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Abstract 

Liquid crystals are synthetic and biological viscoelastic anisotropic soft matter materials 

that combine liquid fluidity with crystal anisotropy and find use in optical devices, 

sensor/actuators, lubrication, super-fibers. Frequently mesogens are mixed with colloidal 

and nanoparticles, other mesogens, isotropic solvents, thermoplastic polymers, cross-

linkable monomers, among others. This comprehensive review present recent progress on 

meso and macro scale thermodynamic modelling, highlighting the (i) novelties in 

spinodal and binodal lines in the various phase diagrams, (ii) the growth laws under 

phase transitions and phase separation, (iii) the ubiquitous role of metastability and its 

manifestation in complex droplet interfaces, (iv) the various spinodal decompositions due 

to composition and order fluctuations, (v) the formation of novel material architectures 

such as colloidal crystals, (vi) the particle rich phase behaviour in liquid crystal 

nanocomposites, (vii) the use of topological defects to absorb and organize nanoparticles, 



and (viii) the ability of faceted nanoparticles to link into strings and organize into lattices. 

Emphasis is given to highlight dominant mechanisms and driving forces, and to link them 

to specific terms in the free energies of these complex mixtures. The novelties of 

incorporating mesophases into blends, solutions, dispersions and mixtures is revealed by 

using theory, modelling , computation, and visualization.  

 

1 - Introduction 

 Liquid crystals (LCs) anisotropic viscoelastic soft matter materials displaying 

long range orientational and partial positional order, are responsive to electro-magnetic 

fields, substrates and interfaces, temperature and concentration gradients, and pH among 

many other fields [1-4]. They are found in many biological systems (DNA, cellular 

membrane, plant cell wall, etc.) [2;4;5] and form the basis of many functional and 

structural materials and devices, such as LCD displays, light valves, smart windows, 

sensor-actuators, artificial muscle, carbon super-fibers, among others [6-8]. There are 

many different types of liquid-crystalline phases (which are also known as mesophases); 

the simplest one is the nematic phase (N) that only displays orientational order. 

 In most technological applications and biological systems, the liquid crystalline 

material is not a pure substance but it is a mixture of two or more species, where at least 

one them is a liquid crystal. For example, in display applications, eutectic mixtures of 

different liquid crystals are used, in order to tune the temperature range where the N 

phase is stable [8] and reduce response time through optimization of viscoelastic 

properties. Another important example is cell division, where a model has been proposed 

that explains centriole formation in terms of a preferential segregation of a solute to the 



core of topological defects [9]. Mixtures of liquid crystals with other materials such as 

polymers [10-22] and colloidal particles [23-32] have been widely studied due to their 

interesting physics and potential for technological innovation. A mixture with a high 

mesogen concentration can remain homogeneous and behave essentially as a pure 

material (with modified properties), but the mixture can also phase-separate, leading to a 

heterogeneous material with complex morphologies and order parameter gradients  that 

can significantly affect and improve its properties. Even the simplest binary mesogenic 

mixtures are characterized by conserved (concentration) and non-conserved (orientatioal 

order) order parameters whose couplings generate new thermodynamic instabilities and 

non-classical phase transition kinetics. Understanding the phase behavior and the 

dynamics of phase transitions and structure formation in mesogenic mixtures is thus a 

fundamental aspect of liquid crystal science and technology. 

 Theory and simulation of liquid crystal thermodynamics have contributed both to  

fundamental understanding and to practical applications. Molecular [33;34], mesoscopic 

[33], and macroscopic [3;35], LC models have been widely used and are now being 

integrated in multiscale simulation approaches [36]. In this review we focus on 

mesoscopic and macroscopic approaches describing the thermodynamics of phase 

equilibrium, phase transitions and structure formation in liquid crystal mixtures and 

composites, emphasizing the work of our group in nematic liquid crystals, in the last few 

years. In this type of models the state of order of the nematic phase is described by means 

of the quadrupolar tensor order parameter Q, defined as [1;3;4;35]: 
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where S is the scalar uniaxial order parameter, P is the biaxial order parameter, δδδδ is the 

unit tensor and n, l and m are the eigenvectors of Q. The scalar uniaxial order parameter  

S measures the degree of molecular alignment along the average orientation n. The 

biaxial order parameter measures the deviation of the molecular alignment distribution 

from axial symmetry, even uniaxial phases (where P=0 in equilibrium), can display 

biaxiality under the effect of external fields and surfaces and in the vicinity of topological 

defects.  

The organization of this review is as follows. In section 2 we describe the 

calculation of phase diagrams, including phase coexistence (binodal) and stability limit 

(spinodal) lines. Section 2.1 deals with mixtures of polymers and LCs, section 2.2 with 

mixtures of two LCs and section 2.3 with dispersion of nanoparticles (NP) in LCs. 

Section 3 describes the dynamics of phase transition highlighting the effect of mixed 

conserved and non-conserved order parameters. In section 3.1 the dynamics of an 

interface in a phase transition, describing a nucleation and growth process, is analyzed, 

while in section 3.2 spinodal decomposition is discussed. Section 4 analyzes different 

aspects of structure formation; in section 4.1 the phase morphology in a phase separated 

system is presented, section 4.2 discusses the defect structure in a mixture and section 4.3 

presents textures and defect configurations in particle-filled nematics. Finally, section 5 

presents the conclusions. 

 

2 – Phase equilibrium 

The starting point for the calculation of phase diagrams is an expression for the 

free energy density, f, as a function of the relevant thermodynamic variables. As the free 



energy in an unperturbed bulk system does not depend on the direction of the liquid 

crystal orientation, the scalar order parameters suffice to describe the thermodynamic 

state of the system. In a uniaxial material the relevant thermodynamic variables are the 

nematic uniaxial order parameter S, the liquid crystal concentration φ and the temperature 

T. The equilibrium condition is that the chemical potentials of each component are the 

same in each phase. In addition, the free energy in each phase has to be minimal with 

respect to S. Traditionally, phase diagrams of mixtures involving a low molecular weight 

nematic LC and another substance are described by combining the Flory-Huggins theory 

of mixing [37-41] and the Maier-Saupe theory of nematic ordering [10;12;17;20;42;43], 

or some of their generalizations or modifications, although other approaches have been 

used too. Maier Saupe´s model describes the system in terms of an anisotropic energetic 

interaction, neglecting excluded volume effects, so it is suited for short LC molecules 

(low molar mass mesogens). High molecular weigth LCs including fibers and platelets 

have been modeled with Onsager´s model [44-46], which is based in excluded volume 

and it is strictly valid for a infinite aspect ratios. Combinations of both approaches 

(excluded volume plus energetic interactions) have been proposed too [10;17]. A 

different approach was taken by Flory, who derived a theory based on a lattice model 

[47-49]. A rich variety of phase diagrams have been described in the literature with 

different degrees of complexity, generic phase diagrams of the simplest mixture (LC + 

isotropic substance), are shown in fig. 1 and will be described in the following paragraphs 

and sections.  



