form (4) belongs to a particular class of strict (symmet-
ric) means named quasiarithmetic means (cf. Chap. 4 of [4], for example). The
function h in (4) is said to be the generator function of the mean Φ. Most of the
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classical means are quasiarithmetic; nevertheless, there exist strict symmetric
means that are not quasiarithmetic: the logarithmic mean

L(x, y) =

{ x−y
ln x−ln y , x 6= y

x, x = y

is a remarkable example of this fact. L(x, y) belongs instead to another impor-
tant class of strict symmetric means: the class of Lagrangian means. Given a
continuous and strictly increasing function h defined on the interval I, the La-
grangian mean with generator function h is the strict symmetric mean defined
(cf. [4], pg. 403 and ff.) by

Λ(x, y) =

{
h−1

(
1

y−x
∫ y

x
h(ξ) dξ

)
, x 6= y

x, x = y
.

Returning to the main exposition, let us quote a result by R. Ger (Theorem
3 in [5]) furnishing the strictly monotonic solutions to equation (5).

Theorem 2. Let f, h : R+ → R be two strictly monotonic functions and let h
be continuous. Then the pair (f, h) yields a solution to the equation (5) if and
only if there exist a, b, c ∈ R, a 6= 0 6= c, such that

f(x) = cx2 and h(x) = a lnx+ b, x > 0.

Note that the geometric mean is the quasiarithmetic mean generated by the
functions h(x) = a lnx+ b of the theorem.

In the final section of [5], the author asks for solutions to equation (1) in the
case in which Φ is a general (symmetric, non quasiarithmetic) mean defined on
R+. A response to this question for regular Lagrangian means is given in the
next section, where the the pairs (f, h) of strictly monotonic functions solving
the equation

f(x+ y) = f(x) + f(y) + 2f

(
h−1

(
1

y − x

∫ y

x

h(ξ) dξ

))
, x, y > 0, (6)

are determined for a sufficiently regular generator function h. Concretely, it is
established the following:

Theorem 3. A pair (f, h) of strictly monotonic functions with h ∈ C4 solves
equation (6) if and only if there exist a, b, c ∈ R, a 6= 0 6= c, such that

f(x) = cx2 and h(x) = ax−2 + b, x > 0. (7)

It should be noted that h(x) = ax−2 + b is the Lagrangian generator corre-
sponding to the geometric mean. As a consequence of this theorem the equation
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(1) with Φ = L(x, y), the logarithmic mean, does not admit strictly monotonic
solutions. This observation answer a question raised in the remarks at the end
of [5]. Another consequence of a different order is the following: others classes
of means share with the class of quasiarithmetic means the property of making
collapse to a unique pair the solutions to equation (1). Thus, the consideration
without qualifications of the case in which Φ is quasiarithmetic as an “optimal
setting” for solving equation (1) (as made by R. Ger in [5]) may be not adjusted.

The next section contains a proof of Theorem 3. Some complementary dis-
cussion of equation (1) is presented in the following Section 3. The tedious
computations involved in the proof of Theorem 3 are detailed in the final Ap-
pendix.

2 Proof of Theorem 3

Let us begin by making an elementary observation. By setting y = x in equation
(1) and taking into account the reflexivity of Φ, it is seen that the Schröder
equation

f(2x) = 4f(x), x > 0, (8)

is satisfied by every solution f to (1). This fact together with

f (n)(2x) = 22−nf (n)(x), x > 0, (n ∈ N), (9)

which is inductively obtained from (8) by differentiation, will be often used in
what follows.

A regularity result on monotonic solutions to equation (1) is now given.

Theorem 4. Let f be a monotonic solution to equation (1) in which Φ is
assumed to be a strict mean of class Ck, (k ≥ 1), defined on R+. Then, f is a
function belonging to the class Ck.

If k ≥ 2 then, the theorem holds under the weaker assumption of measur-
ability on f (it is a corollary of Theorem 1.30 in [6], pg. 35). In the present
context only strictly monotonic solutions to equation (1) are to be considered,
so that this improvement is, for our purpose, unsubstantial.

Proof. By the Lebesgue’s differentiability theorem of monotonic functions, f
turns out to be almost everywhere differentiable. Then, Theorem 1.26 in [6],
pg. 35, applies to show that f ∈ Ck.

