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� Skin of Subantarctic Commerson’s
dolphins was analyzed for Hg and Se
bioindication.
� Liver, lung, kidney, muscle, and

spleen tissues were correlated with
skin contents.
� Skin Hg showed correlation with

internal tissues allowing
bioindication.
� Skin Se did not correlate with internal

tissues due to biological regulation.
� Hg in muscle can be estimated from

skin biopsies concentration by a
factor of 1.85.
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The skin of bycaught Commerson’s dolphins was tested for mercury (Hg) and selenium (Se) biomonitor-
ing in Subantarctic environments. The correlation of levels detected in the skin with those found in inter-
nal tissues – lung, liver, kidney and muscle – was assessed to evaluate how skin represents internal Hg
and Se distribution for monitoring purposes. Mercury in skin had a concentration range of 0.68–
3.11 lg g�1 dry weight (DW), while Se had a higher concentration range of 74.3–124.5 lg g�1 DW.
There was no significant correlation between selenium levels in any of the analyzed tissues. Thus, the
skin selenium concentration did not reflect the tissular Se levels and did not provide information for
biomonitoring. The lack of correlation is explained by the biological role of Se, provided that each tissue
regulates Se levels according to physiological needs. However, the skin Hg level had significant positive
correlation with the levels in internal tissues (ANOVA p < 0.05), particularly with that of muscle
(R2 = 0.79; ANOVA p = 0.0008). Thus, this correlation permits the estimation of Hg content in muscle
based on the multiplication of skin biopsy levels by a factor of 1.85. Mercury bioindication using skin
biopsies is a non-lethal approach that allows screening of a large number of specimens with little
disturbance and makes possible an adequate sampling strategy that produces statistically valid results
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in populations and study areas. The correlation between Hg levels in the skin and internal tissues
supports the use of the epidermis of Commerson’s dolphins for Hg biomonitoring in the waters of the
Subantarctic, which is a poorly studied region regarding Hg levels, sources and processes.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The evaluation of pollutant impact on marine ecosystems, both
from natural and anthropic origins, is a subject of extensive
research worldwide. This is the case for mercury (Hg), a heavy
metal, which is highly toxic at very low concentrations. In its
organic form (mostly monomethylmercury; MMHg), Hg is biomag-
nified in marine trophic webs, and it is a powerful neurotoxin for
wildlife and for humans through fish consumption (Ullrich et al.,
2001). Selenium (Se) is an essential element in biological systems
but is toxic at high concentrations. Selenium has a high chemical
affinity for Hg, and forms insoluble Hg–Se compounds. This
sequesters Hg from biological processes and neutralizes its toxicity
(Khan and Wang, 2009; Peterson et al., 2009; Sørmo et al., 2011).
Therefore, the dual study of Se and Hg in aquatic food webs is
important to ascertain the potential impact of Hg.

Cetacean skin biopsies are recommended as a non-invasive tool
for assessing the eco-toxicological risk of populations and to con-
duct long-term environmental monitoring programs (Bryan et al.,
2007; Fossi et al., 2000; Savery et al., 2013a; Stavros et al., 2007,
2011). Measuring Hg in the skin of piscivorous homeotherms is
important to evaluate the exposure routes in marine environments
and to assess the potential for toxicity to biota (Miller et al., 2011;
Wöshner et al., 2008). Although highly mobile, their feeding habits
provide clues on the sources and pathways. Additionally, the anal-
ysis of stable isotopes of Hg in skin biopsies, with regard to both
the mass-dependent and the mass-independent isotopic ratios,
provides key information on Hg sources and pathways (Jackson
et al., 2008; Kwon et al., 2014). The odontocetes are long-lived,
high-trophic-level mammals and therefore have a high potential
for Hg bioaccumulation and biomagnification (Clayden et al.,
2015). Furthermore, coastal dolphins and humans consume similar
fish; thus, coastal dolphins can serve as a model for other cetaceans
and humans and as sentinel species. Here, we study Hg and Se in
the Commerson’s dolphin (C. c. commersonii), an endemic odonto-
cete in the southwestern South Atlantic Ocean with a distribution
from 41�300S to 55�S (Goodall et al., 1988, 1994).

