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Abstract This paper extends the Oaxaca-Blinder decomposition method to the quantile
regression random-coefficients framework. Mean-based decompositions are obtained as the
integration of the quantile regression decomposition process. This method allows identify-
ing if the observed differences between two groups differ across quantiles, and if so, what is
the contribution to the mean-based Oaxaca-Blinder decomposition. The proposed method-
ology is applied to the analysis of caste discrimination in Nepal. The results indicate that
much of the discrimination occurs at the lowest quantiles, which implies that disadvantaged
groups are the ones who suffer the most caste discrimination.

Keywords Quantile regression · Oaxaca-Blinder decomposition

1 Introduction

Quantile regression (QR) (see Koenker 2005, for a comprehensive analysis of QR) is a use-
ful way to represent parameter heterogeneity in the response of an outcome variable to the
linear effect of certain covariates, in which parameter heterogeneity is presented using con-
ditional quantiles. QR has been used to study inequality. In particular, several papers used
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QR to decompose differences across groups or within a group across time in a Oaxaca-
Blinder (OA) decomposition environment (Oaxaca 1973; Blinder 1973; Oaxaca and Ransom
1994), defining an “endowment effect” that captures differences in an outcome variable
because of differences in explanatory variables (e.g. differences in education endowments),
and a “pricing effect” that corresponds to differences across groups because of differences
in the coefficients (e.g. differences in returns to schooling). Machado and Mata (2005)
(see also Autor et al. 2005) propose techniques to disentangle the effect of changes in the
distribution of covariates from the effect of changes in the distribution of coefficients - or
returns- in accounting for inequality changes. Such techniques however, have some limita-
tions in terms of the detailed decompositions of the contributions of each covariate to the
total change (see the discussion in Fortin et al. 2011). Firpo et al. (2009) develop a useful
framework to account for the particular effect of covariates using the re-centered influence
function (RIF) model. This can be applied to different statistics such as quantiles, variance,
Gini or Theil coefficients within the OA framework to disentangle endowment and pricing
effects. When this is applied to quantiles, the model is called the unconditional QR model.

We formalize OA decompositions at particular quantiles using an alternative represen-
tation. Using the QR framework as a special case of a random-coefficients (RC) linear
regression model, the mean regression (MR) model can be interpreted as the mean of the
QR coefficients because integrating out the quantile coefficients produce the MR coeffi-
cients. Thus the mean OA decomposition can be seen as the mean of OA decompositions
at different quantiles. Our proposed QR OA decomposition effects are thus the source of
the standard OA decomposition at the mean. The proposed analysis does not circumvent
the fact that the law of iterated expectations does not hold in the case of quantiles, and thus
the conditional QR analysis cannot be used directly to analyze unconditional quantiles (see
the discussion in Fortin et al. 2011). The proposed OA decomposition analysis in this paper
applies only to the conditional case, that is, where the OA decomposition is implemented
at the mean endowment of each group. It does however provide a formal framework to ana-
lyze the pricing effect. The proposed methodology is built upon a formal statistical model
constructed from QR and, therefore, we are able to derive the asymptotic distribution of
these decompositions using the recent results in Bera et al. (2014), where the asymptotic
joint distribution of the mean ordinary least-squares (OLS) and QR coefficients is studied.

To illustrate the proposed methodology we apply it to caste wage differentials in Nepal.
The QR decomposition allows us to study if discrimination is larger for particular quan-
tiles of the conditional wage distribution, and to explore the causes of those disparities. The
results indicate that much of the discrimination occurs at low quantiles, which implies that
disadvantaged groups are the ones who suffer the most caste discrimination. Our framework
also allows us to identify the decomposition along key covariates such as education, occu-
pation and firm size. In this case, the decomposition for education has the largest effect at
low quantiles, but occupation and firm size effects are uniform across quantiles.

This paper is organized as follows. Section 2 analyzes the connection between RC and
QR models. Section 3 applies the RC-QR model to the Oaxaca decomposition model.
Section 4 reviews the asymptotic distribution of the proposed estimators. Section 5 applies
the proposed method to caste wage differentials in Nepal. Section 6 concludes.

