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Abstract: A new N-methoxypyridone analog (1), together with four known compounds, was isolated
from the co-culture of Hawaiian endophytic fungi Camporesia sambuci FT1061 and Epicoccum sorghinum
FT1062. The structure of the new compound was elucidated as 11S-hydroxy-1-methoxyfusaricide (1)
by extensive spectroscopic analysis and comparison with the literature. The absolute configuration of
1 was determined by comparison with the experimental and calculated ECD spectra. The absolute
configuration of compound 3 was investigated and renamed as (+)-epipyridone by comparison of
the optical rotation and CD spectrum with those of 1. The other known compounds were identified
as epicoccarine B (2), D8646-2-6 (4), and iso-D8646-2-6 (5). Compounds 4 and 5 showed modest
inhibitory activity towards pathogenic fungi. Epicoccarine B (2) inhibited A2780 and TK-10 with
an IC50 value of 22 µM.
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1. Introduction

Manipulation of fermentation conditions of fungi has been proven to be an efficient strategy
for obtaining diversified compounds [1–3]. Co-cultivation of two or more strains has recently been
described as a promising strategy for inducing the production of bioactive microbial metabolites [4,5].
In addition to obtaining new metabolites [6–9], the strategy can also be used to increase the yields of
previously described bioactive compounds [10].

Endophytic fungi living within plants are well known for the production of therapeutically
interesting compounds [11–14]. During our continuing investigation of Hawaiian endophytic fungi [15–22],
two endophytic fungal strains, FT1061 (Camporesia sambuci) and FT1062 (Epicoccum sorghinum) were
isolated from Rhodomyrtus tomentosa (downy rose myrtle) [23], an invasive pest plant in the State of
Hawaii. Camporesia sambuci has rarely been investigated, while Epicoccum sorghinum is a facultative plant
pathogen that is associated with grain mold of sorghum and other crops, and which produces the
mycotoxin tenuazonic acid [24]. We noticed that the co-cultivation of FT1061 and FT1062 produced some
compounds that were not obviously observed in the culture of either FT1061 or FT1062 alone (Figure 1).
We argue that some silent genes of these two strains are activated under competitive stress, thus
producing more defensive secondary metabolites. LC/MS-guided separation from the co-cultured
broth led to the isolation and identification of a new N-methoxypyridone analog (1), and four known
compounds: epicoccarine B (2), (+)-epipyridone (3), D8646-2-6 (4), and iso-D8646-2-6 (5) (Figure 2).
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The aims of this study were to characterize these compounds and to evaluate their anti-microbial and
anti-cancer activity.
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Figure 2. Structures of compounds 1–5. 

2. Results and Discussion 

11S-Hydroxy-1-methoxyfusaricide (1) was isolated as a colorless gum. Its molecular formula 
was determined to be C18H27NO4 by HR-ESIMS (m/z 322.2017, calcd for [M + H]+ 322.2013), with six 
degrees of unsaturation. The IR spectrum (supplementary materials Figure S9) showed the 
existence of hydroxyl (3394 cm−1) and amide (1640 cm−1) groups. A detailed analysis of 1D and 2D 
NMR spectra (Table 1) demonstrated the presence of five methyls, including one methoxy group; 
two methylenes; seven methines, including two oxygenated and two olefinic ones; and four carbons 
with no hydrogen attached including a carbonyl carbon. The 1H-1H COSY spectrum of 1 indicated 
three spin systems: C5–C6, C7–C8(-C18)–C9–C10(-C17)–C11, and C13–C15, which were also 
verified by the corresponding HMBC correlations (Figure 3). Meanwhile, the HMBC correlations 
from the methyl group CH3-16 to C-7, C-11, C-12 and C-13, and from H-7 to C-2 (δC 159.4), C-3 (δC 
114.6), and C-4 (δC 165.8), as well as a correlation from H-13 to the oxygenated olefinic carbon C-4, 
suggested that compound 1 should be an analog of fusaricide [25,26]. However, one oxygenated 
methine (instead of a methylene) at 11-position and one methoxy group at 1-position were observed 
in 1. The HMBC correlations from the methyl groups CH3-17 (δH 1.07) and CH3-16 (δH 1.12) to the 