The relationship between the skin Hg and Se content and that of
other internal tissues is a key information required for the use of
skin biopsies to monitor pollutants in marine environments.
Although there are several reports on the elemental concentrations
in the epidermis of cetaceans (Aubail et al., 2013; Dehn et al., 2006;
Kunito et al., 2002; O’Hara et al., 2008; Savery et al., 2013b, 2014;
Yang et al., 2002), there is little information on inter-tissue corre-
lation or association between the heavy metal concentrations in
such organs and those in the internal tissues. For Hg, several stud-
ies indicate that there is a correlation between the Hg concentra-
tion in skin and liver in odontocetes, such as Dall’s porpoise
(Phocoenoides dalli) (Yang et al., 2002), the harbor porpoise
(Phocoena phocoena), the common dolphin (Delphinus delphis)
(Aubail et al., 2013), the striped dolphin (Stenella coeruleoalba)
(Aubail et al., 2013; Monaci et al., 1998; Borrell et al., 2015), the
bottlenose dolphin (Tursiops truncatus) (Stavros et al., 2011;
Aubail et al., 2013), and mysticetes including the bowhead whale
(Balaena mysticetus) (O’Hara et al., 2008). Moreover, O’Hara et al.
(2008) found that the epidermal Hg concentration was predictive
of the blubber, hepatic and muscle tissue concentrations in bow-
head whales. In addition, Aubail et al. (2013) showed a correlation
between Hg in the skin and kidney in the common dolphin, the
harbor porpoise, the bottlenose dolphin and the striped dolphin.
More recently, Borrell et al. (2015) found a correlation between
the Hg concentration in the skin and that found in the renal and
muscle tissue of striped dolphins. The species considered in this
study, the Commerson’s dolphin, is classified as ‘‘Data Deficient’’
by the International Union for Conservation of Nature (IUCN)
(IUCN, 2014). In Appendix II of the Convention on International
Trade in Endangered Species (CITES), it is considered as one of
the species that is not threatened but which may become so unless
closely monitored. Previous research has shown that Commerson’s
dolphins are exposed to heavy metals and toxic elements
(Cáceres-Saez et al., 2013a,b; Gil et al., 2006). This species con-
sumes some prey species, which are targeted by the coastal fish-
eries. Although most fisheries are offshore, the artisanal captures
are relevant for the local market. Therefore, monitoring the poten-
tially toxic metals in their environment is useful to assess the
impact on humans and for the development of management and
conservation strategies.

The aim of this work is to study Hg and Se in the skin together
with lung, spleen, liver, kidney and muscle tissues (which are the
main tissues and organs in heavy metal dynamics, or which are
physiologically relevant in marine mammals) using bycatch speci-
mens of Commerson’s dolphins from Tierra del Fuego to determine
the correlation between the skin and internal tissues for monitor-
ing purposes in Subantarctic marine ecosystems.
2. Materials and methods

2.1. Specimens studied and biological material analyzed

Nine bycaught specimens of Commerson’s dolphins were recov-
ered on the shores of Tierra del Fuego (52�300–56�S; 65�–68�300W;
Fig. 1) in the austral summers from 2010 to 2012, as part of the
field collection by the AMMA project (Aves y Mamíferos Marinos
Australes) of the Museo Acatushún. Dolphin necropsies followed
standard procedures (Norris, 1961). Whole organs and approxi-
mately 150 g of the epaxial muscle were excised from each speci-
men using a surgical blade. For the six specimens, samples from
the central and posterior region of musculature were processed
for the analysis. Once collected, each sample was placed in a small
plastic bag and was kept frozen at �20 �C. The information
recorded for each specimen included the sex (determined by direct
observation of the genital patch or genital organs), the total length
and the body weight. Three to four teeth were removed to estimate
the age.