2 Random-coefficients and quantile regression

Let Y be a response or outcome variable and X be a p × 1 dimensional vector of covariates.
The mean and quantile linear regression models are two well known models to estimate the
effect of certain covariates on a response variable.
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Mean regression (MR) considers the effect of X on Y through the conditional mean
model

E(Y |X = x) = x′βM, (1)
where βM is a p × 1 dimensional vector of coefficients.

In QR the conditional quantiles of Y are of interest through the models

QY (τ |X = x) = x′β(τ) f or τ ∈ (0, 1). (2)

Note that Eq. 2 implies that the right-hand side is monotone non-decreasing in τ . In
theory, the monotonicity requirement should be satisfied for all realizations of X or for some
specified subspace of interest (this is discussed in Koenker 2005, p.59).1

As stated in Koenker and Xiao (2006) and (Koenker 2005, section 2.6, pp. 59-62), the
monotonicity in the QR model determines that a random-coefficients (RC) notation can be
introduced by considering a uniform random variable U ∼ U(0, 1) in the role of the fixed
τ and writing

Y = X′β(U). (3)
The results in Koenker and Bassett (1982) establish that, under regularity conditions, the
estimated conditional quantile function is a strongly consistent estimator of the population
quantile function. Thus the process {Y,X} can be partially recovered from the marginal
distributions, that is, the conditional distribution Y |X can be described by its conditional
quantiles based on τ ∈ (0, 1). The QR analysis constructs a model y∗ = y(x, τ ) in which
y∗ depends on endowments X = x and its location in the conditional distribution given
by τ . The linear QR model determines that the coefficients β(τ) are the prices of those
endowments (this is further developed in the next section). This method has been applied
for the analysis of inequality by Autor et al. (2005), Machado and Mata (2005) and others.

A general RC formulation for Y can be obtained by defining a random p × 1 vector
B ∈ B, where B is the space of p × 1 random real valued vectors. Then,

Y = X′B. (4)

Model (2) is a special case of Eq. 4 in which X′B is monotone increasing on some
common index, i.e. τ . Define the parametric RC family that satisfies the QR monotonicity
requirement as BQR = {B ∈ B : B = B(τ), τ ∈ (0, 1), x′ (B(τ2) − B(τ1)) (τ2 − τ1) ≥
0, ∀τ1, τ2 ∈ (0, 1), ∀x}, and note that BQR ⊆ B.

In order to illustrate the differences between these two models, consider the following
data generating processes for {Y,X1, X2}:

Y = α0 + α1X1 + α2X2 + (δ1ω1)X1 + (δ2ω2)X2 + (γ0 + γ1X1 + γ2X2)ε,

with ε ∼ IID(0, σ 2
ε ), ωj ∼ IID(0, σ 2

ωj
), j = 1, 2, (ε, ω1, ω2) ⊥⊥ (X1, X2), and

(α0, α1, α2, γ0, γ1, γ2, δ1, δ2) fixed parameter values. This can be re-written as

Y = (α0 + γ0ε) + (α1 + γ1ε + δ1ω1)X1 + (α2 + γ2ε + δ2ω2)X2 = B0 + B1X1 + B2X2,

where B0 ≡ α0 + γ0ε and Bj ≡ αj + γj ε + δjωj , j = 1, 2.
First, consider the typical linear location-scale model, for which we set δ1 = δ2 = 0.

This is a ubiquitous example of a model in which QR is represented. If Xj , j = 1, 2,

1In practice, however, the monotonicity may not be satisfied for some values of X, a problem known as the
quantile crossing problem: the conditional quantile curves x �−→ QY (τ |x) may cross for different values
of τ (He 1997). Chernozhukov et al. (2009, 2010) studies this monotonicity requirement and proposes a
rearrangement procedure of the estimated quantile curves. He (1997) proposed to impose a location-scale
regression model, which naturally satisfies monotonicity.
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takes only positive values, the QR model simplifies to QY (τ |X = x) = (α0 + α1x1 +
α2x2) + (γ0 + γ1x1 + γ2x2)Qε(τ ) and ∂QY (τ |X=x)

∂xj
≡ βj (τ ) = αj + γjQε(τ), j = 1, 2,

where Qε(τ) corresponds to the τ -quantile of ε, while the conditional mean effect is
∂E(Y |X=x)

∂xj
= αj , j = 1, 2. The connection between the RC and QR formulations can be

shown by noting that this model implies that Bj = αj +γjQε(U),U ∼ U(0, 1). Therefore,
in a location-scale model, QR implies a RC formulation where the random-coefficients are
linear functions of a single random index Qε(τ), τ ∈ (0, 1).