Figure 1. Schematic of phase diagrams of mixtures containing a nematic LC and a non-

nematogenic species. I and N indicate isotropic and nematic phases. Full lines indicate 

binodals, dotted lines are spinodals. (a) with buried (metastable) I-I phase coexistence, 

dashed lines indicate the NIT line and the metastable I-I binodal (b) with I-I phase 

coexistence (The NIT line and the nematic spinodal are not shown for clarity reasons). 

Positions indicated as a, b, c show different quenches leading to different spinodal 

processes as discussed in section 3.b. 

 

As shown in fig.1 Several regions can be defined in a phase diagram of mixtures 

involving LCs. Firstly, the T-φ diagram can be divided in a region where the isotropic 

phase is the equilibrium state of an homogeneous solution, and another region where the 

nematic phase is the equilibrium state. The limit between these two regions is called 

nematic-isotropic transition (NIT) line [10;17], and represents the first order transition of 

an homogeneous mixture, when phase separation is not allowed. This line represents an 

“extension” of the transition temperature of the pure LC, TNI, to the mixture. When 

phase separation is allowed, the equilibrium phases at a given temperatures are given by 

binodal lines, and the region comprised inside a binodal correspond to phase coexistence. 

In the simplest mixture, two binodals can exist: a nematic-isotropic (N-I) binodal and an 
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isotropic-isotropic (I-I) binodal. As this two curves depend on different physical 

parameters, they relative location can vary from one mixture to another; the I-I binodal 

might be placed at high temperatures and can be observed in equilibrium (Fig. 1b), or it 

can be buried bellow the N-I binodal at lower temperatures, so that the equilibrium phase 

diagram only shows I-N coexistence (Fig 1a). In this case, the I-I coexistence represents a 

metastable state.  

Spinodal lines represent the limit of stability of homogeneous phases with respect 

to molecular fluctuations. The spinodal condition is met when an infinitesimal variation 

of a given variable produces a decrease in the free energy (a strict discussion on the 

spinodal criterion can be found in refs. [12;49]). Several spinodals can be defined, 

corresponding to different instabilities. The I-I spinodal represents the stability of a 

homogeneous isotropic phase respect to phase separation, so inside this region an 

isotropic phase is unstable with respect to concentration fluctuations. The I-I spinodal 

line is given by the condition 
2

2 0f
φ

∂
∂ = . The nematic spinodal is the limit of stability of 

a homogeneous nematic phase, with respect to fluctuations in order or composition (This 

spinodal is often considered to extend up to its intersection with the NIT line, but actually 

it extend to higher temperatures. For the correct calculation of this line see refs. [12;49]). 

It is given by the conditions 
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∂ ∂∂ ∂ =− . Finally, another spinodal can 

be defined, the isotropic-to-nematic spinodal which is the limit of stability of a 

homogeneous isotropic phase with respect to fluctuations of the order parameter and it is 

defined by the condition 
2

2 0f
S

∂
∂ = , evaluated with S = 0. In previous works, usually the 

NIT line was considered to be stability limit of an isotropic phase respect to order 



fluctuations, but between the isotropic-to-nematic spinodal and the NIT line, 

2
2 0f

S
∂

∂ > and S = 0 represents a local minimum of the free energy, so the isotropic 

phase is metastable (this is very well known for pure LCs but it was usually ignored for 

mixtures). These spinodals are schematically shown in Figs. 1a and 1b by dotted lines.  

Figure 1 shows schematics of phase diagrams of mixtures containing a nematic 

LC and a non-nematogenic species including binodals and spinodals. I and N indicate 

isotropic and nematic phases. Figure 1(a) correspond to highly a miscible mixture, with 

buried (metastable) I-I phase coexistence, and Figure 1(b) to the case of low misciblitily 

with demixing in the isotropic phase. Characteristic positions corresponding to different 

quenches leading to different spinodal processes are indicated as a, b and c and discussed 

below in section 3.b.  

 

2.1. Polymer – liquid crystal mixtures. 

Phase diagrams of different types of PDLCs have been studied by several groups 

[10-22]. Low-molecular weight LC mixed with thermoplastic (i.e. not crosslinked) 

polymers, are described by Maier-Saupe / Flory Huggins theories, which gives the type 

of phase diagram shown in fig. 1. The dimensionless free energy density is given by [11-

15;19;20]: 
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where vref is an arbitrary reference volume, vLC and vP are the molar volumes of LC and 

polymer, (non-dimensionalized with respect to vref), χ is the Flory interaction parameter, 

ν=4.54ΤΝΙ/Τ is the Maier-Saupe quadrupolar parameter and ( )
1
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partition function. The first three terms correspond to the isotropic contribution (fiso) and 

the last two terms are the nematic free energy (fn). The main variables controlling the 

phase diagram are the interaction parameter and the relative volumes of the species. For 

highly compatible or low molecular weight species, the mixture is miscible and a phase 

diagram like Fig 1a is observed, as the molecular weight or the chemical incompatibility 

increase, a phase diagram like Fig 1b is observed. In addition, as the molecular weight of 

the LC increases, TNI increases. For large enough molecular weight, excluded volume 

effects becomes predominant, in these conditions a “chimney” can appear in the phase 

diagram, as observed in fig 2 [17;49]. This means that, for a concentration of LC higher 

that certain value, the system is in a nematic phase at every temperature. This can be 

represented by adding an excluded volume term to the quadrupolar interaction, 

n
nb

Taν = + , where an and bn are constants arising from excluded-volume and energetic 

interactions respectively. In Onsager’s theory, 54n
L

Da = , where L and D are the length 

and diameter of the LC molecule [10;17]. 