Samples were conditioned for analysis in the laboratory. After
removal from the freezer, the tissue samples were lightly thawed,
and the outer exposed tissue layer was trimmed to exclude any
potential contamination during necropsy and storage. The tissue
samples were handled using powder-free polyethylene gloves,
and the samples were cut into pieces using the titanium-bladed
knives and Teflon� tools. All tools and devices used for sample con-
ditioning were previously washed in a 10% nitric acid solution and
were double-rinsed with high-purity water (ASTM grade I). In total,
15–25 g was extracted and lyophilized from each organ and mus-
cle tissue to achieve the same weight. The dried samples were
ground to a fine powder with Teflon� tools. The skin samples were



Fig. 1. Geographic location of the bycaught Commerson’s dolphin (C. commersonii) specimens on the shores of Tierra del Fuego, Argentina.
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shaved and excised from the underlying hypodermis (blubber)
with a sterilized scalpel, and then lyophilized and sliced into small
pieces. The aliquots, ranging from 100 to 150 mg, were placed in
Suprasil AN� quartz ampoules in a laminar flow hood and were
sealed for analysis.

The sex, age and body length of the specimens are reported in
Table 1a. Age was determined using the Growth Layer Groups
(GLGs) in dentine; each GLG was considered to be one year
(Dellabianca et al., 2012; Lockyer et al., 1988). According to the
age estimation, the specimens were classified into three groups:
calves, suckling and still-nursing dolphins, with an age of less than
one year; sexually immature juveniles between one and five years
old; and sexually mature adults aged five years and older. In total,
there were five GLGs (Goodall et al., 1988; Lockyer et al., 1988).
This research uses Hg and Se content results from liver, kidney
and muscle samples, as reported in previous work on this species
(Cáceres-Saez et al., 2013b).
Table 1a
Mercury and Se concentrations (lg g�1 DW) in the skin and internal tissues of Commerso

Specimen
collection
number

Sex Age Total
length
(cm)

Body
weight
(cm)

Skin

Hg Se

RNP 2671 Male 0.5 109 18.1 1.21 ± 0.07 117.3 ± 7.1
RNP 2701 Male 0.5 117.4 27 0.68 ± 0.04 96.5 ± 5.4
RNP 2727 Female 0.5 99.3 25 0.54 ± 0.03 83.8 ± 5.0
RNP 2628 Male 1 118.9 27 1.07 ± 0.06 82.6 ± 4.7
RNP 2728 Male 1.5 116.6 28.5 0.80 ± 0.05 100.8 ± 5.9
RNP 2669 Male 2 121 27.25 1.13 ± 0.07 75.5 ± 4.4
RNP 2670 Female 7 139 31.2 3.11 ± 0.19 79.7 ± 4.7
RNP 2724 Male 14 136.9 35 1.41 ± 0.08 74.3 ± 4.3
RNP 2725 Female 11 135.1 37.5 2.41 ± 0.14 124.5 ± 9.3

Mean 1.38 92.78
SD 0.85 18.31
CV% 61.7 19.7

n.a. – not analyzed. The analytical uncertainty is reported after ‘±’. Se:Hg – Se to Hg mo
2.2. Mercury and selenium analysis

The concentration of Hg ([Hg]) and Se ([Se]) in a sample of each
studied tissue was determined using Instrumental Neutron
Activation Analysis (INAA). The samples were irradiated in the
RA-6 nuclear reactor (MTR type, 1 MW thermal power), CAB –
CNEA. The irradiation was performed in the reactor core (thermal,
epithermal, and fast neutron fluxes of 2 � 1013, 8 � 1011, and
2 � 1012 n cm�2 s�1, respectively) for 20 h. Two gamma-ray spectra
were collected after decay times of 7 and 20 days. The gamma-ray
spectra were collected using coaxial HPGe detectors (12% and 30%
relative efficiency and 1.8 keV resolution at 1.33 MeV) and
4096-channel analyzers. The thermal and epithermal neutron
fluxes were determined using the (n, c) reactions of the Co–Au
pair, using high purity Co and 0.1% Au–Al alloy wires. Mercury
was determined by evaluating two activation products: 197Hg
and 203Hg. The activation product 75Se was analyzed to determine
n’s dolphins.