Second, consider the case where γ1 = γ2 = 0. This is a radically different model because
each linear coefficient, B1 and B2, is independent of the other. QR models successfully
predict the coefficient range, although they implicitly assume that both βs are co-monotonic.
That is, the QR model would produce Qy(τ |X = x) = β0(τ ) + β1(τ )x1 + β2(τ )x2 for the
same common index τ . This picks up parameter variability in B but it presents heterogeneity
in an “ordered” way, which may not fully represent parameter heterogeneity. If, for instance,
we further assume that α1 = α2 = 0 and δ1 = δ2 = 1, ε ∼ IID U(−1, 1), ωj ∼
IID U(−1, 1), j = 1, 2, QR correctly shows that Bj , j = 1, 2, range from -1 to 1 through
the estimated βj (.). But potential realizations for which sign(B1) = −sign(B2), that is,
cases for which B1 is positive (negative) but B2 is negative (positive), are not considered. In
fact these realizations are as likely to occur as realizations in which sign(B1) = sign(B2).
That is, Prob[sign(B1) = −sign(B2)] = Prob[sign(B1) = sign(B2)] = 0.5.

Throughout this paper we consider RC models assuming QR co-monotonicity. As dis-
cussed in the next section, the goal of this paper is to propose a general framework to study
pricing heterogeneity in endowments. As such, QR models are able to capture the hetero-
geneity for endowment variables’ prices (i.e. a particular Bj ) even if the co-monotonicity
across prices does not occur.

3 Endowment and pricing effects in the RC-QR model

Note that because of monotonicity of β(τ), τ ∈ (0, 1), the order statistics of B correspond
to the QR coefficients at the τ -quantile. That is, QB(τ) = β(τ), τ ∈ (0, 1). This means
that, for instance, the “median” value of B is β(0.5). Thus, analyzing the marginal effects
of covariates on different quantile of the conditional distribution of Y |X is equivalent to
analyzing the quantiles of the linear effects of X on Y .

Moreover, following Koenker and Xiao (2006) we can write

Y = B̄0 + X1B1 + ... + XpBp + w, (5)

where B̄0 = E[B0] and w = B0 − B̄0. This means that for the MR model we have

E(Y |X = x) = B̄0 + x1E[B1] + ... + xpE[Bp], (6)

and then the mean regression coefficients can be obtained by taking the “mean” of the
quantile coefficients. Thus βM = E(B).

Then, combining mean and QR models we could rewrite (4) as

Y − x′βM = (X − x)′βM + X′(B − βM). (7)

≡ (Endowment effect) + (Pricing effect).

This representation is quite useful. Differences across individuals in Y are due to differ-
ences in X with respect to some reference value x or to differences in B with respect to
the mean of B. Following the traditional OA decomposition analysis (Oaxaca 1973; Blinder
1973; Oaxaca and Ransom 1994), all changes in Y can be expressed as the combined
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effect of X and B. Then differences in Y due only to X are defined as the endowment
effect. Changes in Y due only to B are defined as the pricing effect. If we further use
x = x ≡ E(X), then we are in fact comparing any realization of Y with respect to the mean
endowment effect valued at the mean price. Thus for instance if Y is wage and X human
capital, differences in wages across individuals are either due to differences in human capital
or on how the market values those endowments.

As explained in Machado and Mata (2005) in the context of explaining changes in the
distribution of wages “the estimated QR coefficients are also quite interesting as they can
be interpreted as rates of return (or ‘prices’) of the labor market skills at different points of
the conditional wage distribution”(p.447). If we consider models in BQR , the pricing effect
can be analyzed by studying the quantile process {β(τ), τ ∈ (0, 1)} together with the MR
coefficients βM . Then, we can apply an endowment and pricing decomposition at particular
quantiles of the conditional distribution of Y . For different values of x and quantiles τ , we
can evaluate

y(x, τ ) − x′βM = (x − x)′βM + x′(β(τ ) − βM). (8)

≡ (Endowment effect) + (Pricing effect(τ )).