Figure 1. HPLC chromatograms of the EtOAc extracts from co-culture and single cultures of FT1061 and
FT1062. (Peaks of compounds 1–5 in the chromatography of the extract from co-culture were marked).
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2. Results and Discussion

11S-Hydroxy-1-methoxyfusaricide (1) was isolated as a colorless gum. Its molecular formula
was determined to be C18H27NO4 by HR-ESIMS (m/z 322.2017, calcd for [M + H]+ 322.2013),
with six degrees of unsaturation. The IR spectrum (supplementary materials Figure S9) showed
the existence of hydroxyl (3394 cm−1) and amide (1640 cm−1) groups. A detailed analysis of 1D and
2D NMR spectra (Table 1) demonstrated the presence of five methyls, including one methoxy group;
two methylenes; seven methines, including two oxygenated and two olefinic ones; and four carbons
with no hydrogen attached including a carbonyl carbon. The 1H-1H COSY spectrum of 1 indicated
three spin systems: C5–C6, C7–C8(-C18)–C9–C10(-C17)–C11, and C13–C15, which were also verified
by the corresponding HMBC correlations (Figure 3). Meanwhile, the HMBC correlations from the
methyl group CH3-16 to C-7, C-11, C-12 and C-13, and from H-7 to C-2 (δC 159.4), C-3 (δC 114.6), and
C-4 (δC 165.8), as well as a correlation from H-13 to the oxygenated olefinic carbon C-4, suggested that
compound 1 should be an analog of fusaricide [25,26]. However, one oxygenated methine (instead
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of a methylene) at 11-position and one methoxy group at 1-position were observed in 1. The HMBC
correlations from the methyl groups CH3-17 (δH 1.07) and CH3-16 (δH 1.12) to the oxgenated methine
(δC 84.7) suggested that C-11 was substituted by a hydroxy group, which was also consistent with
the molecular formula. Since no HMBC was observed between the methyoxy group with any other
carbon, the position of the methyoxy was assigned to be connected to the nitrogen atom. The methyoxy
(δC 65.0) was de-shielded [27], which also supported this deduction.

Table 1. 1H- (400 MHz) and 13C-NMR (100 MHz) spectroscopic data for compound 1.

No.
1 in Methanol-d4 1 in CDCl3

δH, J (Hz) δC
a HMBC Correlation δH, J (Hz)

2 159.4
3 114.6
4 165.8
5 6.03, d, 7.6 101.5 C-3, C-4 5.84, d, 7.6
6 7.73, dd, 7.6, 0.8 136.6 C-2, C-4 7.37, dd, 7.6, 0.8

7 2.07, d, 11.6 50.3
C-2, C-3, C-4, C-12,

2.04, d, 11.6C-8, C-9, C-13, C-16
8 2.69, m 27.3 2.75, m
9a 1.84, dt, 13.5, 4.0

44.2
C-7, C-11, C-8, C-10, C-17 1.82, dt, 13.5, 4.0

9b 0.85, br.d, 13.5 C-7, C-11, C-8, C-10, C-17, C-18 0.82, br.d, 13.5
10 1.69, m 33.7 1.66, m
11 3.03, d, 10.4 84.7 C-9, C-10, C-12, C-13, C-16, C-17 3.08, d, 10.3
12 45.8
13 4.10, dd, 10.8, 1.6 94.9 C-4, C-11, C-12, C-14, C-15, C-16 4.06, dd, 10.9, 1.7
14a 2.05, m

27.4
C-12, C-13, C-15 2.00, m

14b 1.27, m C-13, C-15 1.25, m
15 1.12, t, 7.4 11.5 C-13, C-14 1.08, t, 7.3
16 0.71, s 9.8 C-7, C-11, C-12, C-13 0.73, s
17 0.99, d, 6.3 18.7 C-9, C-10, C-11 0.97, d, 6.4
18 1.07, d, 6.0 23.7 C-7, C-8, C-9 1.08, d, 5.9
19 3.98, s 65.0 4.01, s

a Data of 13C were obtained by HSQC and HMBC spectra.
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Figure 3. Key 1H-1H COSY (bold), HMBC (red single-headed arrows) and NOESY (pink double-headed
arrows) of 1.

