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Abstract
We evaluate the total cross section for the π-photoproduction process and
analyze the behavior of the 1232( )D resonance contribution when the photon
energy is increased from threshold up to 0.7 GeV. Within this energy range we
compare two different parameterizations for the Ng D vertex: the normal parity
and the covariant multipole decomposition ones. For completeness, we also
compare different versions for the Δ propagator: the first is the dressed pro-
pagator obtained including one-loop self-energy contributions (EXACT), the
second is the complex mass scheme which consists in replacing
m m i 2 - GD D D in the bare propagator, and the third is an intermediate
approximation between the two previous ones (EXCMS). We conclude that, in
order to extend the present calculation to include more energetic resonances in
the future and to obtain non-divergent results for the total cross section we will
need to use the MD parametrization and the EXCMS propagator.

Keywords: π-photoproduction, resonances, effective Lagrangian approach

1. Introduction

The understanding of the baryon spectrum and the search for the missing nucleon resonances
and new exotic states are hot topics in hadronic physics. The production of mesons by
hadron-induced reactions has been extensively used in the study of the properties of nucleon
resonances (see e.g. the reviews of [1, 2]). In particular, the scattering of pions by free
nucleons and nucleus has greatly contributed to the experimental data base. These types of
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reaction are complicated since the initial and final states are governed by the strong inter-
action. However, the existence of high duty-cycle electron accelerators opens the possibility
of studying reactions induced by the electromagnetic interaction, photoproduction and elec-
troproduction of mesons (π, η, etc) off the free nucleon and off the nucleus allows us to
analyze the structure of the nucleon excited states (see [3–65]).

Since the pioneering work of Chew, Goldberger, Low and Nambu [3], extensive work
during more than fifty years has shown that, below 0.45 GeV incident photon energy, the
dominant mechanisms of the N Ng p reaction are the background and the Δ-resonant
excitation. After that, high efforts have been carried out both experimentally (see [4–30] for π
and [31–41] for η-photoproduction and references therein) and theoretically (regarding π

photoproduction see for example models developed in [42–53], MAID model [54–56],
Bonn–Gatchina model [57, 58], chiral Lagrangian based models [59–61], quark model [62],
and [63–65] for η-photoproduction) to study the cross sections of π and η mesons photo-
production reactions, arriving in the present to higher incident photon energies of the order of
1.2 GeV. By this reason, to obtain a good theoretical description of the experimental data we
need: (i) to add to the Δ resonance the contribution of those ones belonging to the second
resonance region; and (ii) to perform a consistent description of the Δ resonance, non-
divergent at energies well above its peak.

Actual experiments where nuclei are used as targets require the inclusion of nuclear
medium effects on the free nucleon cross section to make a comparison between theoretical
results and experimental data. However, before including nuclear effects, it is important that
the model used to describe the free nucleon cross section incorporates consistently the
resonant and the background terms as well as their non-negligible interference. The study of
the spin-3/2 fields in hadron physics started very early with the pioneering work of Rarita
Schwinger (RS) [66] and there is nowadays an abundant literature on spin-3/2 vertices,
propagators and associated problems [67–74]. The RS theory has shown several difficulties
along the time, when interactions were introduced. In fact, when the RS field propagates in an
external electromagnetic field, being the coupling obtained from the minimal substitution in
the free Lagrangian, two problems are reported in the literature. One is that, while the free and
electromagnetic Lagrangians are fully covariant, the second quantization is not realizable in
all reference frames [75]. The other one is the appearance of acausal all order solutions of the
equation of motion coming from these Lagrangians [76]. Later, using the RS field to describe
the 1232( )D resonance in Np scattering, Nath et al [68] proposed a consistent Np vertex
invariant from the point of view of the contact transformations of the spin-3/2 field and its
quantization. Soon, similar problems as those mentioned previously were found, but now with
the hadronic Np interaction [77–80]. The RS equation of motion describes a ‘constrained’
dynamical system, and for this reason is supplemented by certain primary and secondary
constraints or subsidiary conditions ( 0g¶ Y = Y =m

m
m

m , being Ym the spin-3/2 field) that
eliminate the redundant degrees of freedom [70–74, 81]. By a consistent treatment we mean
that the effective Lagrangian model describing the spin-3/2 resonance and its interactions
must take into account that field-theoretical constraints for the spin-3/2 particle, its resonant
character and it must also be gauge-invariant when photonic interactions are included4.
Theoretical calculations have some problems of formal consistence. In fact, most of the works