 

Figure 2. Phase diagrams of mixtures of a flexible polymer and a “long” liquid crystal. 

The dimensionless temperature is defined as τ=1/χ. The phase diagram is calculated with 

vP = 2, bn=2.5, and vLC=L/D= 4 and 6 as shown in the figure. Adapted from ref [17], with 

permission of Elsevier. 

 

In the case of a cross-linked polymer, the second term in eq 1, which represents 

the translational entropy of polymer chains, is absent, and in addition the elastic energy of 

the polymer network has to be taken added to the free energy. Several expressions have 

been used for the elastic energy in the literature and discussing them is beyond the scope 

of this review, a simple and classical expression based in Flory-Rehner theory of rubber 

elasticity is [11;13;14;50]: 
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where ne is the number of elastically active chains, 1-φ0 is the polymer volume fraction 

when the network is formed (it can be different from 1-φ if the network is produced in-

situ during a polymerization process, for example), and A and B are functions of the 

concentration and the functionality of the cross-links. The simplest biphasic equilibrium 

in this case consist in a swollen gel and pure LC (in principle, equillibrium between two 

gels with different degree of swelling or nematic gels can also exist). In this case, there is 

always a “chimney” in the phase diagram, as the gel cannot be infinitely swollen at any 

temperature. Benmouna et. al. analyzed [11;13;14] the phase diagrams predicted by 

different models for the elastic free energy. A representative phase diagram for this type 

of system is shown in fig. 3. 

Das and Rey analyzed the computational aspects of phase diagram calculation 

[17], specifically the numerical accuracy of different ways of calculating the nematic 

partition function term in Maier-Saupe’s energy. They analyzed three different 

approaches: A Landau-de Genes (LdG) fourth-order polynomial expression, based in a 

Taylor expansion of the integral, and two numerical integration schemes: Gaussian 

quadrature and Simpson`s rule. A LdG expression is attractive from a computational 

point of view, as it is simple to implement and requires less calculations than other 

techniques. But the Taylor expansion was also shown to be the less accurate approach. 

They concluded that a fourth degree Taylor expansion was very inaccurate, and Gaussian 

integrations must be performed with about 30 points to give a result comparable to the 

more accurate Simpson’s rule. Later, Soule and Rey [51] proposed another strategy to 

obtain a highly accurate LdG expression: not a Taylor expression, but a least-square fit of 

the free energy with a polynomial of the desired degree. It was shown that a very accurate 



reproduction of the free energy and the phase diagrams can be obtained by using 

polynomials of degree four or five in a relatively wide range of temperature.  

 

Figure 3. Phase diagram of a mixture of nematic liquid and a cross-linked polymer. NLC 

and ILC denote the pure LC in nematic or isotropic state, swollen gel is the polymer 

network swollen by the isotropic LC. The horizontal dotted line is the N-I transition of 

the pure LC phase. Adapted from ref. [13], with permission of John Wiley and sons.  

 

2.2. Liquid Cristal – Liquid Crystal mixtures  

In a mixture between two LCs, there are two isotropic-nematic transitions, each 

one corresponding to each of the liquid crystals [14;52-55]. The resulting nematic phase 

in the mixture of components “1” and “2” can be such that S1>S2 (phase N1), S2>S1 (phase 

N2) or S1=S2. This is controlled by the interactions between the two components and TNI 

asymmetry [54;55]. For ideal mixtures, the NIT temperature of the mixture is a linear 

interpolation of TNI,1 and TNI,2 while for strong deviations of ideality, azeotropic/eutectic 
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behavior can be observed [52;54;55]. In general, the phase N1 exist for compositions 

between the azeotrope and pure “1”, N2 between the azeotrope and pure “2”, and for the 

azeotropic composition, S1=S2. For ideal mixtures, the component with higher TNI will 

have a higher S. 

Maier Saupe theory can be applied to describe a nematic mixture, the nematic 

contribution to the free energy is [14;52-55]: 
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where ν1=bn1/T, ν2=bn2/T and ν12=bn12/T. This scalar formulation was first introduced by 

Brochard et. al. [52], recently Golmohamadi and Rey [54;55] derived the tensorial 

equations, which reduce to the scalar equation for a uniaxial phase in equilibrium. 

Brochard et. al. first [52], and later others [14;53-55], described phase diagrams 

with complex shapes, including not only I-N and I-I phase coexistence but also N-N 

coexistence, both with maximum and minimum temperature azeotropes for generic 

mixtures. Some of them are shown in figure 4. 

 



 

Figure 4. Some phase diagrams of LC – LC mixtures, reproduced from ref. [52] with 

permission of EDP sciences. All the phase diagrams were constructed with χ=1/T, and 

the nematic quadrupolar parameters indicated in each figure 

 



 In a recent work, Golmohamadi and Rey [54;55] focused on modeling the 

structure and properties of the nematic phase, applying the model to carbonaceous 

nematic mesophases, which consist in mixtures of discotic molecules with similar 

chemistry and different molecular weight. They combined the theoretical model with 

experimental information for TNI as a function of molecular weight (recall that higher 

molecular weight is associated with a higher TNI). An important result was the 

quantitative classification of the behavior of the mixture in terms of the value of the 

interaction parameter (defined as β=bn12/bn2) and the molecular weight difference ∆M, 

which is shown in Fig. 5.  

 

Figure 5. classification of an LC-LC mixture in terms of ideality, as a function of 

the interaction parameter β and the molecular weight asymmetry. Adapted from ref. [55]. 

 



A second important result was the derivation of an analytical expression for the 

azeotropic composition: 
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where M1 is the molecular weight of “1”,  m1,c and m2,c are the mass fraction of “1” or “2” 

at the azeotrope. With this equation the interaction parameter can be determined by 

measuring the azeotropic composition. 