The relative configuration of the molecule was determined by the analysis of the NOESY spectrum.
The correlations from H-11 to H-13 and H-7 implied their co-facial orientation, which was assigned as α.
The observed NOE cross-peak between Ha-14 and H3-16 indicated that both were on the β orientation.
Meanwhile, the correlations between H-10 and H3-16, and between H-7 and H3-18, suggested that the
orientations of two methyl groups CH3-17 and CH3-18 were α. Hence, the relative configuration of
compound 1 was determined as shown in Figure 3.

The absolute configuration of compound 1 was determined by comparing its optical rotation with
those of (3) [28], cordypyridone C (6) [27], 14-hydroxycordypyridone C (7) [27] and fusaricide (8) [25–27],
and its CD with that of compound 3. The absolute configuration of the p-bromobenzoate of compound
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7 was established using anomalous scattering X-ray crystallographic methods [27]. By comparison of
the spectral data and optical rotations (1: [α]25

D + 104.8, c 0.02, MeOH; 3: [α]25
D + 123.3, c 0.06, MeOH;

6: [α]24
D + 243, c 0.06, MeOH; 7: [α]27

D + 152, c 0.15, MeOH; 8: [α]D + 194, c 0.12, CHCl3), we believe that
all five compounds should have the same absolute configuration. The structure of compound 8 was
redrawn as shown in reference [27]. The absolute configuration of (+)-epipyridone should be drwan as 3
rather than its enanthiomer [28]. The CD spectrum of 1 was similar to that of compound 3 (Figure 4), also
indicating that both must have the same absolute configuration, which was consistent with a biogenetic
point of view. Hence, compound 1 was determined as 11S-hydroxy-1-methoxyfusaricide, which
could also be named as 11S-hydroxy-14-methyl cordypyridone C. In order to confirm the absolute
configuration suggested for 1 and 3, we next carried out ECD calculations using time-dependent
density functional theory (TDDFT) at the B3LYP/6-31G* level. As shown in Figure 4, a good correlation
between experimental and calculated data was found. Despite the fact that the computed maximum
absorption bands are slightly shifted toward the low wavelength region, the collected results are
completely congruent with the configurational analysis discussed above.
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Figure 4. Experimental and calculated CD spectra of compounds 1 and 3.

Compounds 2−5 were identified to be epicoccarine B [28], (+)-epipyridone [28], D8646-2-6 [29],
and iso-D8646-2-6 [29], respectively, by comparison of the NMR data with those reported in the
literature. The anti-microbial activities of the isolated compounds were evaluated against four
bacterial strains Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis,
and four pathogenic fungal strains Pennicillium chrysogenum, Aspergillus niger, Paecilomyces lilacinus,
and Fusarium graminearum. Compounds 4 and 5 showed weak activity against A. niger and P. lilacinus
with the MIC values of 32 µg/mL, respectively. Compound 2 exhibited anti-proliferative activity
against the human ovarian cancer cell line A2780 and the human kidney renal cell adenocarcinoma
TK-10 with an IC50 value of 22 µM.

