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Abstract – We present theoretical and numerical results concerning the surface-diffusion–driven
evolution of closed 2D interfaces having n-fold rotational symmetry such as gear- and star-type
shapes. We find a family of approximate solutions depending on a few parameters; by solving
the time dependence of such parameters, we can predict the evolution of interface morphology in
close agreement with numerical results. Finally, we show how our findings can be applied in some
practical cases to get a mathematical description of interface morphology just by determining a
few characteristic features.

Copyright c© EPLA, 2013

Shape evolution due to surface diffusion has attracted
considerable attention in the last few decades. From a
theoretical point of view, the continuous theory of sur-
face diffusion is a well-established topic after the pio-
neering work of Mullins [1,2]; this approach has been
used since its conception for instance to describe the co-
alescence of spheres by surface diffusion [3], studies of
necking processes [4], stability of cylindrical bodies [5],
etc. These studies have been complemented with exten-
sive numerical simulations for discrete systems such as
provided by the kinetic Monte Carlo [6] and Molecular
Dynamics methods. On the other hand, the study of
surface diffusion processes has received considerable at-
tention in the last few years in regard to the application
of high-temperature thermal annealing in different areas,
mainly related to the fabrication of microelectronic de-
vices. In fact, below the bulk melting temperature, and
on scales smaller than 10µm, surface diffusion is the domi-
nant mechanism for mass transport [4]. This can bring un-
desirable consequences, as for instance the lack of stability
of metallic nanostructures, that suffer drastic morpholog-
ical changes at relatively low temperatures [7–9] and even
at room temperature [10]. However, some characteristics
of the surface diffusion flow, as the surface smoothing or
the shape-transformation, have proven useful for differ-
ent purposes. In particular, in the last few years, ther-
mal treatments have been widely used on semiconductor
samples. Several technologically important applications

of high-temperature hydrogen annealing in the industry
of semiconductors have been recently reported, for in-
stance to reduce their surface roughness [11,12], to round
trench corners [13], to obtain special topologies [14–17],
etc. Regarding the theoretical interpretation of these ap-
plications, it is worth noting that such results have been
properly interpreted in terms of the continuous theory of
surface diffusion for isotropic materials [12,13,18,19]. In
this framework, a given interface enclosing an isotropic
sample evolves according to the Mullins equation

νn = −KΔSC, (1)

where νn is the normal velocity at a given point on the
evolving surface, ΔS is the intrinsic surface Laplacian (the
so-called Laplace-Beltrami operator), and C is the local
curvature. The coefficient K depends both on the type of
material considered and on the temperature through the

relationship K = DSγΩ2ν
kBT

, where Ds is the diffusion con-
stant, γ is the surface tension, Ω is the atomic volume, ν
is the adatom density on the surface, kB is the Boltzmann
constant and T is the absolute temperature. Besides the
assumed isotropy of the sample, the underlying hypothe-
sis of smoothness in thermodynamical quantities such as
the surface tension implies that the applicability of this
approach should be restricted to temperatures above the
roughening transition temperature.
For surfaces with small corrugations, it is usually suffi-

cient to consider the Mullins theory in its linear limit [2]
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and the surface evolution can be understood as the su-
perposition of uncoupled solutions of the associated linear
equation. However, most modern applications of thermal
treatments deal with high aspect ratio structures (i.e.,
structures that are more elongated along certain direc-
tion) for which the linear theory is not applicable. In
fact, changes in surface morphology induced by surface
diffusion are more dramatic for high-aspect-ratio struc-
tures, and they have led to several important applications
to device fabrication processes, including the formation
of “silicon-on-nothing” [15] and “silicon millefeuille” [17]
structures. A detailed theoretical study about the mor-
phological and kinetic properties of surface diffusion pro-
cesses has been recently performed [20,21] for the case of
high-aspect-ratio structures with a periodic-pattern-type
geometry. The main goal of this letter is to consider a dif-
ferent class of structures: those whose initial boundaries
are closed 2D curves with a n-fold rotational symmetry
such as, for instance, gear- or star-type shapes. In addi-
tion, special attention will be paid to cases in which inter-
faces have high-aspect-ratio features (such as gear teeth
with high aspect ratios). Evidently, this study is also rele-
vant to 3D systems consisting of structures whose surfaces
are generalized cylinders, generated by the translation of
such 2D curves along a certain direction. We will show the
existence of a family of approximate solutions depending
on a few time-dependent parameters; by solving the time
dependence of such parameters, we shall be able to predict
the evolution of interface morphology of a broad class of
2D curves in close agreement with numerical results.
Let us consider a closed plane curve denoted by L(t)

evolving by surface diffusion: we shall call Lc(t) the total
length of such curve at the time t. An immediate conse-
quence of the Mullins equation is provided by the following
relationship [22]:

dLc

dt
= −K

∫

L(t)