In this case the difference in pricing at τ with respect to the mean pricing (β(τ ) − βM)

is of interest. Inference on this object requires the joint consideration of the mean and QR
estimators. This decomposition was first proposed by Autor et al. (2005) following the
analysis of Machado and Mata (2005), replacing βM with β(0.50), where the second term
was referred as within-group inequality and prices. Equation 8 was thus proposed to evaluate
changes in inequality.

This decomposition can be extended for comparing two groups 1 and 2 with realizations
y1(x1, τ ) and y2(x2, τ ). Consider the evaluation at x1 = x1 and x2 = x2. Further-
more assume that groups 1 and 2 are realizations of the same process with differences in
endowments and pricings. Then, after some algebra,

OAQ ≡ y1(x1, τ ) − y2(x2, τ ) = x1β1(τ ) − x2β2(τ ) (9)

= x′
1β1(τ ) − x′

2β2(τ ) + x′
1β2(τ ) − x′

1β2(τ )

= (x1 − x2)
′β2(τ ) + x′

1(β1(τ ) − β2(τ ))

≡ OAQe(τ) + OAQp(τ),

where OAQ corresponds to a OA decomposition for a particular quantile τ . OAQe(τ)

is the effect that differences in endowments has on that particular τ quantile. OAQp(τ)

represents differences in prices of that particular quantile, evaluated at x1.2

Note that if we integrate out τ we obtain the usual OA decomposition at the mean, that is,

OAM ≡ Eτ [y1(x1, τ ) − y2(c2, τ )] = (x1 − x2)
′βM2 + x1(βM1 − βM2) (10)

≡ OAMe + OAMp,

where βMj is the average pricing of group j = 1, 2, and OAMe and OAMp are the
endowment and pricing OA decompositions, respectively. This determines that the OA
decomposition can be seen as arising from differences between the groups at different
quantiles of the conditional distribution of Y .

2As suggested by an anonymous referee alternative decompositions can be constructed depending on
what terms are added and subtracted to x′

1β1(τ ) − x′
2β2(τ ). OAQ might be equivalently written as

(x1 − x2)
′β1(τ ) + x′

2(β1(τ ) − β2(τ )) ≡ OAQe′(τ ) + OAQp′(τ ).
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Furthermore, adding and subtracting x′
1βM1, x′

2βM2, x′
1βM2, and rearranging, we obtain

y1(x1, τ ) − y2(x2, τ ) = OAM + x′
1(β1(τ ) − βM1) − x′

2(β2(τ ) − βM2) (11)

≡ OAM + OAQ1(τ ) − OAQ2(τ ).

The first term corresponds to the usual (mean) OA decomposition in Eq. 10, OAM . The
second term is the pricing effect of group 1 for that particular quantile, evaluated at the mean
endowments of that group (OAQ1(τ )). The third term is the pricing effect of group 2 for
that particular quantile, also evaluated at the mean endowments of that group (OAQ2(τ )).
Thus, differences in Y at a particular τ could either be due to differences in endowments
valued at the mean pricings (OAM) or group-specific effects of that particular quantile with
respect to the mean pricing.

4 Asymptotic inference

In order to make asymptotic inference on these decompositions we need to review the
asymptotic joint distribution of the OLS and QR estimators. Bera et al. (2014) study the
interaction of the mean and QR models’ coefficients.

The coefficient βM can be estimated by solving the following minimization problem

β̂M = arg min
b∈Rp

n∑

i=1

(yi − x′
ib)2.

On the other hand, QR technique, suggested by Koenker and Bassett (1978), formulates that
β(τ) can be estimated by solving the following minimization problem

β̂(τ ) = arg min
b∈Rp

n∑

i=1

ρτ (yi − x′
ib),

where ρτ (u) = u(τ − 1(u < 0)).
The OA decomposition extension of this paper is based on the comparison of MR

and QR, evaluated at a particular quantile, namely, the asymptotic joint distribution of
(β̂ ′

M β̂(τ)′)′. To derive the asymptotic joint distribution of the estimators, the following
assumptions are imposed.