Lung Spleen

Se:Hg Hg Se Se:Hg Hg Se Se:Hg

245.5 n.a n.a n.a n.a. n.a. n.a.
360.0 n.a n.a n.a n.a. n.a. n.a.
392.1 0.19 ± 0.01 22.6 ± 1.70 303.8 0.29 ± 0.02 16.4 ± 1.30 141.7
196.1 n.a. n.a. n.a. n.a. n.a. n.a.
319.3 0.41 ± 0.02 11.85 ± 0.88 73.78 0.57 ± 0.03 9.49 ± 0.71 41.93±
131.2 0.74 ± 0.04 13.7 ± 1.1 47.22 n.a. n.a. n.a.
65.1 2.13 ± 0.13 8.29 ± 0.62 9.89 n.a. n.a. n.a.
133.4 1.35 ± 0.08 10.08 ± 0.76 18.97 1.06 ± 0.06 7.41 ± 0.56 17.76
131.2 1.25 ± 0.07 13.32 ± 0.98 27.07 n.a. n.a. n.a.

219.32 1.01 13.3 80.1 0.64 11.1 67.1
115.95 0.71 4.98 111.9 0.39 4.71 65.7
52.9 70.4 37.5 139.7 60.3 42.4 97.9

lar ratio.



Table 1b
Mercury and Se concentrations (lg g�1 DW) in internal tissues of Commerson’s dolphins.

Specimen collection number Liver Kidney Muscle

Hg Se Se:Hg Hg Se Se:Hg Hg Se Se:Hg

RNP 2671 3.89 ± 0.23 9.14 ± 0.69 5.97 3.03 ± 0.18 12.66 ± 0.97 10.61 2.19 ± 0.13 6.57 ± 0.48 7.62

RNP 2701 2.80 ± 0.17 10.58 ± 0.81 9.60 1.79 ± 0.11 13.5 ± 1.1 19.16 1.49 ± 0.09 3.41 ± 0.27 5.82
1.29 ± 0.08 3.02 ± 0.23 5.92

RNP 2727 1.30 ± 0.08 15.2 ± 1.2 29.66 1.64 ± 0.09 19.1 ± 1.5 29.59 0.58 ± 0.05 8.62 ± 0.67 37.50
0.68 ± 0.06 6.48 ± 0.48 24.32

RNP 2628 8.85 ± 0.53 12.8 ± 1.0 3.68 n.a. n.a. – 3.07 ± 0.18 3.81 ± 0.29 3.15
3.06 ± 0.18 2.89 ± 0.22 2.40

RNP 2728 7.06 ± 0.42 20.3 ± 1.6 7.30 3.68 ± 0.22 13.0 ± 1.0 8.97 1.85 ± 0.11 2.57 ± 0.19 3.53
1.73 ± 0.10 2.73 ± 0.21 4.01

RNP 2669 11.51 ± 0.69 13.4 ± 1.0 2.96 4.52 ± 0.27 12.55 ± 0.85 7.05 2.29 ± 0.14 3.2 ± 0.24 3.55

RNP 2670 30.4 ± 1.8 20.5 ± 1.6 1.71 7.1 ± 0.43 10.89 ± 0.79 3.90 4.99 ± 0.30 2.36 ± 0.19 1.20

RNP 2724 44.7 ± 2.7 36.7 ± 2.7 2.1 n.a. n.a. – 3.22 ± 0.19 2.81 ± 0.22 2.22
3.35 ± 0.20 2.70 ± 0.21 2.05

RNP 2725 27.2 ± 1.6 25.2 ± 1.9 2.4 n.a. n.a. – 3.77 ± 0.23 3.66 ± 0.28 2.47
3.37 ± 0.20 3.55 ± 0.30 2.68

Mean 15.30 18.20 7.26 3.63 13.6 13.2 2.46 3.9 7.2
SD 15.17 8.68 8.82 2.03 2.83 9.5 1.23 1.83 10.1
CV% 99.1 47.7 121.5 55.9 20.8 72.0 49.8 47.0 139.4

n.a. – not analyzed. The analytical uncertainty is reported after ‘±’. Se:Hg – Se to Hg molar ratio. Liver, kidney and muscle data of some specimens was published (Cáceres-Saez
et al., 2013b). For six specimens, two samples of muscle were processed, extracted from the central and posterior body region, and the elemental concentrations measured
were averaged for further correlations.
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the Se concentrations. Corrections of the analytical interferences
were performed, particularly that of 75Se on 203Hg. The Suprasil
NA quartz impurity content was previously evaluated, and no Hg
or Se content was detected. Analytical quality control was per-
formed by analyzing Certified Reference Material NRCC TORT-2
(lobster hepatopancreas), and the results showed good agreement
with the certificate values. The concentrations are expressed on a
dry weight (DW) basis. Because [Hg] is reported frequently on a
wet weight (WW) basis, the conversion factor from dry to wet
weight was determined for each analyzed tissue to allow the com-
parison with all reported data in the literature. For the skin, a mois-
ture content of 70% was assumed (Yang and Miyazaki, 2003).