 

2.3. Dispersions of Nanoparticles  in Liquid crystals 

Phase diagrams for dispersions of micron-colloidal particles and nematic liquid 

crystals have been studied in the past by several authors [26;28;30;32;56-58]. A colloidal 

particle embedded in a nematic phase induce elastic distortions in the director field and 

the formation of topological defects [23;24;59-62], which increases the total free energy 

producing a decrease in the NIT temperature. In a continuous solution-thermodynamic 

formalism [28;56;58], this effect is introduced as an interaction term, proportional to φ(1-

φ)S2. In addition, the formation of ordered arrays of particles is dictated also by elastic 

effects. In this case of micron-sized particles (much larger than single molecules), elastic 

effects dominate the free energy. For nano-sized particles, the situation is different in that 

the size of the particles is comparable to the size of a molecule, so mixing entropy and 

entropically-driven hard-sphere crystallization become relevant. Theoretical studies of 

phase diagrams for NPLC have been recently presented [26;28;58]. Simple models 

consider two first-order transitions: nematic ordering of the LC and colloidal 



crystallization of the particles. Such a model was first presented by Matsuyama and 

Hirashima [28], and later modified by Soule et. al. [58], who considered the following 

modifications. First, as the particles are not flexible chains, Flory-Huggins theory has to 

be modified. This is done by introducing an excluded-volume term, obtained from 

Carnahan-Starling equation of state. This idea was first proposed by Ginzburg for 

polymer nanocomposites [63], and has been widely used since then [26;64;65]. A second 

modification is considering that the interactions are proportional to the contact areas, and 

not to the volumes of the components [58;65]. By considering that the nematic 

quadrupolar interaction is also proportional to the contact area, a consistent dependence 

of the isotropic-nematic transition with particle radius is reproduced (i.e. as the particle 

radius increase, TNI of the mixture increase, approaching the value of the pure liquid 

crystal in the limit of infinitely large particles). The free energy for this system is written 

as the summation of four contributions, isotropic (fiso), nematic ordering (fn), crystalline 

ordering (fcrys) and specific interactions (fint) [26;28;58]. 
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The third term in eq 7 is the Carnahan Starling contribution, ϕLC = φLCaLC/( φLCaLC 

+ φNPaNP) is the area fraction of liquid crystal, aNP and aLC are the area per unit volume of 

the particle and liquid crystal, σ is the crystal order parameter, ZP is the positional 

partition function of the particles, g is an excluded-volume parameter (=14.95 for hard 

spheres), w is a binary nematic interaction parameter that account for anchoring at NP 

surface and nano-scale disruption of order, and c is a crystal-nematic coupling parameter, 

which phenomenologically account for the fact that an ordered array of particles can be 

favored by elastic forces in a nematic matrix [28]. 

 Figure 6 shows some representative phase diagrams calculated by Soule et. al., 

for different NP radius. Miscibility is a balance between the entropic and enthalpic terms, 

which depend on the particle radius in different way. For small particles, increasing the 

size decreases miscibility(entropic effect prevail), while for large particles the opposite 

happens (enthalpic effect) [64;65]   
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Figure 6. Calculated phase diagrams for NP-LC mixtures, as given by eqs , with the 

following parameters: vLC = 3, aLC = 4.66, χ = 2.5/T, w = c = 0, and different values of NP 

radius: (a) RNP = 0.9, (b) RNP = 2, (c) RNP = 6 (here vNP = 4/3πRNP
3 and aNP = 4πRNP

2). 

Adapted from ref. [58].  

 



This model was later extended to system consisting in functionalized NPs [32], 

where the metallic core of the particle is coated by a mixture of two different ligands: a 

long ligand with a messogenic group, and a short alkylic ligand. A phenomenological 

expression for the interaction parameter χ was introduced for the entropic and enthalpic 

effects produced by the partial penetration of LC molecules in the corona of ligands, 

taking into account that the two ligands have a different size. This situation is 

schematically shown in figure 7.  

 

Figure 7. Schematic of a particle coated with a mixed ligand layer, in presence of LC 

solvent (black ellipsoids). Region A is the gold core, Region B is the inner layer 

composed of alkyl chains (zigzag lines), and Region C is the outer layer composed by the 

mesogenic group of the ligands (white ellipsoids). The partial penetration of the solvent 

molecules into the outer layer of the corona is shown. Examples of LC solvent molecule 

in direct contact with an alkanethiol chain and with a liquid-crystalline ligand are 

indicated by the grey arrows. 

 

The proposed expression for the interaction parameter as a function of the fraction 

of long ligand was: 
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The first term is the entropic contribution and it a symmetric parabola with a 

minimum at θ=0.5. This terms takes into account that the penetration of LC molecules in 

the corona is maximum (so the entropy is minimum) for the case of mixed ligands, and it 

is negligible (the entropy was taken as 0) for coronas of pure ligands where there is no 

free volume. The second term is the enthalpic contribution and it is a linear function of 

the number of contacts between solvent-alkanethiol ligand and solvent-liquid crystalline 

ligands (the number of contacts with each ligand was considered to be proportional to θ 

and 1-θ). This model was able to reproduce a non-trivial miscibility trend for a series of 

nanoparticles, showing maximum solubility for θ close to 0.5, partial solubility for θ=1 

and negligible solubitily for θ=0. 

 
 

3 – Dyamics of phase transitions 

 

 There are many approaches to modeling the dynamics of phase transitions. In the 

continuum formulation, based in macroscopic thermodynamic variables, an equation of 

change is formulated for the order parameters and the concentration. These equations can 

be complemented with some equation for the variation of pressure (in compressible 

systems), temperature and velocity. 

 Hohenbergh and Halpering [66] classified the dynamic models in terms of the 

relevant variables describing the process. A system with only non-conserved order 

parameters is known as model A and it is described by the following dynamic law: 
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where Ψ is the order parameter and δ represents the functional derivative. Here and 

bellow, Mi represents a mobility corresponding to variable “i”. In order to describe 

nematic order, the tensorial formulation is used and the model A equation becomes: 
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Q

Q
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This equation is phenomenological in principle; is the simplest equation that guarantees 

that the entropy of the system decreases monotonically with time, although there have 

been several works relating this equation with more fundamental laws from non-

equilibrium thermodynamics or molecular theories [67-69]. 