C2
sds, (2)

where Cs denotes the derivative of the local curvature C of
the interface with respect to the arc-length parameter s.
As the second member in (2) is non-positive, this equa-
tion proves that the total length of the interface (the total
surface area in the case of 3D systems) decreases as time
evolves. When L(t) is the boundary of a closed region, it
must be verified that

∫

L(t)

νn(s, t)ds = 0, (3)

expressing the fact that curvature-driven diffusion in the
perimeter of a two-dimensional body conserves the area of
that region (of course, in the 3D case, is the total volume
that is preserved).
A closed plane curve can be written in an intrinsic way

(i.e., in a way independent of the choice of the origin of
coordinates) through the so-called Cesàro equation, that
gives the dependence of its curvature as a function of the

arc-length parameter C(s). It is clear that, at a given time
t, C(s) will be a periodic function with a period Lc(t); so,
we can expand it in a Fourier series, that we can write
down in the so-called “compact way”:

C(s) = C0 +

∞
∑

n=1

Cn cos

[

n

(

2π

Lc

)

s+ δn

]

, (4)

where the coefficients Cn and the phase shifts δn can be
easily related to the standard expressions for Fourier co-
efficients. An alternative description of the curve can
be given throughout the so-called Whewell equation, in
which the functional dependence of the tangential angle
θ(s) against the arc-length parameter is provided. As
C(s) = dθ

ds , we can obtain an expression for θ(s) by in-
tegrating eq. (4):

θ(s) = C0s+

∞
∑

n=1

(

Lc

2nπ

)

Cn sin

[

n

(

2π

Lc

)

s+ δn

]

, (5)

where we have deliberately omitted the integration con-
stant since it only causes a rigid rotation in the curve and,
in contrast, in this paper we are only interested in the
shape of the interfaces and not in their location or ori-
entation. So, from now on, we shall consider two curves
as equivalent when they can be related by the combined
action of a translation plus a rotation. We will impose an
additional restriction of a topological nature, constraining
the winding number of the curve to be 1, i.e. we shall as-
sume that when s moves from 0 to Lc the tangential angle
θ increases by 2π. Including this requirement in eq. (5)
causes the value of C0 to become fixed at C0 = 2π

Lc
.

Figure 1 shows the results (obtained by means of a
numerical integration of the Mullins equation) of the evo-
lution of a typical n-fold symmetric initial interface: a five-
teeth gear-like curve. For the sake of simplicity, we are
introducing a dimensionless time-like variable τ = K

R2 t,
where R is the area of the region (that is a conserved
quantity, as we mentioned above). Expressing our re-
sults in terms of τ , they remain valid regardless of the
specific value of the coefficient K. Several interface snap-
shots at different time-steps can be seen in fig. 1(a); the
interface asymptotically approaches the equilibrium cir-
cular shape, consequently the normalized length Lc

R
1

2

ap-

proaches the value 2
√
π specific for a circle (fig. 1(c)).

Figure 1(b) shows the dependence of C(s) for the snap-
shots in fig. 1(a); it is clear from the analysis of such de-
pendences that, excepting the initial interface, the rest of
the curves in fig. 1(b) are essentially single Fourier har-
monics, whose amplitudes decrease with time. To put it
in more precise terms (beyond the simple examination of
such curves) we show, in fig. 1(d), the time evolution of

ξ =
2C2

0
+C2

1

2

Lc

∫
Lc

0
C2(u)du

, that is a measure of the importance of

higher-than-fundamental harmonics. In fact, the Bessel-
Parseval inequality ensures that ξ ≤ 1; fig. 1(d) shows
that ξ adopts very quickly (compared to the time scale
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Fig. 1: (a) Snapshots of the interface at successive time-steps
for an initial condition consisting in a five-teeth gear-like in-
terface. (b) Interface curvature as a function of the arc-length
parameter for each one of the profiles in (a). (c) Time evolu-
tion of the normalized length Lc