2.3. Data analysis

Descriptive statistics were employed to evaluate [Hg] and [Se]
in the analyzed skin and internal tissues. The concentrations are
presented as the mean, standard deviation (in parenthesis) and
coefficient of variation (CV%). Linear correlation analysis was per-
formed to evaluate the relationship between [Hg] and [Se] levels
in the skin and the corresponding levels in the lung, liver, kidney
and muscle. This analysis was not performed for the spleen tissue
due to the low sample size (three samples). For the specimens with
two analyzed muscle samples, the two determinations were aver-
aged for the correlation evaluation, provided that no significant
difference was observed (Tables 1a and 1b). The data from all tis-
sues and organs were analyzed to detect statistically significant
differences using non-parametric (Kruskal–Wallis) tests. Due to
the small sample sizes of calves, juveniles and adults, we only pro-
vide descriptive comparisons related to these ontogenetic classes.
The threshold for statistical significance was set at p < 0.05. The
analyses were conducted using OriginPro Version 8 (OriginLab
Corporation, Northampton, MA 01060 USA, 2007).

3. Results and discussion

The occurrence of heavy metals and toxic elements in top
predators, such as some cetaceans, is of global concern.
Assessment of pollutants in these organisms, with the objective
of species preservation, has been the subject of a large number of
research studies (Kunito et al., 2002; Stavros et al., 2007;
Wöshner et al., 2008). The study of tissues and organs in bycaught
dolphins is a valuable source of chemico-toxicological information
(Augier et al., 1993; Cardellicchio et al., 2002; Frodello et al., 2000).
Elemental concentrations can be measured in a variety of internal
tissue samples, specifically, hepatic, renal and muscular tissues.
Among these biological materials, skin is the most accessible exter-
nal organ and is easily sampled from the specimens in the field.
Skin is one of the largest and most important organs in mammals.
Its primary physiological function is that of an interface between
the body and the external environment. The skin provides the fore-
most line of defense against mechanical damage, radiation, toxic
compounds and micro-organisms (Martinez-Levasseur et al.,
2010; Richelle et al., 2006; Sengupta et al., 2010). In cetaceans, this
organ exhibits adaptive specializations, including an increase in
lipid deposits and subdermal blubber reservoirs (Bryan et al.,
2007; Yang et al., 2002). Additionally, the skin decreases drag
due to absence of hair, sebaceous glands and other epidermal
annexes (Pfeiffer and Jones, 1993). It has been suggested that lack
of these features prevents the excretion and uptake of trace ele-
ments through openings in the skin and makes the cetaceans a
closed system (Bryan et al., 2007). Moreover, it has been proposed
that trace elements primarily accumulate in the multi-layered epi-
dermis and dermis of the skin (Wagemann and Kozlowska, 2005).

3.1. Mercury and Se content

The concentration of Hg in samples of Commerson’s dolphin
skin was similar to that found in other tissues and ranged between
0.5 and 3 lg g�1 DW (Fig. 2 and Tables 1a and 1b). No significant
differences were observed between [Hg] in the skin, lung, muscle,
kidney or spleen. Significant differences (p < 0.01) were found
between [Hg] in the skin and in liver. However, higher values were
observed in the kidney and lower in the spleen (Fig. 2). Age and
body growth are important biotic parameters in the study of Hg,
because Hg may accumulate in certain organs over the lifespan