4 The role of gauge invariance and contact interactions for the spin-3/2 fields has been discussed e.g. in [82, 83]. As
was shown in [73], when radiative corrections are considered it is not possible to keep the electromagnetic gauge
invariance and the spin-3/2 gauge invariance for the strong Np D vertices introduced in [82, 83]. Thus, we prefer to
adopt the usual lower order pion derivative Np D vertex. Certainly, the calculations done in those references, in spite
of the formal problem mentioned above, work well in the resonance region but here we pretend to go to higher
energies.
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mentioned above treat the vertices and the propagator of the spin-3/2 resonances incon-
sistently because, as mentioned previously and discussed in [84] (see also [85, 86] and
references therein) the Lagrangian densities and the amplitude must be invariant under the
contact transformation (see discussion on section 2.3 below). Also, non-resonant contribu-
tions (background) should be added coherently to the resonance one, without neglecting the
interference, which is an inconsistent procedure [44, 51, 87–89]. Additionally, when
the incident photon energy is increased, interference between different resonance terms in the
scattering probability plays an important role. On the other hand, we remark that the calc-
ulation performed in [51], in spite of being consistent from the theoretical point of view, only
considers incident photon energies from threshold up to 0.45 GeV, well below the current
region of interest.

In order to analyze current experimental data of π-photoproduction the contribution of
the resonances of the second region needs to be added to that of the 1232( )D . We plan to
develop in the future a consistent formalism which includes the contribution of these reso-
nances. The arguments mentioned previously motivate us to study consistently the Δ reso-
nance contribution to the cross section with the purpose of obtaining a good behavior, not
divergent, at energies well above the peak located at E 0.35 GeV~g . This will be done in this
paper, which is organized as follows: the formalism is presented in section 2, paying special
attention to the Δ vertex and propagator, numerical results and a comparison between them
for different versions of the Δ vertex and the propagator are shown in section 3 together some
final remarks.

2. Formalism

2.1. Cross section

The total cross section for the π-photoproduction process N Ng p receives contribution
from both, resonant and background terms. As mentioned previously, we will analyze here in
detail the resonant contribution, which corresponds to the so called resonant s-channel shown
in figure 1.

This resonant contribution to the total cross section will be calculated as:
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Figure 1. Resonant s-channel diagram for π photoproduction process.
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where the integration is performed over the c.m. scattering angle q* between π and N, with
Gab being the Δ propagator and Gbn the vector Ng D vertex. Here pi and pf are the initial and
final nucleon four-momenta, k, p p ki= +D and q p p ki f= - + are the photon, resonance
and pion four-momenta, respectively. In the c.m. of the Np system we can write all the
momenta in terms of the photon energy in laboratory frame, Eγ, as follows:
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2.2. Δ resonance propagator

The unperturbed Δ propagator satisfying the Ward–Takahashi identity (assuring the gauge
invariance of the radiative amplitude) has been dressed in [90, 91] by the inclusion of a self-
energy, giving to it a width corresponding to an unstable particle. In [90] the dressed pro-
pagator G pi ( )mn has been obtained by solving the Schwinger–Dyson equation

G p G p pi i1
0

1( ) ( ) ( ) ( ) ( )= - Smn mn mn- - , being G pi 0 ( )mn the bare propagator and p( )Smn the
self energy correction of the Δ, and considering only the one-loop contribution to the
absorptive (imaginary) part of the self energy5. Based in this calculation, three different
approximations have been discussed in [91]:

(i) The EXACT approximation
Reversing the Schwinger–Dyson equation without additional approximations and
calculating the one-loop self-energy corrections ‘exactly’, i.e. without performing any
approximation in the one-loop integral describing the propagation of one pion-one
nucleon inside the loop (see equation (6) from [90]) the propagator can be written as

5 In [92] the authors consider additional terms in the self energy, because they calculate the width of theΔ resonance
at leading two-loop order in baryon chiral perturbation theory. It is important to point out that it would be difficult to
implement these calculations in our context.
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being p p= D and the effective mass is given by

m
m J

J1
, 61

2
˜ ( )º

+
-

with m m= D the bare Δ mass. The coefficients Ji are functions of s p2= and depend on
the Np D coupling constant g, and the S 1 2= , 3/2 spin projectors ij

S are defined in
[90]. Because the Schwinger–Dyson equation has been reversed without additional
approximations and the self energy one-loop integral has been calculated exactly in this
case, we follow the notation of [91] and refer to this propagator as the ‘EXACT’ one.