3. Materials and Methods

3.1. General Experimental Procedures

Optical rotation was measured with a Rudolph Research Analytical AutoPol IV Automatic
Polarimeter. UV and IR spectra were obtained with Shimadzu UV-1800 spectrophotometer (Shimadzu,
Kyoto, Japan) and Thermo scientific Nicolet iS50FT-IR spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA), respectively. CD spectra were recorded on Jasco J-815 circular dichroism spectrophotometer
(Jasco Products Company, Oklahoma City, OK, USA) in methanol at the concentration of 0.01 mg/mL
(the length of the cell path was 1 cm). NMR spectra including 1D and 2D experiments were recorded
on a Bruker 400 MHz NMR; HPLC was carried out on Thermo scientific Ultimate 3000 LC system
using a Phenomenex Luna phenyl-hexyl column (100 mm × 21.2 mm, 5 µm particle size, Phenomenex,
Torrance, CA, USA) and a Phenomenex Luna C18 HPLC column (250 mm × 10 mm, 5 µm particle
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size, Phenomenex, Torrance, CA, USA). All solvents were HPLC grade. Column chromatography was
performed using Diaion HP-20 (Sigma, St. Louis, MO, USA).

3.2. Isolation and Identification of Fungal Strain

The fungal strains Camporesia sambuci FT1061 and Epicoccum sorghinum FT1062 were isolated on
PDA medium from a healthy fruit of the plant Rhodomyrtus tomentosa collected on the Big Island in
Hawaii in 2016. The fungal strains have been deposited at the strain bank of Daniel K. Inouye College
of Pharmacy, University of Hawai’i at Hilo. Mycelia were retrieved by filtration and ground to a fine
powder in liquid N2. Genomic DNA was extracted using the SurePrep RNA/DNA/protein purification
kit (Fisher Bioreagents, Waltham, MA, USA), and large subunit rDNA was amplified by PCR using
primers LROR and LR5. PCR products were sequenced at Genewiz (http://www.genewiz.com/).
The DNA sequence data obtained from the fungal strains FT1061 and FT1062 have been deposited at
GenBank with accession number KY971273 and KY971274, respectively.

3.3. Cultivation

The two fungal strains FT1061 and FT1062 were inoculated together and grown under static
conditions at room temperature for 30 days in one 1 L conical flask containing the liquid medium
(300 mL/flask) composed of mannitol (20 g), sucrose (10 g), monosodium glutamate (5 g), KH2PO4

(0.5 g), MgSO4·7H2O (0.3 g), yeast extract (3 g), corn steep liquor (2 mL), in 1 L distilled water; pH 6.5
prior sterilization.

3.4. Isolation of Compounds 1–5

The whole fermented broth (4.5 L) was filtered through filter paper to separate the supernatant
from the mycelia. The filtered supernatant was passed through a HP-20 column (Diaion, Sigma,
St. Louis, MO, USA), eluted with MeOH-H2O (10%, 40%, 70%, 90% and 100% methanol in H2O) to
afford five fractions (Fr. A-E). Fraction C (517.8 mg) was separated by a preparative HPLC column
(C18 column, 5 µm, 100.0 mm × 21.2 mm; 10 mL/min; 10%–100% methanol in H2O in 40 min)
to generate 40 sub-fractions (C1-40). C35 (27.4 mg) was subjected to the semi-preparative HPLC
(C18 column, 5 µm, 250.0 mm × 10.0 mm; 4 mL/min; with 0.1% formic acid in 75% methanol in H2O)
to obtain compounds 4 (7.12 mg, tR 31.5 min) and 5 (1.56 mg, tR 33.5 min). Fraction D (347.2 mg) was
separated with a preparative HPLC column (C18 column, 5 µm, 100.0 mm × 21.2 mm; 10 mL/min;
30%–100% methanol in H2O in 30 min) to generate 30 sub-fractions (D1-30). D20 (8.47 mg) was
subjected to the semi-preparative HPLC (C18 column, 5 µm, 250.0 mm × 10.0 mm; 3 mL/min; with
0.1% formic acid in 58% methanol in H2O) to afford compound 1 (1.34 mg, tR 35.0 min). D26 (18.28 mg)
was subjected to the semi-preparative HPLC (C18 column, 5 µm, 250.0 mm × 10.0 mm; 3 mL/min;
with 0.1% formic acid in 75% methanol in H2O) to afford compounds 2 (8.51 mg, tR 20.8 min) and
3 (1.38 mg, tR 25.6 min).