Assumption 1 {(X′
i , Yi), i = 1, ..., n} are independently but not necessarily identically

distributed. The conditional distribution function of Yi given Xi , Fi , is absolutely continu-
ous, with continuous densities {fi(ξ)} uniformly bounded away from 0 and ∞ at the points
ξi(τ ), i = 1, 2, ...., where ξi(τ ) ≡ F−1

Yi
(τ |Xi);

Assumption 2 βM is defined to solve Eq. 12, and β(τ) is defined to uniquely solve Eq. 13
as

E[Xi(yi − X′
iβM)] = 0, (12)

E[Xiψτ (Yi − X′
iβ(τ ))] = 0, (13)

where ψτ (u) = τ − 1(u < 0);

Assumption 3 Denote Xij to be the j th element of Xi .

(a): E|(Yi − X′
iβM)2XijXih|1+δ1 < �1 < ∞ for some δ1 > 0, where i = 1, ..., n and

j, h = 1, ..., p;
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(b): E|XijXih|1+δ2 < �2 < ∞ for some δ2 > 0, where i = 1, ..., n and j, h = 1, 2, ..., p

;

(c): The matrices Hn(τ) := E
(

1
n

∑n
i=1 XiX

′
ifi(ξi(τ ))

)
and

(
Vn �n(τ)

�n(τ) τ (1 − τ)Jn

)
are

uniformly positive definite, where Vn := V ar
(

1√
n

∑n
i=1 Xi(Yi − X′

iβM)
)
,�n(τ) :=

E
(

1
n

∑n
i=1 XiX

′
iρτ (yi − X′

iβ(τ ))
)
, and Jn := E

(
1
n

∑n
i=1 XiX

′
i

)
.

Theorem 1 Under Assumptions 1-3, for a given τ ∈ (0, 1), we have

Dn(τ)−
1
2
√

n

((
β̂M

β̂(τ )

)
−

(
βM

β(τ)

))
d→ N

(
0, I

)
,

where Dn(τ) :=
(

J−1
n VnJ

−1
n J−1

n �n(τ)Hn(τ)−1

Hn(τ)−1�n(τ)J−1
n τ (1 − τ)Hn(τ)−1JnHn(τ)−1

)
.

Proof See Bera et al. (2014) Theorem 1.

The above theorem shows that the asymptotic joint distribution of the OLS and QR esti-
mators is multivariate normal after being properly centered and scaled. Thus, each of the
components derived in the previous section is asymptotically normal. In addition, it reveals
an interesting interpretation of the off-diagonal elements of the variance-covariance matrix.
The covariance term, Hn(τ)−1�n(τ)J−1

n , is composed of three pieces. First, Hn(τ) is the
well known ‘bread’ element in the simple variance-covariance matrix in the QR literature.

Table 1 Oaxaca mean and quantile aggregate decompositions

OAM OAMe OAMp

x′
1βM1 − x′

2βM2 (x1 − x2)
′βM2 x1(βM1 − βM2)

0.266 0.360 −0.094

(0.062) (0.049) (0.057)

OAQ OAQe OAQp OAQ1 OAQ2

y1(x1, τ ) − y2(x2, τ ) (x1 − x2)
′β2(τ ) x′

1(β1(τ ) − β2(τ )) x′
1(β1(τ ) − βM1) x′

2(β2(τ ) − βM2)

τ = 0.25

0.376 0.385 −0.009 −0.367 −0.477

(0.078) (0.060) (0.077) (0.026) (0.044)

τ = 0.50

0.259 0.350 −0.091 −0.036 −0.029

(0.071) (0.057) (0.067) (0.023) (0.038)

τ = 0.75

0.210 0.308 −0.099 0.328 0.384

(0.072) (0.058) (0.074) (0.026) (0.041)

Notes: Mean and quantile decompositions: OAM = OAMe+OAMp; OAQ(τ) = OAQe(τ)+OAQp(τ);
OAQ(τ) = OAM + OAQ1(τ ) − OAQ2(τ ). Wild bootstrap standard errors in parentheses based on 200
bootstrap samples
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Second, the element Jn is the usual ‘bread’ element in the variance-covariance matrix for
least squares estimator. The final element, �n(τ), is novel, and it is simply the weighted QR
loss function, where the weight is given by the matrix of regressors XiX

′
i .