 A model described by a conserved variable is known as model B and it is 

described by Cahn-Hilliard equation: 

   
f f

M
t φ
φ

φ φ
  ∂ ∂ ∂= ∇ ∇ − ∇  ∂ ∂ ∂∇  

   (14) 

 In this case, as there is an extra restriction (conservation law), the minimum 

equation is different. Cahn-Hilliard equation can be though as a generalization of Fick’s 

law and can be derived from Onsager’s irreversible thermodynamics or other formalisms 

[67-69]. 

 In the case of a mixture undergoing an order-disorder transition, the minimum 

model has to account for ordering and concentration and thus requires one non-conserved 

and one conserved order parameters, this is known as model C. More complex 

formulations can include an equation for energy and momentum transfer. 

 



3.1. Interfacial kinetics - Metastable fronts  

The growth of a nematic spherulite can be represented by the interface normal 

velocity vI, which it is experimentally found to follows a power law with time, vI = dR/dt 

= a.tn, where a is a constant (related to the driving force), and the exponent n depends of 

the type of phase transition process (n=0.5 for diffusional and n=1 for non-difussional 

transformations). For the case of a pure liquid crystal, it is observed that n=1 for large 

undercooling, while n approaches 0.5 when the temperature is close to the bulk 

equilibrium transition conditions [70-72]. Traditionally this was ascribed to the effects of 

interfacial energy (the argument was that, as the transition temperature is approached, 

interfacial energy dominates over bulk energy and the process is driven by interfacial 

dynamics), but recently it was shown that it is not the interface, but the latent heat 

released by the transition which produces this n < 1 [73;74]. The coupling between a non-

diffusional process (phase ordering) and a diffusional one (heat transfer), lead to a 

complex dynamic behaviour. 

As mentioned before a first order transition in a mixture is described by model C, 

which couples a difussional and a non-diffusional dynamic equation corresponding to the 

non-conserved and the conserved variables respectively. If one variable is much faster 

than the other, then the dynamics will be controlled by the slower variable and will show 

n=0.5 or n=1 depending on the case. When the two variables have a comparable 

dynamics, then the value of n is intermediate. A characteristic feature of this mixed 

process is that, as the diffusional velocity decreases with time while the ordering velocity 

remains constant and the system is controlled by the slower variable, at long enough 

times the system will be always controlled by diffusion [75;76]. So, even when ordering 



is slower at first and the initial growth exponent approaches 1, it will decrease with time 

and approach the diffusive value of 0.5. 

Another interesting feature of phase transformations is the possibility of formation 

of metastable states. For example, as discussed in the previous section, I-I coexistence 

can be buried bellow I-N equilibrium (fig.1a), and thus be metastable. If an isotropic 

phase is quenched to a large undercooling, the presence of this metastable equilibrium 

can affect the dynamics of the system and the metastable phase can be formed through 

different mechanisms. Bechoeffer et. al. [77;78] first found, for a model of non-

conserved order parameters, that an interface separating the stable phases can 

spontaneously split in two, so a third phase (the metastable one) is formed. Later, Evans 

et. al. [79-81]   analyzed the case of a conserved order parameter (COP). More recently, 

Soule and Rey [75;76;82] analyzed the case of mixed order parameters, and found a 

complex behavior, arising from the more complex dynamics and phase behavior. 

There are two main factors controlling the structure of the interfaces appearing 

during the dynamic process: 1 – the relative location of the initial condition with respect 

to the metastable I-I coexistence curve in the phase diagram, 2 – the relative mobility. 

The position in the phase diagram determines the possible mechanisms available for the 

appearance of a metastable phase [82]. This is shown in figure 8 and will be discussed in 

the following paragraphs. 

In the phase diagram indicated in figure 8, four characteristic phases, 

corresponding to the stable and metastable equillibria, can be found. These are indicated 

in figure 8 with greek letters as follows: α and β correspond to the stable-equillibrium 

nematic and isotropic phases respectively, δ and γ correspond to the metastable I-I 



equilibrium, being δ the low-concentration and γ the high-concentration phases. If a 

nematic nucleus is formed in an isotropic media in (T,φ) conditions comprised inside the 

I-N binodal, the LC nematic phase will grow at the expense of the isotropic one. In 

addition, when the concentration of LC is lower than the I-I critical concentration, and the 

isotropic phase is inside the I-I binodal, the concentrated isotropic phase γ, can grow at 

the expense of the bulk isotropic phase.  In this case, the interface spontaneously splits in 

two: one is a α−γ interface and the second one is a γ−δ interface, [75;76]. This splitting is 

a kinetic mechanism that takes place when the γ−δ interface is initially faster than the 

α−γ interface. As the γ−δ interface separates two I phases, it follows a diffusional kinetics 

(vI = a.t-1/2), while the α−γ interface separates I and N phases and follows a NCOP 

kinetics (vI = const), after some time the interfaces merge again and the split state has a 

finite lifetime. 

When the concentration of LC is higher than the I-I critical concentration, the 

situation is different. When ordering is faster that diffusion, the kinetic front splitting is 

not observed (as in this case, γ cannot grow at the expense of the bulk). Nevertheless, if 

the interface is at equilibrium, (diffusional transformation) the concentration of the 

isotropic phase at the interface is the equilibrium one (β), a depletion layer is formed 

between the interface and the bulk, and the concentration of this depletion layer goes 

through the I-I binodal. Under this condition, a phase separation takes place within the 

depletion layer [82]. Unlike the previous case, this is a thermodynamic and not a kinetic 

effect. As both interfaces follow a difussional kinetics, the separation between interfaces 

grows as vI = a.t-1/2 and the split state has an infinite lifetime. The double front in this 

case arises even when the initial condition is outside the I-I binodal, the condition for it to 
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happen is that the temperature is lower than the I-I critical temperature. In addition, even 

above the critical temperature, diffusion shows a strong non-classical behaviour: an 

inflection point is produced in the concentration profile in the depletion layer when the 

temperature is close to the I-I critical temperature. This is ascribed to the fact that the 

second derivative of the free energy with respect to concentration goes close to 0 in the 

vicinity of the critical point [82]. 