3.5. Charaterization of Compound 1

11S-Hydroxy-1-methoxyfusaricide (1), Colorless solid; [α]25
D + 104.8 (c = 0.02, MeOH); UV (MeOH)

λmax (log ε) 202 (3.63), 260 (3.64) nm; IR νmax 3394, 2936, 2831, 1640, 1593, 1542, 1455, 1356, 1277,
1234, 1203, 1177 cm−1; 1H (in methanol-d6, and in CDCl3 at 400 MHz) and 13C-NMR (in methanol-d4,
100 MHz) data, see Table 1; positive HR-ESIMS m/z 322.2017 [M + H]+ (calcd. for C18H28NO4 322.2013).

3.6. Anti-Microbial Activity

The isolated compounds were tested for their inhibitory activities against four bacteria, E. coli,
P. aeruginosa, S. aureus, and B. subtilis, and five fungi C. sambuci (FT1061), P. chrysogenum, A. niger,
P. lilacinus, and F. graminearum by the broth-microdilution method [30]. Chloramphenicol was used as
the positive control.
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3.7. Anti-Proliferative Activity

Viability of TK-10, A2780 and A2780CisR, was determined using the CyQuant cell proliferation
assay kit, according to the manufacturer’s instructions (Life Technologies, Camarillo, CA, USA) [31].
Briefly, cells were cultured in 96-well plates at 6000 cells per well for 24 h and subsequently treated with
compounds (20 µg/mL) for 72 h and analyzed. Relative viability of the treated cells was normalized to
the DMSO-treated control cells [31,32]. Cisplatin was used as a positvie control.

3.8. ECD Calculations

Initial systematic conformational searches of compounds 1 and 3 were carried out at the MMFF
level using Spartan 08 [33]. Further full geometry optimizations of all conformers found were
done at the B3LYP/6-31G* level of theory. The excitation energies (nm) and rotatory strength (R)
in dipole velocity (Rvel) of the first twenty singlet excitations were calculated using TDDFT at the
B3LYP/6-31G* level from all significantly populated conformers, which were then averaged using
Boltzmann weighting [34]. The calculated rotatory strengths were simulated into the ECD curve as the
sum of gaussians with 0.5 eV width at half-heights (σ). All DFT calculations were carried out using
Gaussian 09 [35].

4. Conclusions

Microbial communication can lead to the activation of silent fungal secondary metabolite gene
clusters [36], which has been proved to be a potentail way to enhance chemical divesity [37]. Some
co-cultivations were conducted between fungi [6,7], but some between fungi and bacteria [8,9].
Co-cultivation of two endophytic fungi FT1061 (Camporesia sambuci) and FT1062 (Epicoccum sorghinum)
led to the identification of a new N-methoxypyridone analog, 11S-hydroxy-1-methoxyfusaricide (1),
which was not produced by FT1061 or FT1062 alone. LC-MS investigation suggested that compounds
2–5 were detected in the single cultured broth of FT1062 but not FT1061. The structural similarity
of compounds 1 and 3 implied that compound 1 should also be produced by FT1062, but it was not
detected in the single cultured broth of FT1062, probably due to low yield or a silenced gene. LC-MS
data also indicated that most of the major metabolites in the single cultured broth of FT1061 are small
molecules with molecular weights in the range of 100–200 Da, so we didn’t pursue them. A number
of compounds normally produced by the strain FT1061 were missing in the co-culture. We assume
that the genes accounting for the production of these small molecules in FT1061 were silenced when
co-cultured with FT1062. Compounds 1–5 were evaluated for their anti-bacterial, anti-fungal and
anti-proliferative activities. Compounds 4 and 5 showed moderate inhibitory activities against two
fungal strains A. niger and P. lilacinus. Compound 2 exhibited moderate inhibition against the human
ovarian cancer cell line A2780 and the human kidney spindle cell carcinoma cell line TK-10.

Supplementary Materials: The following are available online: NMR, HRESIMS, IR spectra of compound 1, and
ECD calculation information of compounds 1 and 3 as supporting information.
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