Fig. 2. Box plot indicating the Hg and Se concentrations in the skin and internal tissues of the Commerson’s dolphins. The horizontal line inside the box represents the
median, the bottom and top of the box constitute the interquartile range (25% and 75%) of the distribution, and the lines extending vertically from the boxes indicate the
minimum and maximum values.
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(Caurant et al., 1996; Lockhart et al., 2005; Stavros et al., 2011;
Wagemann et al., 1996). Specifically, Hg tends to accumulate in
the liver, an organ that metabolizes nutrients and essential ele-
ments and removes non-essential elements, compounds and toxins
from the bloodstream in mammals (Augier et al., 1993; Frodello
et al., 2000). Therefore, [Hg] and [Se] may increase with age and
size and are linked to the formation and storage of SeHg in the liver
(Caurant et al., 1996; O’Hara and O’Shea, 2001). A tendency of [Hg]
to increase was observed in the liver and kidneys of the
Commerson’s dolphin specimens, as well as in the muscle tissue,
where Hg is primarily in the MMHg form. Selenium increases with
age only in the liver, which is consistent with the abovementioned
formation and storage of SeHg. Furthermore, we observed [Hg]
variation in the skin with growth. Specifically, [Hg] was lower in
calves, 0.81(0.35) lg g�1 DW (average; standard deviation in
parenthesis), than in adults, 2.31(0.81) lg g�1 DW, and was similar
between the calf and juvenile classes, 1.0(0.18) lg g�1 DW. It is
important to note that the epidermal molt eliminates Hg in odon-
tocetes (Wagemann et al., 1996; Wagemann and Kozlowska, 2005),
which is analogous to the elimination via hair or fur in other spe-
cies. Moreover, the highest Hg concentration is found in the outer
epidermal layer, and, during the skin molt, approximately 14% of
the epidermal MMHg is eliminated (Wagemann et al., 1996).

Selenium concentrations were highest in the skin. The values
for the kidney, liver, lung and spleen were similar. However, the
muscle tissue showed the lowest concentrations (Tables 1a and
1b and Fig. 2). Regarding the variation of [Se] in skin with age,
the calves (99.2(17) lg g�1 DW), juveniles (86.3(13) lg g�1 DW),
and adults (92.8(27.5) lg g�1 DW) exhibited similar values. The
epidermis was found to be the target tissue for Se deposition, as
observed in previous studies (Borrell et al., 2015; Dehn et al.,
2006; Stavros et al., 2011; Yang et al., 2002). This is attributed to
the importance of Se in skin physiology. The low standard devia-
tion (less than 20%; Tables 1a and 1b) indicates that [Se] is tightly
regulated in this organ. In the studied Commerson’s dolphin spec-
imens, the skin [Se] ranged from 74 to 124 lg g�1 DW (22–
37 lg g�1 WW), which is within the range of reported levels for
the epidermis of dolphins and porpoises, 57–321 lg g�1 DW (17–
96 lg g�1 WW; Augier et al., 1993; Monaci et al., 1998; Yang
et al., 2002), and is in agreement with other studies (Dehn et al.,
2006; Kunito et al., 2002; Lockhart et al., 2005; Savery et al.,
2013a; Stavros et al., 2007).

Selenium uptake occurs via ingestion, primarily due to the
Se-rich fish diet consumed by odontocetes (Caurant et al., 1996;
Paludan-Müller et al., 1993; Wöshner et al., 2001). Selenium is a
dietary micronutrient and is important for proper functioning of
many organs, including the epidermis. Specifically, it has been
indicated that Se in the form of glutathione peroxidase protects
against UVB-induced skin damage and tumors in mammals by:
(1) decreasing oxidative DNA damage, (2) preventing the produc-
tion of cytokines, and (3) enhancing cellular and humoral immu-
nity (Leccia et al., 1993; McKenzie, 2000; Richelle et al., 2006;
Sengupta et al., 2010). Additionally, Se is known to be essential
for keratinocyte function, and for the development of epidermal
density and thickness (Richelle et al., 2006; Sengupta et al.,
2010), taking into account that cetaceans seasonally slough epider-
mis (Savery et al., 2013a; St. Aubin et al., 1990; Wagemann and
Kozlowska, 2005; Wöshner et al., 2001).