Now, consider a pair of functions (f, h) solving (6). Two propositions fur-
nishing relationships among the derivatives of the functions f and h are estab-
lished below. The proof of both propositions depends on routine computations
which are gathered together in the Appendix.
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Proposition 5. Let (f, h) be a pair of strictly monotonic functions with h ∈ C2.
If equation (6) is solved by (f, h); then, the differential relationship

3
f ′′(x)

f ′(x)
= −h

′′(x)

h′(x)
, x > 0, (10)

holds.

Proof. Assume that the equation (6) is solved by a pair (f, h) of strictly mono-
tonic functions f and h, h ∈ C2. Theorem 4 (with k = 2) ensures that f ∈ C2 as
well. Denoting by Φ the Lagrangian mean with generator function h, it turns
out to be Φ ∈ C2. Now, in view of the strict monotonicity of f and h, the
equalities

3
f ′′(x)

f ′(x)
= 12Φxy(x, x) = −h

′′(x)

h′(x)
,

are quickly obtained from the equalities (28) and (40) (see Appendix).

As stated by the next result, a second differential relationship among f and
h can be proved under further regularity assumptions on h.

Proposition 6. Let (f, h) be as in Proposition 5. Moreover, assume that h ∈
C4; then, besides of (10), f and h satisfy the relationship:

f (4)(x)

f ′(x)
− 6

f ′′(x)f ′′′(x)

(f ′(x))
2 +

(f ′′(x))
3

(f ′(x))
3 =

− 7

15

h(4)(x)

h′(x)
+ 2

h′′(x)h′′′(x)

(h′(x))
2 − 5

3

(h′′(x))
3

(h′(x))
3 . (11)

Proof. First of all, note that f ∈ C4 by Theorem 4 (with k = 4). Introducing in
(41) the values of Φxy(x, x), Φx2y(x, x) and Φx2y2(x, x) as given, respectively,
by (28), (29) and (37), the following equality is obtained:

1

16
f (4)(x) =

1

2
f ′′′(x)

1

4

f ′′(x)

f ′(x)
+ f ′′(x)

[
1
4f
′(x)f ′′′(x)− 1

16 (f ′′(x))
2

(f ′(x))
2

]

+f ′(x)
1

48

1

h′(x)

[
−7

5
h(4)(x) + 6

h′′(x)h′′′(x)

h′(x)
− 5

(h′′(x))
3

(h′(x))
2

]
;

from which, after some simplifications, the relationship (11) is derived.

A proof of Theorem 3 is now presented.
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Proof of Theorem 3. A direct substitution shows that the pair (f, h) given by
(7) is a solution to the equation (6). Conversely, assume that (f, h) with h ∈ C4

solves equation (6); then, by Propositions 5 and 6, f and h simultaneously
satisfy the differential relationships (10) and (11). Now, by setting

ϕ(x) =
h′′(x)

h′(x)
= −3

f ′′(x)

f ′(x)
, x > 0, (12)

and, correspondingly,

h′′′(x)
h′(x) = ϕ′(x) + ϕ2(x), f ′′′(x)

f ′(x) = − 1
3ϕ
′(x) + 1

9ϕ
2(x),

h(4)(x)
h′(x) = ϕ′′(x) + 3ϕ(x)ϕ′(x)

+ϕ3(x),

f(4)(x)
f ′(x) = − 1

3ϕ
′′(x) + 1

3ϕ(x)ϕ′(x)

− 1
27ϕ

3(x),

the relationship (11) is transformed as follows:

− 1

3
ϕ′′(x) +

1

3
ϕ(x)ϕ′(x)− 1

27
ϕ3(x)− 6

(
−1

3
ϕ(x)

)(
−1

3
ϕ′(x) +

1

9
ϕ2(x)

)
+

(
−1

3
ϕ(x)

)3

= − 7

15

(
ϕ′′(x) + 3ϕ(x)ϕ′(x) + ϕ3(x)

)
+ 2ϕ(x)

(
ϕ′(x) + ϕ2(x)

