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Abstract
We show that the authors of the commented paper (Bowen et al 2012 Phys. Scr. 85 065005)
draw their conclusions from the eigenvalues of truncated Hamiltonian matrices that do not
converge as the matrix dimension increases. In some of the studied examples, the authors
missed the real positive eigenvalues that already converge towards the exact eigenvalues of the
non-Hermitian operators and focused their attention on the complex ones that do not. We also
show that the authors misread Bender’s argument about the eigenvalues of the harmonic
oscillator with boundary conditions in the complex-x plane (Bender 2007 Rep. Prog. Phys.
70 947).

PACS numbers: 03.65.Ge, 03.65.−w, 11.30.Er

1. Introduction

In a recent paper, Bowen et al [1] discussed the spectra of
a class of non-Hermitian Hamiltonians having parity–time
(PT) symmetry. They calculated the eigenvalues of truncated
matrices for the non-Hermitian Hamiltonian operators in the
basis set of the eigenfunctions of the harmonic oscillator and
argued that their results did not agree with those of Bender
and Boettcher [2]. They concluded that the discrepancy
may be due to the fact that the Wentzel–Kramers–Brillouin
(WKB) method used by the latter authors is unsuitable for
such problems. For example, they stated, ‘It is certainly not
obvious that the physical conditions of the Bohr–Sommerfeld
procedure should be valid for this non-physical path. The
significant differences in the spectrum studied in this paper
suggests that it is not valid’ and also stated, ‘It is not clear
whether the motion along paths in the complex plane has
any physical significance for quantization’. Curiously, the
authors did not appear to pay attention to other methods
for the calculation of the eigenvalues of those PT-symmetric

Hamiltonians. For example, the WKB results were confirmed
by numerical integration based on the Runge–Kutta (RK)
algorithm [2, 3] as well as by diagonalization of a truncated
Hamiltonian matrix in the basis set of harmonic-oscillator
eigenfunctions [2] (a more detailed description of this
approach was given in an earlier version of the paper [4]).
In addition, Handy [5] and Handy and Wang [6] obtained
accurate upper and lower bounds from the moments
equations.

The results, conclusions and criticisms of Bowen et al [1]
are at variance with all that has been established after several
years of study in the field of non-Hermitian PT-symmetric
Hamiltonians [3]. The purpose of this comment is to analyse
their calculations to verify if such criticisms are well founded.
In section 2, we briefly review the diagonalization method
(DM) used by the authors, and in section 3, we analyse some
of the models used by the authors to draw their conclusions;
finally, in section 4, we summarize the main results and draw
our own conclusions.
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2. The method

Bowen et al [1] calculated the eigenvalues of the class of
Hamiltonian operators

H = p2 + sx N (1)

for s = 1,−1, i and N = 2, 3, 4, 6, 8. They resorted to
matrix representations of the operators in the basis set of
eigenfunctions {|n〉 , n = 0, 1, . . .} of the harmonic oscillator
(s = 1, N = 2) and diagonalized truncated Hamiltonian
matrices H(M)

= (Hmn)
M−1
m,n=0, where Hmn = 〈m| H |n〉, for

each of those cases. If the eigenvalues of the truncated
matrices converge as M increases, then the limits of those
sequences approach the eigenvalues of the operator (1).

The characteristic polynomial for the matrix H(M) will
exhibit M roots W (M)

n , n = 0, 1, . . . ,M − 1. In the case of
Hermitian operators (for example, s = 1 and N even) all those
roots are real because the matrix is Hermitian. This is not the
case with the non-Hermitian operators. Furthermore, in the
case of the Hermitian operators we know that the eigenvalues
of the matrix approach the eigenvalues En of the operator
from above W (M)

n > W (M+1)
n > En . On the other hand, there

is no such variational principle in the case of non-Hermitian
operators. Obviously, one has to be very careful when
applying the DM to non-Hermitian operators. Bender and
Weir [7] recently discussed an efficient application of the DM
to one-, two- and three-dimensional PT-symmetric oscillators.
The calculation of a great number of eigenvalues for such
models is facilitated by the fact that the Hamiltonian matrices
in the basis set of harmonic-oscillator eigenfunctions are
sparse. In what follows, we discuss some of the examples
chosen by Bowen et al [1].

3. Examples

3.1. Case N = 2

When s = 1 the matrix H is diagonal and yields the
eigenvalues of the harmonic oscillator exactly: En = 2n + 1,
n = 0, 1, . . . . On the other hand, for s = −1 the eigenvalues
of the matrix do not converge as M increases. Therefore, they
are meaningless and bear no relation to the eigenvalues of the
Hamiltonian H = p2

− x2. Surprisingly, the authors argued,
‘This Hamiltonian has a spectrum with odd symmetry about
zero energy’. If one solves the eigenvalue equation with the
appropriate boundary conditions in the complex-x plane, one
obtains purely imaginary eigenvalues: En = ±(2n + 1)i.

The authors went even further and stated, ‘Bender has
also asserted that the spectrum of the simple harmonic
oscillator (SHO) (r = 0) with a negative force constant has
a discrete negative spectrum that is the negative of the
positive force constant SHO; that is, En = −h̄ω(n + 1/2)’.
However, Bender [3] never drew such a wrong conclusion.
He discussed the harmonic oscillator H = p2 +ω2x2 with
eigenvalues En(ω)= (2n + 1)ω and eigenfunctions ψn(ω, x).
The eigenfunctions behave asymptotically as ψn(ω, x)∼

e−ωx2/2 when |x | → ∞. If we substitute −ω for ω the
eigenvalues change sign but the eigenfunctions are no
longer square integrable. However, if we rotate the variable
π/2 counterclockwise, then the resulting eigenfunction

ϕn(ω, q)= ψn(−ω, iq) is square integrable. It is quite
obvious that the substitution of −ω for ω changes the sign
of the eigenvalues, but the force constant (∝ ω2) does not
change. In fact, Bender [3] states, ‘Notice that under the
rotation that replaces ω by −ω the Hamiltonian remains
invariant, and yet the signs of the eigenvalues are reversed!’.
Therefore, it seems that Bowen et al [1] misread Bender’s
argument.