Regarding the potential of cetaceans to be used as biomonitors
of Hg in marine systems, the situation in two geographical areas is
briefly compared: the Mediterranean Sea and the Southern Ocean.
The Mediterranean Sea is one of the most investigated marine sys-
tems in the world with a high Hg pollution level, which is affected
by natural Hg inputs (Cossa et al., 2009; Heimbürger et al., 2010;
Kotnik et al., 2015; and references therein). The Southern Ocean
is free from direct industrial sources of contamination and is scar-
cely affected by local anthropogenic pollution. It exhibits lower Hg
levels in water, although it is not well studied (Cossa et al., 2011;
Mason and Sullivan, 1999). The mercury concentration in the liver
of captured odontocetes in the Mediterranean Sea has a wide
range, from 10 to 5000 lg g�1 DW (Augier et al., 1993;
Cardellicchio et al., 2002; Frodello et al., 2000; Leonzio et al.,
1992; Shoham-Frider et al., 2002). To date, little is known about
the Hg exposure of small odontocetes within the Subantarctic food
webs, but Hg levels in the liver of the Commerson’s dolphin, which
inhibits the waters around Tierra del Fuego, ranged from 1.3 to
45 lg g�1 DW. This is lower than for the Mediterranean Sea odon-
tocetes and is among the lowest values for other dolphins from the
South Atlantic Ocean (Cáceres-Saez et al., 2013a).

3.2. Interaction of Hg and Se

Marine mammals can be protected against Hg toxicity through
a number of mechanisms, including demethylation, excre-
tion/elimination (e.g., urine, feces, hair in pinnipeds), and interac-
tions with other elements (O’Hara and O’Shea, 2001; Yang et al.,
2008). Selenium counteracts negative effects of Hg through a num-
ber of direct-binding and antioxidant mechanisms (Koeman et al.,
1973; Wagemann et al., 1996). Specifically, Se has a high chemical
affinity for Hg in biological systems and forms insoluble Hg–Se
complexes, thus sequestering Hg from biological processes and
neutralizing its toxic effects (Khan and Wang, 2009; Peterson



Fig. 3. The Se:Hg molar ratio in the skin (white dots) and the liver (black dots) vs.
the age of the Commerson’s dolphins (points at 0.5 years correspond to ages below
1 year).
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et al., 2009; Sørmo et al., 2011). The availability of Se for binding
Hg is indicated by the Se:Hg molar ratio in a tissue. Ratios greater
than 1 indicate a molar excess of Se in the tissue, which implies the
potential of Se to protect against Hg toxicity. However, ratios lower
than 1 suggest limited Se protection (Sørmo et al., 2011). Measured
Fig. 4. Relationship between the Hg concentration in the skin and internal tissues of the
are reported for each case.
skin Se:Hg molar ratios significantly exceed 1 (65–392; Tables 1a
and 1b), which suggests high Se availability to combine with Hg
in stable compounds.

The [Hg] was correlated with [Se] in the cetacean liver samples,
together with low levels of MMHg. This is consistent with the for-
mation and storage of Hg–Se stable compounds, provided that the
liver is the organ that accumulates them (Augier et al., 1993;
Cardellicchio et al., 2002; Koeman et al., 1973; Wagemann et al.,
1996; Wöshner et al., 2001). This correlation was not observed in
the epidermis (Augier et al., 1993; Dehn et al., 2006; Lockhart
et al., 2005; Stavros et al., 2007). In this study, [Hg] and [Se] were
not found to have a significant correlation in the skin (p > 0.05).
Although there was a positive correlation of [Hg] with age due to
Hg storage in inorganic forms, a [Hg]–[Se] correlation was not
observed due to the much higher [Se] (Tables 1a and 1b). The trend
of lower Se:Hg molar ratios with higher [Hg] for older individuals
(Fig. 3) reveals an increasing [Hg] relative to [Se]. This could be
attributed to the skin storage of Hg–Se stable compounds.
Notably, the Se:Hg molar ratios in skin and liver, the organs which
are known to accumulate Hg–Se stable compounds (Augier et al.,
1993; Frodello et al., 2000), have a similar age-trend but with
much higher values for the skin (Fig. 3). Keratin is the main
structural protein found in the epidermis and contains multiple
disulfide cross linkages as well as cysteine residues. Cysteine is
an –SH amino acid and is likely the binding site for MMHg+ in
the keratinized tissues (Cernichiari et al., 1995). However, it is
possible that Hg complexes occur in the skin of odontocetes, and
Hg is deposited in the form of MMHg–SH complexes (Khan and
Wang, 2009; Savery et al., 2013a).
Commerson’s dolphins: liver, kidney, muscle and lung. The linear fitting parameters
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3.3. Skin-to-internal-tissue relationship