)
− 5

3
ϕ3(x),

from which, after some algebraic simplifications, the equation

ϕ′′(x)− 7ϕ(x)ϕ′(x) +
19

9
ϕ3(x) = 0 (13)

is deduced.
A partial integration of equation (13) is made in the Appendix, where it is

shown that the equality ∣∣ϕ′(x)− 19
6 ϕ

2(x)
∣∣19∣∣ϕ′(x)− 1

3ϕ
2(x)

∣∣2 = K (14)

with a constant K, 0 ≤ K ≤ +∞, must be satisfied by a solution ϕ to (13).
This will be sufficient for our purpose. In fact, taking into account (9) for n = 1
and n = 2, the equalities

ϕ(2x) =
1

2
ϕ(x), ϕ′(2x) =

1

4
ϕ′(x), x > 0, (15)

turn out to be an immediate consequence of (12). Thus, a replacement of the
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variable x by 2x in (14) yields

K =

∣∣ϕ′(2x)− 19
6 ϕ

2(2x)
∣∣19∣∣ϕ′(2x)− 1

3ϕ
2(2x)

∣∣2
=

4−19
∣∣ϕ′(x)− 19

6 ϕ
2(x)

∣∣19

4−2
∣∣ϕ′(x)− 1

3ϕ
2(x)

∣∣2
= 4−17K,

and therefore, K = 0 or K = +∞, the limit cases in which ϕ must be (see the
Appendix) a solution to any one of the equations

ϕ′(x)− 19

6
ϕ2(x) = 0, x > 0,

or

ϕ′(x)− 1

3
ϕ2(x) = 0, x > 0.

Now, the general solution to these equation are respectively given by ϕ(x) =(
C − 19

6 x
)−1

and ϕ(x) =
(
C − 1

3x
)−1

, with C a suitable real constant which,
in view of the first condition in (15), must vanish, so that

ϕ(x) = − 6

19
x−1 or ϕ(x) = −3x−1. (16)

Finally, the functions f and h are recovered from equality (12). In particular,
(12) together with (16) give for f the following equations

f ′′(x)

f ′(x)
=

2

19
x−1 or

f ′′(x)

f ′(x)
= x−1, x > 0,

which are quickly integrated to give

f(x) = cx
21
19 + d or f(x) = cx2 + d, x > 0, (17)

with c, d ∈ R. The condition (8) is not satisfied by the first solution in (17),
so that it must be discarded. For the remaining solution, the same condition
together the strict monotonicity of f prescribe c 6= 0, d = 0, and then f(x) =
cx2, c 6= 0. Correspondingly, the equation

h′′(x)

h′(x)
= −1

3
x−1, x > 0,

has h(x) = ax−2 + b with a, b ∈ R, a 6= 0, as the unique strictly monotonic
solutions.

Summarizing, the pair (f, h) with f(x) = cx2 and h(x) = ax−2 + b (a, b, c ∈
R, a 6= 0 6= b) is the unique solution to the equation (6) in the class of pairs of
strictly monotonic functions with h ∈ C4.
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3 Final remarks

The general solution to the Schröder equation (8) is given (see, for instance, [1])
by

f(x) = x2P

(
lnx

ln 2

)
, x > 0,

where P : R→ R is an arbitrary periodic function of period 1. The function P
clearly reduces to a constant provided that the limit

lim
x↓0

f(x)

x2

(
= lim

x↓0
P

(
lnx

ln 2

)
= lim

x↓−∞
P (x)

)
= c ∈ R.

This fact is registered as a theorem (Theorem 1) in [5]. An identical conclusion
is obtained by assuming that

lim
x↑+∞

f(x)

x2
= c.

Other assumptions not involving boundary points of the domain can be made
in order that P = c. For example, it can be supposed that x → f(x)/x2 =
p(x), x > 0, is a monotonic or convex (concave) function in an interval of the
form (δ, 4δ), δ > 0. In this case, taking into account that p(δ) = p(2δ) =
p(4δ) = c, it turns out to be p(x) = c, x ∈ [δ, 4δ]. From this and the fact
that p(2x) = p(x), x > 0, the equality p(x) = c, x > 0, follows. A possible
response to a question stated by R. Ger at the final of [5] is given by this simple
observation.