(ii) The CMS approximation
Neglecting terms of O g4( ) and of O m s g2(( ) )-D which are expected to be very small
in the Δ resonance region (s m2» D) in equations (4)–(6) and assuming within the formal
limit of massless N and π in the loop contribution that the dressing gives a dependence
g s g

s
( ) ˜= , with adimensional g g0a˜ º , being g 14.3

f

m0
N= =p

p

D GeV−1 the bare Np D
coupling constant and a a constant to fit, one gets [91]
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, 9
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G
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where now CMSG is the fitting parameter in place of a. The equation (7) together
with (9) are the so-called complex-mass scheme (CMS), which consists in replacing
m m i 2CMS - GD D D in the unperturbed propagator, ensuring the gauge invariance of the
radiative amplitude. The CMS has been used thoroughly in the literature [50, 84, 93–95]. In
[50] only the 3/2 part of the propagator in equation (7) is maintained since the ‘spin 3/2-
gauge invariant’ vertex introduced in [71] is adopted. Remembering that this kind of
Lagrangian interaction has the consistency problems mentioned previously [72–74], in this
case the authors fix the resonance widths phenomenologically and not from a self energy
calculation. Also, in [93] the same propagator is adopted on the basis of assuming on shell-
subsidiary conditions to avoid the 1/2 contribution together with the conventional couplings.
For the width they use a parameterization depending on the considered partial wave. On the
other hand, in [94, 95] the authors adopt the conventional pion derivative vertices for the

Np D vertex but take only the spin-3/2 part of the propagator, not allowing the coupling of
this kind of vertex to the spin-1/2 virtual contribution of the propagator.

(iii) The EXCMS approximation
Following [91], an intermediate approximation for the propagator can be adopted. It
corresponds to the exact expression (4) but with the assumption (9) for the effective
mass. This will be called ‘EXCMS’ dressed propagator.

2.3. Vertex parameterizations

As discussed in [68, 84], each of the terms in the Δ Lagrangian density (kinetic and inter-
action terms) depend on an arbitrary parameter. A through the expression A( )L =mn

g A1 31

2
( )g g+ +mn m n . The Lagrangian is invariant under the contact transformation on the

spin-3/2 field, ag gY  Y + Ym m m
a

a
D D D, A A A a

a

2

1 4
 ¢ = -

+
, where A and a (a 1 4¹ - ) are

arbitrary parameters. This invariance assures that spurious spin-1/2 components are removed
from the field describing an on-shell Δ particle. However, the propagation of an off-shell Δ
particle unavoidably carries an spin-1/2 component (see [72, 85, 86] and references therein).
Transition (physical) amplitudes involving the Δ resonance calculated from A-dependent
Feynman rules should be, however, independent of A [84]. A common mistake in some
calculations is to take the simplest form of the propagator for the Δ corresponding to A 1= -
and, simultaneously, the simplest form of the Np D and/or Ng D vertex with a different value
of this parameter (for example A 1 3= - ). Thus, to avoid this problem and because physical
amplitudes should be independent of this parameter, we need to use a set of A-independent
Feynman rules [84] to derive the amplitudes. The form of the Lagrangian terms were
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extensively discussed in [85, 96] and we only give here the vertices and the propagator of the
Δ, consistent with all symmetries, necessary to write the amplitudes involving the resonance.

We treat the Np D interaction within the chiral effective Lagrangian approach. One can
classify the interaction in orders depending on the derivatives of the fields. The conventional and
lowest order interaction is the pion field derivative, adopted already in the past in several works
[67, 68, 97]. In the first two papers is also discussed the fixing of a second parameter z on which
the interaction Lagrangian depends and is compatible with the contact symmetry of the free Δ
Lagrangian. Here we adopt the prescriptions for the strong conventional Np D vertex presented
with details in [72]. Then the Ng D vertex, which should be self-gauge invariance since it is not
possible to obtain it from minimum coupling, will be obtained from the Sachs or parity con-
serving parameterizations presented below. Other authors adopt a second order strong vertex
with an additional derivative in the Δ field [71, 98], based in a symmetry of the massless freeΔ
Lagrangian, which is supported in the assumption that this spin-3/2 gauge invariant interaction is
consistent from the formal point of view while the conventional is not. Also the Ng D vertex is
derived on the same lines. Nevertheless, we have shown that this vertex does not work better
than the conventional one from the phenomenological point of view in [72], that the spin-3/2
gauge invariance presents certain coexistence problems with the electromagnetic gauge invar-
iance in [73] and quite recently that this interaction is also formally inconsistent [74].

Based on the previous arguments, we analyze here two different prescriptions consistent
with the choice of the propagator for the Ng D vertex [99, 100]. They are:

(i) Normal parity
A standard ‘normal parity’ (NP) parametrization of the vertex given by
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form
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and assuming a real Δ and thus the validity of the on-shell constrains (i.e., p m2 2D D,
0¯ gYm

mD , p 0,
¯ Ym

mD D , being Ym
D the Δ field), together with p m¯ ¯Y = Ym m

D D D D, k 02 = , the
transversality condition k 0· = and the four-momentum conservation at the vertex (which
allows to write p k m m m mN N

1

2
· ( )( )= + -D D D ) after some simple algebra we get
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with M m mNS º +D and M m mND º -D . Comparison with equation (4) from [99]
indicates that
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On the other hand, comparison with equation (1) gives
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This result indicates that we can arrive to the NP parametrization by starting from the MD
one and assuming a real Δ. The relations shown in equation (15) establish the connection
between both parameterizations of the vertex6. Adopting G 0 2.97 0.06M ( ) =  and
G 0 0.055 0.005E ( ) =  (see page 15 on [51]) we obtain G 0 4.93 0.101( ) = - 
and G 0 2.68 0.032 ( ) = -  .