Significant linear positive correlations were found between [Hg]
in the skin and in other studied tissues in Commerson’s dolphins
(Fig. 4). Specifically, the strong correlation (R2 = 0.79; p = 0.0008)
between the skin and muscle indicates that [Hg] in the skin is asso-
ciated with that in the muscle. This outcome is important for mon-
itoring purposes because Hg in the muscle is primarily in the
MMHg form (Ullrich et al., 2001) and is associated with feeding
habits and MMHg sources. Therefore, Hg in the epidermis indicates
the level of Hg uptake by the whole organism but is strongly asso-
ciated with MMHg accumulation in muscle and, hence, the MMHg
uptake. Mercury in the skin of Commerson’s dolphins is an accu-
rate bioindicator of Hg accumulation in the whole organism, which
allows us to predict [Hg] in the muscle. Under the study conditions,
[Hg] in the muscle is estimated from the skin content using a factor
of 1.85 (n parameter in linear fitting is 0; Fig. 4).

No significant correlation was found between the [Se] in the
skin and that in internal tissues (p > 0.05; Fig. 5), which suggests
that there was no direct association between Se accumulation in
the skin and that in internal tissues. This is attributed to the biolog-
ical role of Se, which is regulated by each tissue according to the
physiological needs (Dehn et al., 2006; Kunito et al., 2002; Savery
et al., 2013a). Therefore, the skin [Se] does not reflect the internal
tissue content and cannot be used to monitor Se.

3.4. Skin Hg content of Commerson’s dolphins as a proxy for
monitoring the Subantarctic ecosystem

Bioindication has been widely used to evaluate the sources, dis-
tribution, processes or impact of different pollutants. In marine
Fig. 5. Selenium concentrations in the skin and internal tissues o
ecosystems, Hg is a pollutant of particular concern because it is
harmful at very low concentrations to wildlife and humans
through fish consumption. Transport, speciation and trophic trans-
fer are key aspects in Hg cycling, which involves complex processes
that are difficult to fully understand. Therefore, bioindication is of
particular relevance in the study of Hg in aquatic systems and pro-
vides valuable information that is difficult to obtain by other
means. The higher trophic levels of marine ecosystems are the tar-
get of Hg studies, given the ability of Hg to biomagnify. The higher
trophic levels have the highest [Hg], primarily in the MMHg form,
and provide information about the lower trophic levels, which
indicates the exposure routes. The odontocetes fully fit this profile,
particularly the Commerson’s dolphin, which is a coastal cetacean.
Regarding wildlife protection, exposure assessment in dolphins
indicates marine areas where the species face risks from metal tox-
icity, and this type of assessment is therefore an important aspect
of the management and conservation of cetacean wildlife.

Heavy metal monitoring using skin biopsies is a non-lethal
approach that allows the screening of a large number of specimens
with little disturbance to the animals. This makes it an adequate
sampling strategy that produces statistically valid results in the
study area or in the populations under study. Most studies report
the elemental concentrations in the tissues of marine mammals
as they relate to age and growth, tissue type, and geographic area,
which varies among the individuals and species (Law, 1996).
Nevertheless, for bioindication, the correlation of trace element
concentrations between the skin and internal organs of cetaceans
is of particular significance for the evaluation of the whole body
content or concentrations in the key tissues. The linear correlation
of [Hg] in the skin with the concentrations in other relevant inter-
nal organs and tissues, specifically in the muscle, supports the use
f the Commerson’s dolphins: liver, kidney, muscle and lung.
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of skin biopsies from Commerson’s dolphins for Hg bioindication in
the water of the Subantarctic, which is a poorly studied region
regarding Hg levels, sources and processes.
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