Another observation is, perhaps, more interesting. By adding the hypothesis

Φ(x, 4x) = 2x, x > 0, (18)

to the reflexivity of Φ, the substitution y = 4x in the equation (1) yields

f(5x) = f(x) + f(4x) + 2f(2x)

or, in view of (8),

f(5x) = f(x) + 16f(x) + 8f(x) = 25f(x), x > 0.

In this situation, the following theorem holds.

Theorem 7. The general monotonic solution to the equation (1) with a reflexive
function Φ satisfying (18) is given by

f(x) = cx2, x > 0, (19)

where c is a real constant.
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Proof. It was seen above that, under the hypotheses made on Φ, a solution f
to the equation (1) must solve simultaneously the equations

f(2x) = 22f(x), f(5x) = 52f(x), x > 0.

The general monotonic solution to this system of Schröder equations is given
by (19) (cf. [8], Cor. 2, or also [7],Theor. 9.5.1).

A similar result is obtained if, instead of (18), it is assumed that there exists
n ∈ N such that

Φ(x, 4nx) = 2nx, x > 0.

To end this section, let us remark that the reduction to differential equations
used in solving equation (1) for quasiarithmetic or Lagrangian means (like in
Theorem 2 of [5] or in Theorem 3 of this article) can be successfully employed in
other situations. The case in which Φ is a symmetric mean with a finite number
of generator functions seems to be specially tractable by this method. Cauchy
means

λ
(g)
h (x, y) =

 h−1
(

1
g(y)−g(x)

∫ y

x
h(ξ) dg(ξ)

)
, x 6= y

x, x = y
,

(cf. [2] or [4], pg. 405 and ff.) and the symmetric Bajraktarević means (cf. [4],
pg. 310 and ff.)

Mh,g(x, y) = h−1

(
g(x)h(x) + g(y)h(y)

g(x) + g(y)

)
,

are both examples of means with two generators whose study in connection with
equation (1) would serve to generalize Theorem 3 as well as the results in [5].

The method of solving a functional equation by reduction to differential
equations often requires to impose heavy hypothesis of regularity on the un-
known functions. In many situations, these hypotheses turn out to be unneces-
sary. This seems to be the case with equation (6), and Theorem 3 is conjectured
to hold even if the function h is continuous.

4 Appendix

4.1 Derivatives of a reflexive and symmetric function

A set of relationships holds among the values assumed on the diagonal ∆(I) =
{(x, x) : x ∈ I} by the successive partial derivatives of sufficiently regular
reflexive and symmetric function F : I × I → R. These relationships are
quickly obtained from a repeated differentiation of the identities F (x, x) = x
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and F (x, y) = F (y, x), and those ones involving derivatives up to fourth order
are listed below.

Fx(x, x) = Fy(x, x) = 1
2 ;

Fx2(x, x) = Fy2(x, x) = −Fxy(x, x);
Fx3(x, x) = −3Fx2y(x, x) = −3Fxy2(x, x) = Fy3(x, x);
Fx4(x, x) = Fy4(x, x), Fx3y(x, x) = Fxy3(x, x)
Fx4(x, x) = −4Fx3y(x, x)− 3Fx2y2(x, x)

. (20)

4.1.1 Expression of the successive derivatives of a Lagrangian mean
For a Lagrangian mean Φ generated by the function h, it can be written

(y − x)h(Φ(x, y)) =

∫ y

x

h(ξ) dξ. (21)

In the sequel, the values at the diagonal ∆(I) of some partial derivatives of
Φ are to be expressed in terms of the (regular) generator function h and its
successive derivatives. Let us begin by a repeated differentiation of (21). The
symbol at the left of the arrow indicates the corresponding differential operator.