In order to implement the tests we need to estimate Dn(τ) consistently. To guarantee the
consistency, we further require the following assumption.

Assumption 4 E(XimXihX
2
ijX

2
il ) < �3 < ∞ and E((Yi − X′

iβM)2X2
ijX

2
il ) < �4 < ∞

for all i and m, h, j, l = 1, 2, ..., p.

In practice Dn(τ) can be implemented by wild bootstrap.

5 Empirical application: caste discrimination in Nepal

Labor market discrimination is defined as a situation in which a person who provides labor
market services and is equally productive in a physical and material sense is paid less in a
way that is related to gender, race, caste or ethnicity (Altonji and Blank 1999). While con-
siderable attention has been paid to labor market discrimination based on race and gender,
less attention has been paid to caste even though caste-based discrimination might be more
powerful and persistent than racial discrimination. A caste system allocates social labor
on the basis of a hierarchy of caste classifications and this restricts occupational mobility
(Banerjee and Knight 1985). A caste-based division of labor can perpetuate itself through
the inter-generational transmission of low educational and occupational status from one
generation to the next even once discrimination per se is abolished (Borjas 1994; Darity and
Mason 1998).

Table 2 Oaxaca mean and quantile education decompositions

OAM OAMe OAMp

x′
1βM1 − x′

2βM2 (x1 − x2)
′βM2 x1(βM1 − βM2)

0.445 0.192 0.253

(0.136) (0.038) (0.155)

OAQ OAQe OAQp OAQ1 OAQ2

y1(x1, τ ) − y2(x2, τ ) (x1 − x2)
′β2(τ ) x′

1(β1(τ ) − β2(τ )) x′
1(β1(τ ) − βM1) x′

2(β2(τ ) − βM2)

τ = 0.25

0.519 0.207 0.312 0.111 0.037

(0.189) (0.057) (0.227) (0.112) (0.111)

τ = 0.50

0.466 0.211 0.255 0.067 0.046

(0.184) (0.056) (0.220) (0.104) (0.096)

τ = 0.75

0.389 0.162 0.227 −0.128 −0.073

(0.179) (0.054) (0.219) (0.089) (0.093)

Notes: Mean and quantile decompositions: OAM = OAMe+OAMp; OAQ(τ) = OAQe(τ)+OAQp(τ);
OAQ(τ) = OAM + OAQ1(τ ) − OAQ2(τ ). Wild bootstrap standard errors in parentheses based on 200
bootstrap samples
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Nepal, along with other countries, had a caste-based social division of labor. This was
however abolished in 1963 and declared illegal after the promulgation of the new constitu-
tion in 1990. Several studies (see the literature review in Mainali et al. (2017)) concluded
however that discrimination persists in the labor market. We apply the Oaxaca-Blinder
decomposition framework developed in this paper to study this issue. We aggregate caste-
ethnic groups into two broad categories, namely Tagadhari and Inferior = Matwali & Pani
Nachalne. We use data from the 2010 National Living Standard Survey (NLSS). A detailed
description of the data and caste classification appears in Mainali et al. (2017).

Table 1 reports the aggregate wage differences between castes. Overall, the OAM cal-
culation reveals that Tagadhari (group 1) individuals earn 26.6% more than Inferior castes
(group 2). Most of this difference arises because of differences in endowments (OAMe),
while pricing effect seems to benefit the inferior castes (OAMp). The aggregated wage dif-
ferential (OAQ) is almost double for τ = 0.25 than for τ = 0.75. This determines that
much of the discrimination occurs at the lowest quantiles. Moreover this implies that dis-
advantaged groups are the ones who suffer the most caste discrimination. In the same line,
studying OAQ1 and OAQ2 reveals that, while OAQ1 is rather constant across quantiles,
OAQ2 has significant differences comparing low and high quantiles, and in particular the
discrimination is partially explained by differences in pricings among the Inferior individu-
als. This could be due to the fact that while a fraction of the Inferior caste is able to eliminate
the caste discrimination, the rest is still suffering from the age-old discrimination.