R

1

2

. (d) Time evolution of the

parameter ξ (see the text). Results were obtained by means of
a numerical integration of the Mullins equation.

associated to the complete relaxation of the interface) a
value close to 1. Summarizing, results from fig. 1 lead us
to the following conclusion: after a brief transient time,
the shape of the interface is nearly the one that retains
only the lowest order contributions in eq. (5) consistent
with the symmetry of the curve:

θ(s) =
2π

Lc

s+A sin
(

kss
)

, (6)

where we have called A = LcCn

2nπ , ks = 2nπ
Lc

and we have
dropped the phase shift since it can be easily eliminated
by changing the origin of the parameter s, without any
modification in the morphology of the interface (clearly
n = 5 for the case shown in fig. 1). Curves whose Whewell
equation is given by (6) are closed for all integer values of
n ≥ 2 and they are associated to n-fold symmetric curves;
their curvatures are periodic functions of s, with period
λs = Lc

n
. So, in a typical case, curves given by eq. (6)

with n ≥ 2 are closed curves with n ridges; the amplitude
of such ridges depends on the coefficient A (in the case
where A = 0 the curve reduces to a circle whose length
equals Lc)1. For values of |A| larger than Au the curves are
self-intercepting, generating additional loops; the specific
value for this self-interception threshold Au depends on n

and some values numerically obtained are given in table 1.
Throughout this paper we shall focus on the case of simple
curves having no extra loops, implying that |A| < Au.
The behavior depicted in the previous analysis is evi-

dently not restricted to gear-like curves: there is a rich

1It should be stressed that for the case n = 1 (that would corre-
spond to a non-symmetric case, since the lowest order for non-trivial
symmetry is n = 2) the resulting curve is not closed.

Table 1: Values of the self-interception threshold Au for differ-
ent values of n.

n 2 3 4 5 6 7
Au 1.171 1.531 1.687 1.776 1.834 1.875
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Fig. 2: (Color online) Solid lines: Snapshots corresponding to
different time-steps for three different initial conditions: (a) a
star-like shape, (b) a rectangular one and (c) an equilateral
triangle. Scales are different in each case and are provided
inside the graphs.

variety of n-fold symmetric curves that behaves similarly
under these conditions, in which, after a short time, the
interface shape can be accurately described as a curve sat-
isfying the Whewell equation given by eq. (6). This is
shown in fig. 2, where we can see the evolution for three
different initial shapes and having also different symmetry
order: a star-like shape with n = 7 (fig. 2(a)), a rectan-
gular one (n = 2, fig. 2(b)) and a triangular one (n = 3,
fig. 2(c)). Solid lines in fig. 2 were obtained by a numeri-
cal integration of the Mullins equation, while dashed lines
were fitted using eq. (6). The fact that, in each pair, the
curves are almost identical, supports our previous state-
ment about the relevance of the family of curves given by
eq. (6) to describe the shape adopted (after the transient
stage) by a wide variety of n-fold symmetric closed curves
evolving by surface diffusion.
Up to here we have considered only “static” geometric

aspects of the evolution; now we shall begin to study its
kinetic aspects. Results in fig. 2 suggest that once the in-
terface adopts a shape consistent with eq. (6) this shape
is maintained for the rest of the evolution (until it reaches
the equilibrium circular shape); of course, this interpre-
tation requires that parameters A and λs are considered
as time-dependent. However, regardless of the choice of
functions A(t) and λs(t), the associated time-dependent
curves are not exact solutions of the Mullins equation (this
can be easily demonstrated by introducing expression (6)
into the Mullins equation written in terms of θ(t, s), equa-
tion 1.8 in [23]). However, numerical results in figs. 1
and 2 show us that by means of such expressions, good
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Fig. 3: (Color online) (a) Evolution of a 7-ridges interface
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rect numerical integration of the Mullins equation and dashed
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(b) and for the

amplitude A (c).

approximations to the true solutions can be obtained. To
find a closed form for these approximate solutions, evi-
dently we will need two relationships involving A(t) and
λs(t) under the surface diffusion flow. One of these rela-
tionships is provided by the conservation of the enclosed
area R, as follows from eq. (3). In fact, the area enclosed
by a curve satisfying the Whewell equation (6) depends
on A(t), λs(t) and n and it verifies

R
(

A(t), λs(t), n
)

= λ2
s(t)R

(

A(t), 1, n
)

. (7)