∂x → −h(Φ(x, y)) + (y − x)h′(Φ(x, y))Φx(x, y) = −h(x);

∂xy → −h′(Φ(x, y)) [Φy(x, y)− Φx(x, y)]

+(y − x) [h′′(Φ(x, y))Φx(x, y)Φy(x, y) + h′(Φ(x, y))Φxy(x, y)]

= 0; (22)

∂x2y → −h′′(Φ(x, y))
[
2Φx(x, y)Φy(x, y)− Φ2

x(x, y)
]

− h′(Φ(x, y)) [2Φxy(x, y)− Φx2(x, y)] + (y − x)×[
h′′′(Φ(x, y))Φ2

x(x, y)Φy(x, y) + h′′(Φ(x, y)) [Φx2(x, y)Φy(x, y)

+2Φx(x, y)Φxy(x, y)]

+h′(Φ(x, y))Φx2y(x, y)
]

= 0;

∂x2y2 → A(x, y) + (y − x)B(x, y) = 0, (23)

where

A(x, y) = −h′′′(Φ(x, y))2Φx(x, y)Φy(x, y) [Φy(x, y)− Φx(x, y)]

− h′′(Φ(x, y)) [4Φxy(x, y) (Φy(x, y)− Φx(x, y))

+2Φx(x, y)Φy2(x, y)− 2Φy(x, y)Φx2(x, y)
]

+ h′(Φ(x, y))2
[
Φx2y(x, y)− Φxy2(x, y)

]
, (24)
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and

B(x, y) = h(4)(Φ(x, y))Φ2
x(x, y)Φ2

y(x, y)

+ h′′′(Φ(x, y)) [4Φx(x, y)Φy(x, y)Φxy(x, y)

+Φ2
x(x, y)Φy2(x, y) + Φx2(x, y)Φ2

y(x, y)
]

+ h′′(Φ(x, y))
[
2Φx2y(x, y)Φy(x, y) + Φx2(x, y)Φy2(x, y)

+ 2Φ2
xy(x, y) + 2Φx(x, y)Φxy2(x, y)

]
+ h′(Φ(x, y))Φx2y2(x, y). (25)

If x 6= y; then, the equality (22) can be written in the form

−h′(Φ(x, y))
[

Φy(x,y)−Φx(x,y)
y−x

]
+ h′′(Φ(x, y))Φx(x, y)Φy(x, y)

+h′(Φ(x, y))Φxy(x, y) = 0,

whence, by making y → x it is obtained:

−h′(Φ(x, x))
[
Φy2(x, x)− Φxy(x, x)

]
+ h′′(Φ(x, x))Φx(x, x)Φy(x, x)

+h′(Φ(x, x))Φxy(x, x) = 0.
(26)

The L´Hospital rule was applied to compute

lim
y→x

(
Φy(x, y)− Φx(x, y)

y − x

)
= Φy2(x, x)− Φxy(x, x) = −2Φxy(x, x). (27)

From (26) and the relationships (20), it follows

3Φxy(x, x)h′(x) +
1

4
h′′(x) = 0,

whence, in view of the strict monotonicity of h, it is finally obtained

Φxy(x, x) = − 1

12

h′′(x)

h′(x)
. (28)

Now, differentiating (28) and using the relationships (20), it is derived

2Φx2y(x, x) = Φx2y(x, x) + Φxy2(x, x) = − 1

12

(
h′′(x)

h′(x)

)′
,

and hence,

Φx2y(x, x) = − 1

24

(
h′′(x)

h′(x)

)′
. (29)
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Differentiating this last equality, it is obtained

Φx3y(x, x) + Φx2y2(x, x) = − 1

24

(
h′′(x)

h′(x)

)′′
. (30)

In continuing, another relationship among Φx3y(x, x) and Φx2y2(x, x) is to be
derived. From (23) it is obtained

lim
y→x

A(x, y)

y − x
+B(x, x) = 0. (31)

Using (24) and (25), let us compute the terms of the left member of this equality.
From (24), it follows that

A(x, y)

y − x
= −h′′′(Φ(x, y))2Φx(x, y)Φy(x, y)

[
Φy(x, y)− Φx(x, y)

y − x

]
− h′′(Φ(x, y))

[
4Φxy(x, y)

(
Φy(x, y)− Φx(x, y)

y − x

)
+2

(
Φx(x, y)Φy2(x, y)− Φy(x, y)Φx2(x, y)

y − x

)]
+ h′(Φ(x, y))2

[
Φx2y(x, y)− Φxy2(x, y)

y − x

]
. (32)

The L´Hospital rule and the subsequent use of the relationships (20) yield

lim
y→x

(
Φx(x, y)Φy2(x, y)− Φy(x, y)Φx2(x, y)

y − x

)
= −2

(
Φx2y(x, x) + Φ2

xy(x, x)
)