 

 

 

 

 

 

 

Figure 8. Interface splitting in different locations of the phase diagrams. The central plot 

is a schematic phase diagrams, where the solid lines represent the stable I-N binodal and 

the dashed line is the metaestable I-I binodal. The satellite plots are the profiles of 

concentration (solid lines) and order parameter (dashed lines), obtained from simulations 

in the region of the phase diagram indicated by the corresponding arrows. Greek letters in 

the phase diagrams and in the profiles indicate the different phases (α: stable nematic, β: 
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stable isotropic, δ and γ: metastable isotropic). The concentration of the bulk isotropic 

phase is represented by black dots. Adapted from refs. [75;76;82], with permission of 

EDP sciences. 

 

This situation is graphically shown in figure 8, where the different composition 

and order parameter profiles (taken from simulations) are shown for different locations in 

the phase diagram (shown schematically). 

 

3.2. Spinodal decomposition  

Different spinodal lines can be defined in mixtures involving LC, as discussed 

previously. Each spinodal line is associated with a specific phase transition process. 

Fiescher and Dietrich [83] first studied spinodal decomposition for a mixed order 

parameter case where only phase separation between ordered and disordered phases was 

possible. Soule and Rey [76] later extended it to the case where a metastable I-I phase 

separation is also possible. Das and Rey [18;21;22] also performed 2D simulations of 

spinodal decomposition, analysing the phase transition dynamics following quenches to 

different locations in the phase diagram. Different dynamic regimes are observed 

depending on the location in the phase diagram and the relative mobilities. When the 

system is quenched to point b in figure 1b, (where it is stable with respect to composition 

fluctuations but unstable respect to order fluctuations), the system first becomes ordered, 

and then it phase-separates to the equilibrium state (due to order and composition 

couplings). If it is quenched to point a (unstable respect to concentration, stable respect to 

order), it first phase separates into two isotropic phases, and then the concentrated phase 



phase separates again into a ordered and a disordered phase. The time interval between 

the two steps will depend on the relative mobility. If it quenched to point c (unstable 

respect to order and concentrations), different regimes are possible depending on the 

relative mobilities: the system can become ordered at homogeneous concentration and 

then phase separate, it can phase separate (to the metastable I-I phases), and then undergo 

a secondary I-N phase separation, or phase separation and ordering can evolve 

simultaneously  and fully coupled [76].  

 

4 – Structure: morphologies, textures and defects. 

 

 As discussed before, different complex dynamic processes are available, 

depending on the location in the phase diagram and the relative mobilities. Not only the 

kinetics of these processes is complex, but also a rich variety of morphologies and 

structures can be formed. In addition, the final structure in the ordered phase (director 

configuration, defects, etc), depends not only on the thermodynamics but also on the 

boundary conditions (anchoring).  

4.1. Domain Morphologies in phase separation 

Several different morphologies can be produced by a phase transition, depending 

on the (T,φ) initial conditions and the kinetic parameters. It has been shown in the 

previous section how double-fronts (core-shell structures) can be formed in a nucleation 

and growth process for certain conditions, and that in spinodal decomposition the process 

can be step-wise, which affects not only the kinetics but also the domain morphology. For 

example, 1D simulations show that if I-I phase separation precedes ordering, a salami-



type structure can be formed, where big domains of high concentration formed by smaller 

subdomains of ordered phase are formed [76]. 

Das and Rey preformed 2D simulations for a PDLC in different locations in the 

phase diagrams[18;21;22]. The main results are shown in figure 9. Fig 8a shows the case 

where the system is quenched to a region of the phase diagram where it is initially 

unstable respect to phase separation and metastable respect to ordering (point a in figure 

1). As the concentration of LC is higher than the I-I critical concentration, LC rich 

domains are formed as a dispersed phase, although partially interconnected. As the 

concentration in the LC-rich domains increase, the domains become ordered forming the 

nematic phase. They did not observe a clear secondary phase separation leading to salami 

structures for the kinetic parameters used, but they did observe a breaking down of 

interconnected domains into single droplets when the domains became nematic. Fig 8b 

correspond to the case where the system is initially unstable respect to ordering and 

metastable respect to phase separation (point b in figure 1). In this case, the system first 

orders and then phase separates, so disperse isotropic domains are expelled from the 

continuous nematic matrix. Fig 8c correspond to the case where the system is unstable 

respect to both ordering and phase separation (point c in figure 1), as shown before the 

dynamics and the structure in these conditions will strongly depend on the relative 

mobilities, in the case analyzed by Das and Rey (where ordering was relatively fast), the 

structure is similar to case b, except that the isotropic domains are highly interconnected. 

Under certain conditions, the dispersed isotropic droplets in a nematic matrix can form 

ordered arrangements (see next section). 

 



 

Figure 9. Snapshot of the local composition of the system at a late time step following a 

quench to; (a) point a, (b) point b, (c) point c, for a polymer-liquid crystal mixture. Black 

corresponds to isotropic polymer-rich and white corresponds to LC-rich phases. The 

arrows represent the local nematic director, and defects are marked with small solid 

circles. Reproduced with permission from ref. [18], copyright (2004) American Institute 

of Physics.  

 

4.2. Textures and defects in mixtures 

The study of defect structure and textures in a mixture is more complex than for a 

pure LC as the spatial variations of order and orientation are coupled with gradients in 

concentration, such that there can be preferential segregation of the species (for example, 

the non-liquid crystalline component tends to segregate preferentially to regions of lower 

order, like defect cores or boundaries between nematic domains), and this can not only 

modify the characteristics of some specific structure or configuration (e.g., modify the 

size of a defect), it can also modify the relative stability of different structures. This effect 

is important, for example, in the case of blue phases (which consist in a network of 

disclinations): the temperature range where this phase is stable can be increased from 

several degrees to a few dozens of degrees by adding a guest component [84-87].  



Recently, Soule and Rey [88] analyzed how a hedgehog defect in a mixture of an 

LC and a isotropic guest component is affected by temperature and composition, 

extending a previous study by Mottram and Sluckin [89] for a disclination in a pure LC. 