Moreover, as R is a conserved quantity, its value remains
the same as the initial value Rini. Therefore, calling
Φ(A(t), n) ≡ R(A(t), 1, n), we can write

λs(t) =

√

Rini

Φ(A(t), n)
. (8)

This equation tells us that the knowledge of the time de-
pendence of the amplitude A as well as the functional form
of Φ is enough to know the time-dependence of λs(t). The
functional form of Φ can be computed using the Green
theorem to write the enclosed area as a line integral in
the standard way. By applying this method for n = 2, we
obtain

Φ(A, n = 2) =
1

π

[

J0(A)
(

J0(A)− J1(A)
)

+
∞
∑

k=1

J2k(A)

(

J2k(A)

4k + 1
− J2k+1(A)

4k + 1

− J2k(A)

4k − 1
− J2k−1(A)

4k − 1

)

+

∞
∑

k=0

J2k+1(A)

×
(

J2k+2(A)

4k + 3
+

J2k+1(A)

4k + 3
+

J2k(A)

4k + 1
− J2k+1(A)

4k + 1

)]

, (9)
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Fig. 4: (Color online) (a) Evolution of a 2-ridges interface
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rect numerical integration of the Mullins equation and dashed
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where Jk represents the Bessel function of the first kind
and order k, while, for n > 2 we find

Φ(A, n > 2) =
n2

4π

[

J2
0 (A)− 2

∞
∑

k=1

J2
k (A)

k2n2 − 1

]

. (10)

To find an evolution equation for the amplitude A, we
will use eq. (2), noting that Lc = nλs and Cs = θss =
−Ak2s sin (kss). With such replacements, eq. (2) can be
rewritten as

dλs

dt
= −8KA2π4

λ3
s

. (11)

Taking the derivative of eq. (8) and combining it with
eq. (11) we obtain the desired evolution equation for A:

dA

dt
=

16KA2π4

R2
ini

Φ3(A, n)

Φ′(A, n)
, (12)

where Φ′ denotes a derivative with respect to A. Com-
bining Equation (12) with the analytic expression for Φ
(eqs. (9), (10)) and with that for λs (eq. (8)) we get a
closed set of evolution equations to describe the surface-
diffusion–driven evolution for any initial curve satisfying
eq. (6). Thus in fig. 3 we compare the evolution dic-
tated by this theoretical prediction (dashed lines) with
that obtained by means of a direct numerical integration
of the Mullins equation (solid lines) for a 7-ridges initial
interface. In fig. 3(a) we compare the morphologies of
the interface at different time-steps, while in fig. 3(b) and
fig. 3(c) we compare the time evolution of the normalized
length Lc

R
1

2

and the corresponding amplitude A, respec-

tively. From this comparison it becomes evident that the
agreement between both approaches is excellent, since all
related curves are almost identical. The same compara-
tive analysis was performed for several initial curves with
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curves were shifted along the time axis, to get collapse of data.

different values for the symmetry index n, and in all cases
the theoretical predictions were able to reproduce very
precisely the “real” evolution (i.e., the one that follows
from a direct numerical integration of the Mullins equa-
tion). In particular, results from this comparison in the
case n = 2 (specifically for a rectangular initial shape) are
shown in fig. 4. It is worth mentioning that, in the long-
time limit, the amplitude A tends to zero, so the evolution
equations can be expanded in powers of A, which enables
us to obtain A ∝ exp

[

− π2(n4 − n2)τ
]

, i.e., we recover
the exponential decrease of the amplitude characteristic of
the so-called small-slopes approximation.

Although results in figs. 3 and 4 clearly show the rele-
vance of our theoretical framework to describe the evolu-
tion of initial interfaces satisfying eq. (6), it is necessary to
consider how this framework applies to more general initial
interfaces. As we have stated earlier, there is a broad class
of n-fold symmetric closed initial curves that decay, after
a transient time, into a curve that satisfies eq. (6). In this
sense, it is expected that time-dependent interface char-
acteristics converge, after a first transient stage, towards
the dependence found for such class of curves. In fact, this
behavior for the time-dependence of the ratio Lc