;

lim
y→x

(
Φx2y(x, y)− Φxy2(x, y)

y − x

)
= Φx2y2(x, x)− Φxy3(x, x);

and therefore, taking into account the equality (27), a passage to the limit in
(32) gives

lim
y→x

A(x, y)

y − x
= h′′′(x)Φxy(x, x) + h′′(x)4

[
3Φ2

xy(x, x) + Φx2y(x, x)
]

+ h′(x)2
[
Φx2y2(x, x)− Φxy3(x, x)

]
. (33)

On the other hand, the equality

B(x, x) =
1

16
h(4)(x) +

1

2
h′′′(x)Φxy(x, x)

+ h′′(x)
[
2Φx2y(x, x) + 3Φ2

xy(x, x)
]

+ h′(x)Φx2y2(x, x); (34)
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it is easily obtained from (25) so that, from (31), (33) and (34), the equality

1

16
h(4)(x) +

3

2
h′′′(x)Φxy(x, x) + h′′(x)

[
6Φx2y(x, x) + 15Φ2

xy(x, x)
]

+ h′(x)
[
3Φx2y2(x, x)− 2Φxy3(x, x)

]
= 0,

is deduced. From this, the sought for additional relationship involving Φx3y(x, x)
and Φx2y2(x, x) is quickly deduced as follows:

3Φx2y2(x, x)− 2Φxy3(x, x) = − 1

h′(x)

[
1

16
h(4)(x) +

3

2
h′′′(x)Φxy(x, x)

+h′′(x)
[
6Φx2y(x, x) + 15Φ2

xy(x, x)
]]

(35)

Indeed, in view of (28) and (29), the equality (35) takes the form

3Φx2y2(x, x)− 2Φxy3(x, x) =
1

h′(x)

[
− 1

16
h(4)(x) +

1

8

h′′′(x)h′′(x)

h′(x)

+h′′(x)

[
1

4

(
h′′(x)

h′(x)

)′
− 5

48

(
h′′(x)

h′(x)

)2
]]

. (36)

The value of Φx2y2(x, x) is finally found from (30) and (36) in the form

5Φx2y2(x, x) =
1

h′(x)

[
− 1

16
h(4)(x) +

1

8

h′′′(x)h′′(x)

h′(x)

+h′′(x)

[
1

4

(
h′′(x)

h′(x)

)′
− 5
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(
h′′(x)

h′(x)

)2
]]
− 1

12

(
h′′(x)

h′(x)

)′′
or, developing the derivatives of the quotient h′′(x)/h′(x), also in the form

Φx2y2(x, x) =
1

48

1

h′(x)

[
−7

5
h(4)(x) + 6

h′′(x)h′′′(x)

h′(x)
− 5

(h′′(x))
3

(h′(x))
2

]
. (37)

4.2 Successive derivatives of the equation (1)

Differentiating the functions on both sides of equation (1) produces

∂x → f ′(x+ y) = f ′(x) + 2f ′(Φ(x, y))Φx(x, y);

∂xy →
1

2
f ′′(x+y) = f ′′(Φ(x, y))Φx(x, y)Φy(x, y)+f ′(Φ(x, y))Φxy(x, y); (38)
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∂x2y →
1

2
f ′′′(x+ y) = f ′′′(Φ(x, y))Φ2

x(x, y)Φy(x, y)

+f ′′(Φ(x, y)) [Φx2(x, y)Φy(x, y) + 2Φx(x, y)Φxy(x, y)]+f ′(Φ(x, y))Φx2y(x, y);

∂x2y2 → 1

2
f (4)(x+ y) = f (4)(Φ(x, y))Φ2

x(x, y)Φ2
y(x, y)

+ f ′′′(Φ(x, y)) [4Φx(x, y)Φy(x, y)Φxy(x, y)

+Φ2
x(x, y)Φy2(x, y) + Φx2(x, y)Φ2

y(x, y)
]

+ f ′′(Φ(x, y))
[
2Φx2y(x, y)Φy(x, y) + 2Φx(x, y)Φxy2(x, y)

+Φx2(x, y)Φy2(x, y) + 2Φ2
xy(x, y)

]
+ f ′(Φ(x, y))Φx2y2(x, y). (39)

Assuming that Φ is a reflexive and symmetric function and setting y = x,
the equalities (38) and (39) respectively take (after (20)) the forms

1

2
f ′′(2x) =

1

4
f ′′(x) + f ′(x)Φxy(x, x)

and

1

2
f (4)(2x) =

1

16
f (4)(x) +

1

2
f ′′′(x)Φxy(x, x)

+ f ′′(x)
[
2Φx2y(x, x) + 3Φ2

xy(x, x)
]

+ f ′(x)Φx2y2(x, x).