Next, we evaluate the Oaxaca decomposition in terms of education only in Table 2. In
this case, the differences between castes is 44.5% comprising the most important contribu-
tion to the aggregate difference. This difference is composed of both endowment (OAMe)
and pricing (OAMp) components, the latter being marginally statistically significant. In a

Table 3 Oaxaca mean and quantile firm size decompositions

OAM OAMe OAMp

x′
1βM1 − x′

2βM2 (x1 − x2)
′βM2 x1(βM1 − βM2)

0.127 0.065 0.062

(0.269) (0.022) (0.274)

OAQ OAQe OAQp OAQ1 OAQ2

y1(x1, τ ) − y2(x2, τ ) (x1 − x2)
′β2(τ ) x′

1(β1(τ ) − β2(τ )) x′
1(β1(τ ) − βM1) x′

2(β2(τ ) − βM2)

τ = 0.25

0.430 0.060 0.371 0.170 −0.132

(0.312) (0.029) (0.320) (0.201) (0.166)

τ = 0.50

0.218 0.062 0.156 0.061 −0.029

(0.383) (0.027) (0.388) (0.225) (0.133)

τ = 0.75

−0.426 0.069 −0.496 −0.435 0.119

(0.328) (0.027) (0.335) (0.184) (0.179)

Notes: Mean and quantile decompositions: OAM = OAMe+OAMp; OAQ(τ) = OAQe(τ)+OAQp(τ);
OAQ(τ) = OAM + OAQ1(τ ) − OAQ2(τ ). Wild bootstrap standard errors in parentheses based on 200
bootstrap samples
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Table 4 Oaxaca mean and quantile occupation decompositions

OAM OAMe OAMp

x′
1βM1 − x′

2βM2 (x1 − x2)
′βM2 x1(βM1 − βM2)

−0.135 0.058 −0.193

(0.171) (0.035) (0.179)

OAQ OAQe OAQp OAQ1 OAQ2

y1(x1, τ ) − y2(x2, τ ) (x1 − x2)
′β2(τ ) x′

1(β1(τ ) − β2(τ )) x′
1(β1(τ ) − βM1) x′

2(β2(τ ) − βM2)

τ = 0.25

−0.106 0.067 −0.174 0.044 0.015

(0.192) (0.049) (0.203) (0.119) (0.105)

τ = 0.50

−0.251 0.048 −0.299 0.074 0.190

(0.283) (0.042) (0.295) (0.102) (0.168)

τ = 0.75

−0.091 0.035 −0.127 −0.068 −0.112

(0.226) (0.040) (0.235) (0.10) (0.121)

Notes: Mean and quantile decompositions: OAM = OAMe+OAMp; OAQ(τ) = OAQe(τ)+OAQp(τ);
OAQ(τ) = OAM + OAQ1(τ ) − OAQ2(τ ). Wild bootstrap standard errors in parentheses based on 200
bootstrap samples

similar fashion to the aggregate analysis, lower quantiles contribute the most to wage dif-
ferentials and the OAQp component arises as the most important in terms of the inter-
quartile variation. In particular, differences for τ = 0.25 are the largest. OAQ1 and OAQ2
reveals that intra-caste variation in returns to schooling does not contribute to explain wage
differentials.

Following Banerjee and Knight (1985) and Mainali et al. (2017) we also apply the
decomposition analysis to firm size and occupations to proxy access to better paid jobs by
castes (Tables 3 and 4). The firm size decomposition reveals a contribution of access to
larger firms and better paid occupations by the dominant caste. Quantile analysis shows that
this effect is uniform across quantiles.

6 Conclusion

This paper extends the mean-based Oaxaca-Blinder decomposition to quantile regression.
The random-coefficients structure allows for simple formal statistical framework to analyze
pricing effects. This paper provides a simple formalization of the decomposition methods,
and proposes the application of the appropriate asymptotic method. Further extensions of
the model should formalize the Oaxaca-Blinder methodology and the approach developed
here to compute unconditional quantiles to compare distributional effects.
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