3.2. Case N = 3

When s = 1 the eigenvalues of the truncated matrices do not
converge as M increases. However, the authors state, ‘Here
the spectrum was almost symmetric about zero. . . ’, in spite of
the fact that the roots of the secular determinants are not valid
approximations to the eigenvalues of the differential operator.

The only interesting case is undoubtedly the
PT-symmetric Hamiltonian operator for s = i. According to
the authors, ‘The calculation of the spectrum for the potential
V = i x3 yielded a complex spectrum’. In this case the wedges
in the complex-x plane where ψ(x) vanishes exponentially
as |x | → ∞ contain the real axis [2]. Therefore, one expects
the DM to yield meaningful results. Our calculation shows
that the complex eigenvalues of the truncated matrices do
not converge as M increases, but there are real ones that
certainly converge towards the results obtained by Bender and
Boettcher [2] by means of the WKB method and numerical
integration. In fact, Bender and Boettcher [2, 4] discussed
the calculation of the eigenvalues by means of the DM (see
also [7]). They concluded that the method is only useful when
1< N < 4 and that the convergence to the exact eigenvalues
is slow and not monotonic because the Hamiltonians are
not Hermitian. Table 1 shows the convergence of the lowest
eigenvalues of the truncated matrices towards those obtained
by means of the RK method and the WKB approach; they are
real and positive as argued by Bender and Boettcher [4].

An interesting feature of the DM for non-Hermitian
operators is that the characteristic polynomial of degree M
does not exhibit M real roots as in the case of the Hermitian
matrices. In the present case, the truncated matrices also
exhibit many complex eigenvalues but they do not converge
as M increases. Another interesting feature is the behaviour
of the approximate eigenvalues with respect to a scaling
factor. Instead of using the eigenfunctions ψn(x)= 〈x | n〉 of
the harmonic oscillator p2 + x2, we can try an alternative
calculation with the scaled eigenfunctions α1/2ψn(αx), where
α is an adjustable scaling factor. In the case of Hermitian
operators, W (M)

n (α) exhibits a minimum because of the
variational principle. On the other hand, in the case of
the complex potential V = i x3 the approximate eigenvalue
oscillates and exhibits a kind of plateau with oscillations
of smaller amplitude. The optimal value of α is somewhere
in this region. For example, we find that α ≈ 1.4 is more
convenient than the scaling parameter α = 1 used in the
calculation shown in table 1. However, it is our purpose to
show here only the results for the same basis set chosen by
Bowen et al [1].

3.3. Case N > 4

Obviously, the DM yields real positive eigenvalues for
s = 1 and N even; that is to say: for the trivial Hermitian

2
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Table 1. First eigenvalues of the truncated matrices of dimension M for V (x)= i x3.

M E0 E1 E2 E3

10 1.156 101 684 3.730 834 96 – –
15 1.156 038 818 4.149 429 07 – –
20 1.156 383 056 4.109 441 589 – –
25 1.156 258 544 4.109 537 412 7.553 497 517 –
30 1.156 267 013 4.109 170 441 7.562 399 797 11.248 840 01
35 1.156 266 986 4.109 228 991 7.562 011 977 11.314 522 25
40 1.156 267 082 4.109 228 365 7.562 284 307 11.313 721 88
45 1.156 267 072 4.109 228 831 7.562 273 020 11.314 523 60
50 1.156 267 072 4.109 228 753 7.562 274 330 11.314 421 88
55 – 4.109 228 754 7.562 273 854 11.314 424 13
60 – 4.109 228 753 7.562 273 860 11.314 421 76
65 – 4.109 228 753 7.562 273 854 11.314 421 84
70 – 4.109 228 753 7.562 273 855 11.314 421 82
75 – – 7.562 273 855 11.314 421 82
80 – – – 11.314 421 82

RK 1.156 267 072 4.109 228 752 7.562 273 854 11.314 421 818

WKB 1.0943 4.0895 7.5489 11.3043

operators. When s = −1 the eigenvalues of the truncated
Hamiltonian matrices do not converge and, consequently, they
are not eigenvalues of the Hamiltonian operator. The DM is
not expected to yield the eigenvalues of the PT-symmetric
oscillators when s = i and N is odd because the wedges in the
complex-x plane whereψ(x) vanishes exponentially as |x | →

∞ do not contain the real axis [2]. However, the characteristic
polynomials do exhibit real positive roots that converge as M
increases. They are related to the complex resonances of the
oscillators with s = 1 [8].

The PT-symmetric Hamiltonian operator H = p2
− x4

deserves special attention because it is isospectral to the
Hermitian one H = p2 + 4x4

− 2x [9, 10]. Apparently, Bowen
et al [1] were not aware of this relationship which could have
convinced them that the former Hamiltonian does already
have a positive spectrum.

4. Conclusion

It is clear that the discrepancy between the results of Bowen
et al [1] and Bender and Boettcher [2] is merely due to the fact
that the DM used by the former authors does not apply to some
of the problems studied. Their conclusions were based on
eigenvalues of the Hamiltonian matrices that do not converge.

They only obtained meaningful results for the trivial cases
of Hermitian Hamiltonians given by s = 1 and N even. In
the only other selected case where the DM is expected to
yield reasonable results, namely V (x)= i x3 (and we may
also add greater odd values of N ), the authors failed to find
the converging real positive roots and have simply focused on
the complex ones that do not converge.
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