In view of f ′′(2x) = f ′′(x) and f (4)(2x) = 1
4f

(4)(x), from the first equality it is
obtained

f ′′(x) = 4f ′(x)Φxy(x, x), (40)

while the second one gives

1

16
f (4)(x) =

1

2
f ′′′(x)Φxy(x, x) + f ′′(x)

[
2Φx2y(x, x) + 3Φ2

xy(x, x)
]

+ f ′(x)Φx2y2(x, x). (41)

4.3 Partial integration of the equation (13)

The equation (13) is transformed in a first order equation by expressing ϕ′ as
a function of ϕ. In fact, once the substitution

ϕ′ = p(ϕ), ϕ′′ = p′(ϕ)p(ϕ), (42)
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is made in (13), the following equation is obtained:

p′(ϕ)p(ϕ)− 7ϕp(ϕ) +
19

9
ϕ3 = 0.

Since this last equation is invariant under the scale transformation{
ϕ∗ = αϕ
p∗ = α2p

,

the substitution

p(ϕ) = ϕ2u(ϕ), p′(ϕ) = 2ϕu(ϕ) + ϕ2u′(ϕ), (43)

converts it in the following separable equation:

ϕu(ϕ)u′(ϕ) + 2u2(ϕ)− 7u(ϕ) +
19

9
= 0

which, written as a total differential, takes the form

u du

2u2 − 7u+ 19
9

+
dϕ

ϕ
= 0.

An elementary integration of this equation gives

19

34
ln

∣∣∣∣u− 19

6

∣∣∣∣− 1

17
ln

∣∣∣∣u− 1

3

∣∣∣∣+ lnϕ = C

or

ϕ34

∣∣u− 19
6

∣∣19∣∣u− 1
3

∣∣2 = K, (44)

with a constant 0 ≤ K ≤ +∞. After (42) and (43) it can be written∣∣ϕ′ − 19
6 ϕ

2
∣∣19∣∣ϕ′ − 1

3ϕ
2
∣∣2 =

∣∣p(ϕ)− 19
6 ϕ

2
∣∣19∣∣p(ϕ)− 1

3ϕ
2
∣∣2

=

∣∣ϕ2u− 19
6 ϕ

2
∣∣19∣∣ϕ2u− 1

3ϕ
2
∣∣2

= ϕ34

∣∣u− 19
6

∣∣19∣∣u− 1
3

∣∣2 ,

so that the equality (44) can be equivalently written as follows:∣∣ϕ′ − 19
6 ϕ

2
∣∣19∣∣ϕ′ − 1

3ϕ
2
∣∣2 = K,
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with 0 ≤ K ≤ +∞.
It is worth noticing that the limit cases in which K = 0 or K = +∞ also

provide solutions to equation (13). In fact, in these cases (44) respectively gives

ϕ′(x)− 19

6
ϕ2(x) = 0 or ϕ′(x)− 1

3
ϕ2(x) = 0;

and if ϕ is a solution to, for example, the first equation, then the equalities

ϕ′′(x) =
361

18
ϕ3(x), ϕ(x)ϕ′(x) =

19

6
ϕ3(x)

hold, so that

ϕ′′(x)− 7ϕ(x)ϕ′(x) +
19

9
ϕ3(x) =

(
361

18
− 7× 19

6
+

19

9

)
ϕ3(x)

= 0.

The equalities

ϕ′′(x) =
2

9
ϕ3(x), ϕ(x)ϕ′(x) =

1

3
ϕ3(x),

hold for the second equation and a similar computation shows that a solution
ϕ to this equation also solves (13).
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