The analysis was made by considering two complementary approaches: the continuum 

Landau-deGennes simulations, and a sharp-interface solution thermodynamic model 

(where the defect core is considered as an isotropic phase of a given radius, in 

equilibrium with the nematic bulk). It was found that the isotropic component segregates 

preferentially to the defect core, and the radius of the defect increases abruptly as the 

temperature and concentration approach the binodal line, and that a small range of 

supersaturation or superheating (where the nematic phase with the defect is metastable) is 

possible. Some profiles of order parameter S and concentration of guest component φI are 

shown in figure 10, and the dependence of the defect radius on the global concentration 

of guest component (expressed as deviation from saturation concentration) are shown in 

figure 11. 
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Figure 10. Profiles of order parameter (a) and concentration (b), for  T/TNI = 0.925 and 

the following values of φ0, increasing in the direction of the arrow: 0, 0.01, 0.03, 0.05, 



0.06 and 0.063. (Note in b that for φ0 = 0, φI = 0). Adapted from ref. [88] with permission 

of The Royal Society of Chemistry.   
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Figure 11. Defect core radius, as a function of the deviation of the global concentration 

from saturation conditions. The dashed line shows the saturation (binodal) composition. 

The inset corresponds to the area in the vicinity of saturation, as indicated by the dotted 

square. The symbols are the result from LdG simulations, the full lines are the results 

from the analytical theory. The different temperatures are T = 0.925 (squares), 0.85 

(triangles), 0.775 (circles), and 0.7 (diamonds). Adapted from ref. [88]. 

 

When a higher dimensionality is considered in a phase separation process, 

different defect structures can arise due to the anchoring conditions imposed by the 

nematic-isotropic interfaces. 2D simulations by Das and Rey [18] showed that the, when 

the nematic phase is present as dispersed domains, several +/-1/2 defects were formed, 

favouring the formation of a bipolar structure in spherical droplets, as shown in fig 8a. 

When the nematic phase is continuous, a structure of polygonal domains of nematic 

phases with isotropic droplet is observed [17]. They found that modifying the interface 

thickness (which is directly related to interfacial tension) lead to different regimes with 



corresponding different morphologies. For large interfacial tension, the droplets are much 

larger than the characteristic length of texturing and an ordered array consisting in 

networks of isotropic droplets and defects is formed, as shown in figure 12. This type of 

textures are similar to those that can be observed in suspensions of colloidal particles in 

nematic LCs, which are discussed in the next section. As the interfacial tension decreases, 

the droplet size decreases and there is a transition from an ordered array to a random 

dispersion of droplets. For very small interface tension, the droplet size becomes 

comparable to the thickness of the interface and much smaller than the characteristic 

texturing length scale, so order becomes frustrated and a very low value of order 

parameter, with a random orientation field is produced. 

 



Figure 12. Ordered array of polymer droplets and defects in a nematic phase produced by 

phase separation, obtained from ref. [22], copyright 2006, with permission of Elsevier.  

 

4.3. Nano/micro - scale textures in filled nematics 

A filled nematic is similar to the structures shown in figure 12, where the “filling” 

are the droplets of the isotropic phase. In that case, the structure can be controlled by 

modifying the concentration of the mixture, the size and morphologies of the dispersed 

phase is self-selected. When solid colloidal particles are dispersed in the LC, the size, 

shape and concentration of the particles are imposed externally, in addition the anchoring 

at the surface of the particle can be tuned by surface treatments.  

In principle, different approaches can be taken to describe filled nematics. A fully 

continuum, macroscopic formulation, would treat both the LC and the particles as 

continua, the mixture is described by a macroscopic concentration of particles, and the 

effect of particles on the nematic matrix are introduced in a mean-field approach as 

“interaction parameters”. This approach is that described in section 2.3 for NP-LC 

mixtures. A second approach is a molecular formulation, where individual particles and 

individual LC molecules are considered, and described by molecular dynamics or Monte 

Carlo simulations. A third approach is an intermediate case, and consist in treating the LC 

as a continuum and the particles as individual entities (which act as boundary conditions 

for the LC). This is equivalent to molecular simulations with “implicit solvent”, but in 

this case the solvent is structured and it is described by a complex dynamic equation 

(model A). This approach will be analysed in this section.   



A complete description of this system requires a model for the evolution of the 

nematic matrix (model A), coupled with equations of movement for the particles 

(Brownian motion) [25; 29]. Nevertheless, a model with immobile particles can be useful 

to analyze the laws describing defect charges, defect configuration, texture transitions, 

interaction between the particles mediated by the nematic phase, etc. [24;59;60;90].   

Gupta and Rey [61;62], and later Phillips and Rey [91;92], analyzed defect 

configuration for micron, sub-micron and nano sized spherical particles in polygonal 

arrangements. For the case of strong anchoring at the particle surface, the charge of the 

defects inside the polygon is given by Zimmer’s rule: C=-(N-2)/2, where C is the total 

charge and N is the number of particles in the polygon. The defect structure and 

configuration was strongly dependent on the particle´s size. For micron particles, the 

defect structure depends on the number of particles forming the polygon; for an odd 

number, singular core defects of charge -1/2 are formed, such that the total number of 

defects satisfies C=-(N-2)/2, while for even number, a single escape-core defect was 

preferred [61;62]. For sub-micron particles and nanoparticles, only singular -1/2 defects 

were found [61;62;91]. In addition, for temperatures approaching TNI, complex biaxial 

structures were observed, which were dependent on the boundary conditions. 

When faceted NPs are dispersed in a nematic matrix, the geometric discontinuity 

propagates through the LC, and this can produce more complex structures than in the 

case of spherical inclusions [92-94]. As the topological charge of a surface defect Cs on a 

faceted particle is just the ratio of the misorientation angle between two adjacent faces 

and 2π, the defect an edge (3D) or a corner (2D) can absorb or emit is sC± . For example 

for a square particle, where the relative angle between to adjacent phase is π/2 , the 



surface defect charge  associated with a corner is  ( )sC / 2 / 2 / 4 = ± π π = ± π , where the 

sign depends on the director rotation when encircling the defect in a counter-clocwise 

direction. 

It has been shown experimentally [95;96] that the interactions of nanoparticles in 

LC can be tailored by controlling the nanoparticle’s shape, and different types of self-

assembled structures can be obtained. Simulations for single particles [92;94;97] show 

that defects can be absorbed as surface defects in the corners of the particle, and pairs of 

defects can be linked through biaxial strings, as shown in figure 13. Neighbouring 

particles at small enough distance are linked through defect lines, while at large distances 

they behave as independent particles. Phillips et. al. [93] studied polygonal arrangements 

of faceted nanoparticles (in triangular, square, pentagonal and hexagonal geometry),  and 

found that bulk defects are produced for small separations and low temperatures, and 

surface defects otherwise. An odd-even effect was found for this system too, where the 

insertion energy (excess free energy per particle) is higher for polygons of even number 

of sides [93]. 