R
1

2

can be

seen in fig. 5, where two classes of curves are shown, one
corresponding to n = 2 and another to n = 5 (time in the
x-axis was scaled by n4 to make the decaying lifetimes of
both classes of curves comparable). On the one side, there
are curves associated to initial conditions satisfying eq. (6)
and the corresponding theoretical evolution as obtained by
means of eqs. (12), (9), (10) and (8) (dashed lines in fig. 5),
and it can be seen that both pairs of related curves are al-
most identical. On the other side, we have included the
evolution associated to different initial curves having sym-
metry orders n = 5 and n = 2, including rectangular, ellip-
tical, star-like and gear-like shapes (the initial shapes for
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Fig. 6: (Color online) (a) Dependence between the height h

and the amplitude A as numerically found (solid line) and its
quadratic approximation (dashed line). (b) Morphologic evolu-
tion of a initially rectangular interface at different time-steps:
solid lines correspond to a direct numerical integration of the
Mullins equation while dashed lines were obtained by deter-
mining the instantaneous value of h, as explained in the text.

each one of these interfaces are shown as insets in fig. 5).
Such curves have initially many Fourier components, so
their Whewell equation is not given by eq. (6); in con-
sequence, deviations respect to the predicted behaviour
are expected at the first transient stage, at least until the
filtering of high-frequency Fourier modes induced by the
surface diffusion flow leads the interface to one which ver-
ifies (in an approximate sense) eq. (6). To overcome the
existence of different transient times for each case, curves
associated to initial conditions that do not verify eq. (6)
were shifted along the time axis (this is indicated by hor-
izontal arrows in fig. 5), to obtain data-collapse among
curves with a same symmetry order. As becomes evident
by the analysis of fig. 5, for a broad class of initial curves
the kinetic behavior of observable quantities (as Lc

R
1

2

) fol-

lows (beyond the transient stage) the same dependency
found for curves that verify eq. (6).

As a possible application of our findings we could men-
tion the ability to get a precise mathematical description
of the interface shape by knowing a few elements of a
given interface evolved (assuming the transient stage has
elapsed) through surface diffusion. Specifically, if we were
able to determine the values of A, n and R, the inter-
face shape could be, according to our results, accurately
described by introducing this set of parameter values in
eq. (6). Although the symmetry order n and the enclosed
area R can be easily determined (mostly because they are
conserved quantities, and as such, they can be determined
from the initial condition), this is not true for the am-
plitude A. Let us consider, for instance, the case of an
interface having a symmetry of order n = 2, as the one
that follows from the evolution of an initial rectangular
profile (as can be seen in fig. 6(b)). Such 2D interfaces
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could represent the evolution of the cross-sectional shape
of a long bar whose initial cross-section is rectangular.
In ref. [12] we can see experimental systems where these
quasi-2D interfaces are relevant, during the fabrication of
submicron wires by the annealing of silicon-on-insulator
samples (other experimental examples can be found in
refs. [14,15]). In a practical situation, it is evidently much
easier to determine the interface height h (defined as the
distance between the farthest points on the interface) than
the amplitude A. In this sense, we can ask about the re-
lation between these parameters: the solid line in fig. 6(a)
represents this relation as it was numerically found, while
the dashed line corresponds to a quadratic fit, whose ex-
plicit form is

A ∼ −1.9767 + 2.1803
h

R
1

2

− 0.3788

(

h

R
1

2

)2

. (13)

The close agreement of the quadratic approximation over
the complete range of values of A associated to interfaces
having no self-interceptions, allows us, for practical pur-
poses, to approximate the shape of such interface with
order-two symmetry with the only requirement of know-
ing the enclosed area R and the height h. In fact, curves
shown by dashed lines in fig. 6(b) were obtained using such
procedure and they show a close agreement with those ob-
tained from a direct numerical integration of the Mullins
equation.

Summarizing, in this paper we have shown that there
is a rich variety of n-fold symmetric closed 2D inter-
faces that, evolving through the Mullins equation for sur-
face diffusion, after a short transient time decay into a
family of curves that can be appropriately described by
means of a Whewell equation depending on two param-
eters. We have derived evolution equations for these pa-
rameters, allowing us to rebuild the interface evolution,
since theoretical predictions from such equations have
been compared successfully with numerical simulations.
Moreover, we have shown how this solution is relevant for
a broad class of initial interfaces, in the sense that after a
short transient time, the kinetic evolution of relevant ob-
servable parameters in such systems converge (in a good
approximation) into that corresponding to our theoretical
solution. Finally, we showed an example of how this
framework can be applied to practical situations, provid-
ing a detailed mathematical description for the surface-
diffusion–driven evolution of the cross-sectional shape of a
long bar whose initial cross-section is rectangular, just by
determining a few characteristic features of the interface.
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