Figure 2. Resonant s-channel contribution to the total cross section Rs , normalized to
q

k

m

s

ef I

m32

2
N N
2 ( )∣ ∣

∣ ∣




p
p

p

D D . We compare the MD and NP parameterizations of the Ng D vertex

for three different approximations of the Δ propagator: (a) CMS; (b) EXACT; (c)
EXCMS. We show the results for different sets of parameters (see text for details).

6 We mention that they agree with those from Jones and Scadron. Using the Dalitz–Sutherland values given in
equations (48) and (50) from [99], G 0 2.97M ( ) = and G 0 0.03E ( ) = , we obtain G 0 2.681

SCADRON ( ) = GeV−1,
G 0 1.842

SCADRON ( ) = - GeV−2 or, equivalently G 0 5.031( ) = - and G 0 3.242 ( ) = - .
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3. Results and final remarks

We have evaluated numerically the resonant s-channel contribution to the total cross section

Rs given in equation (1). Because we are not interested in comparing with the experimental
data7 but only between different versions of the vertex and propagator for the
Δ resonance contribution in π-photoproduction, we present in figure 2 our results for

R
q

k

m

s

ef I

m32

2
N N
2

⎜ ⎟
⎛
⎝

⎞
⎠( )∣ ∣

∣ ∣


s

p
p

p

D D , allowing us to not have to distinguish between the processes indi-

cated in equation (3). We compare the MD and NP parameterizations of the Ng D vertex for
three different approaches of theΔ propagator presented in the previous section: (a) CMS, (b)
EXACT and (c) EXCMS. With the aim of providing an estimation of the uncertainties in our
calculation associated with the error bars in the parameters, we present the plots corresp-
onding to its central values (GM = 2.97, GE = 0.055 and G 4.931 = - , G 2.682 = - ) and also
those given the lowest (GM = 2.91, GE = 0.050 and G 4.831 = - , G 2.652 = - ) and highest
(GM = 3.03, GE = 0.060 and G 5.031 = - , G 2.712 = - ) cross section around the central
value. To perform our comparison we have used m 0.938 GeVN = , m 1.211 GeV=D and

0.088 GeVCMSG =D [91] (these values are consistent with those published in [102]).
Our results clearly indicate that the NP and MD parameterizations lead always to similar

results in the resonance region, i.e. below ∼0.45 GeV incident photon energy. However,
above this region the NP behaves much worse than the MD because it strongly diverges when
the photon energy is increased. This can be easily understood after the analysis performed in
section 2.3 where we have shown that NP can be obtained starting from MD vertex para-
metrization by assuming an on-shell Δ resonance. Otherwise, comparison of the different
approximations for the 1232( )D propagator indicate that the validity of the CMS is restricted,
as expected, to the low energy region where the approximations indicated in section 2.2 hold
and, at higher energies, a divergent behavior is shown. This problem is solved by using the
EXACT propagator which shows a good behavior at high energies but would require a
readjustment of the parameters (particularly, the resonance mass mD and the coupling con-
stant) to locate the peak at the right place. Finally, an improved behavior both at low and high
energies is obtained when using the intermediate approximation EXCMS for the propagator,
because it preserves the CMS characteristics by the use of equation (9), which allows to use
the same set of parameters adjusted in our previous works in the context of the CMS
approximation, and also the non-divergent character of the EXACT calculation above the
peak because of the use of equation (4). Our plots also indicate clearly that the uncertainties
associated to our parameters do not change at all the conclusions mentioned previously.

Summarizing, we have analyzed the contribution of the 1232( )D resonance to the total
cross section of the π-photoproduction process with the aim of discovering which is the best
model to describe its behavior when the photon energy is increased from threshold up to
0.7 GeV. We have compared two different parameterizations for the Ng D vertex (the NP
and MD ones) and three different versions of the Δ propagator (CMS, EXACT and the
intermediate EXCMS approximation). Our results show that in order to develop a form-
alism to include more energetic resonances in the future and to obtain non-divergent results
for the total cross section we will need to use the MD parametrization and the EXCMS
propagator.

7 Experiments measure the total resonant plus background contribution. Thus, to perform a comparison with
experimental data would require us the evaluation of the background graphs shown in figure 1 from [53], which
escapes the objectives of the present work.
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