 

Figure 13. Computed gray scale visualization of the biaxiality parameter defined 

as β= 1-6[(Q.Q):Q]2/(Q:Q)3  showing the three defect modes : string mode (a), bulk and 

surface defect mode (b) and surface defect mode(c). The corresponding director fields 

associated with these modes are represented in (d), (e) and (f) respectively, for a 

temperature close to TNI. Adapted from ref. [94] with permission of Cambridge 

University press.. 

 

When mobility of the particles is considered, self-assembly of the particles and 

macroscopic phase separation can be predicted, while the details of the textures at a 

nanoscopic level can be retained. Yamamoto et. al. [25] and Zhou et. al. [29] performed 

this type of simulations and observed the spontaneous formation of linear and bi-

dimensional arrays of particles.  

 

 



5. Conclusions 

 Liquid crystals are viscoelastic anisotropic soft matter materials, that combine the 

fluidity of liquids and the anisotropy of solids. They form the basis of many  optical 

devices, sensor/actuators, drug delivery, structural fibers, and lubrication. Biological 

liquid crystals are found in membranes, DNA  and  protein solutions , and carbohydrates.  

In many  instances mxing between mesogens  with non-mesogenic solvents and 

polymers, cross-linked macromolecules, colloidal and nanopartciles is used by man or 

Nature  to improve performance, increase efficiency, facilitate processing, lower energy 

loads, and/or  optimize material properties. 

 In other cases demixing through thermodynamic instabilities is used to create 

multi-phasis material architecture to achieve optical functionality (as in PDLCs) or 

mechanical strength (as in fiber re-inforced composites of LC polymers fibers embedded 

in a thermoplastic matrix).  

 In yet other cases, mesophase polydispersity is found naturally, as in 

carbonaceous mesophases from petroleum or coal pitches, resulting in precursors 

materials for high performance fibers consisting of molecules with significantly different 

molecular weight.  

 Hence accurate and reliable thermodynamic modelling continues to be at the 

forefront in developing new materials and devices as well as in providing a  quantitative 

understanding of biological mesophase behaviour. 

 The present review provides a survey of the main thermodynamic theories, 

models, calculation methodologies for an important selection of mesogenic systems: 



(i) monomeric mesogen and isotropic solvent 

(ii) lyotropic  liquid crystal polymer 

(iii) monomeric mesogens and thermoplastic polymers 

(iv) monomeric mesogen and cross-linkable monomers 

(v) binary monomeric and mesogens 

(vi) monomeric mesogens and colloidal and nanopartciles 

Revealing specific features in the free energy of mixing that accounts for molecular 

details in the interaction parameters, and elastic and entropic contributions. A number of 

generic stability and metastability features in the various phase diagrams are highlighted  

to emphasize the novel aspects of phase transitions and phase separation in mesogen-

containing mixtures. 

 Since the kinetics of transformations is a significant aspect of material fabrication, 

extensive discussions, analysis, and predictions on new growth laws are presented. The 

role of metastability, relative mobilities of order and diffusion, proximity of spinodal 

lines, shows that droplet growth may contain metastable coronas whose lifetime is 

affected by the above-mentioned effects. Recent integrated analysis and computations of 

metastable fronts in mesogenic mixtures extends previous work on mixed order 

parameter systems. 

 Leveraging thermodynamic instabilities and phase transition is a well establish 

path way to create morphologies and material architectures with specific feature. 

Mesogenic materials possessing orientational order provide additional features to phase 

separated morphologies, such as bi-continuous or droplet. Here the matrix may be 



anisotropic and its interaction with isotropic drops may result in novel architectures such 

as colloidal crystals. Topological defects in the nematic matrix may positional order 

polymer drops in a perfect lattice. This self selected process emerges at specific 

interaction level between the mesogen and the polymer, whose value can be tuned by 

surfactants. Thus colloidal crystal formation in polymer/nematic mixtures is a sef-

organizing material architecture unique to anisotropic soft matter. 

 Topological defects are an integral part of mesophases and arise due to frustration 

under non-planar confinement and under strong interaction between the phase separated 

sustrate and the mesogen. In the presence of binary nematic states, the role of non-

mesogenic component in stabilizing the highly energetic defect core is significant. In this 

review we present recent thermodynamic models and calculation that describe the 

stability, composition, and geometry of defect cores by diffusion of non-mesogens. 

Results of this kind may be used to concentrate specific molecules or nanopartciles along 

defect lines, inside defect points, or at nematic-isotropic interfaces. 

 Blending colloidal particles into thermotorpic mesogens has been an active area in 

liquid crystal physics, and the effort has produced a significant number of material 

architectures and material systems. Currently another effort of producing nematic 

nanocomposites based on gold and other metallic nanoparticles and as well as carbon 

nanotubes is emerging. 

 In this review we have considered several approaches to thermodynamic 

modelling, from continuous solution thermodynamics, to discrete particle methods, 

suggesting that both approaches reveal complementary descriptions. Since facetted 

particles are ubiquitous, the review highlights new defect-particle superstructure, 



including string assemblies. The solution thermodynamic approach allows for positional 

order of the particles, and this fact is further analyzed in the discrete particle-mesogen 

model using triangular, square, pentagonal, and hexagonal geometries, revealing the 

presence of odd-even effects in particle arrangements due to different defect- particle 

interactions. 

 In summary, meso and macro scale thermodynamic modelling on mesogens 

mixtures with other mesogens, polymers, networks, solvents, colloidal and nanoparticles, 

provides a quantitative tool to develop new materials and devices. Mesogenic order 

enriches the structure o phase diagrams, the number and nature of mestabilities, the 

growth laws, and materials architectures. Future opportunities include multiscale 

multitransport, multidimensional modelling, new mesophases (chromonics, bend-core, 

dendrimer) and nanoparticle with well-designed ligand chemistries.  
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