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Several variable selection algorithms were applied in order to sort informative wavelengths for building a
partial least-squares (PLS) model relating visible/near infrared spectra to Brix degrees in samples of sugar
cane juice. Two types of selection methods were explored. A first group was based on the PLS regression
coefficients, such as the selection of coefficients significantly larger than their uncertainties, the estimation of
the variable importance in projection (VIP), and uninformative variable elimination (UVE). The second group
involves minimum error searches conducted through interval PLS (i-PLS), variable-size moving-window
(VS-MW), genetic algorithms (GA) and particle swarm optimization (PSO). The best results were obtained
using the latter two methodologies, both based on applications of natural computation. The results furnished
by inspection of the spectrum of regression coefficients may be dangerous, in general, for selecting
informative variables. This important fact has been confirmed by analysis of a set of simulated data
mimicking the experimental sugar cane juice spectra.
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1. Introduction

In multivariate near infrared (NIR) spectroscopic analysis, one of
the main objectives is the prediction of a certain property (e.g., octane
number in gasolines, glucose content in blood, oil concentration in
seeds, Brix degrees in sugar cane, etc.) from the spectrum of a given
sample. For this purpose, a multivariate model is built which
mathematically relates the spectra for a group of reference samples
with their known property values. If the spectra are collected in a
matrix X (size I× J, where I is the number of samples and J the number
of wavelengths) and the reference property values in the vector y
(size I×1), the usual multivariate model is expressed by:

y = Xb + e ð1Þ

where b is known as the vector of regression coefficients (size J×1)
and e collects the model errors. Eq. (1) represents a calibration model
known as ‘inverse’, because it expresses Beer's law in an inverse
fashion. It relates the property of interest to the information contained
in X, which consists of a superposition of many different signals. The
latter ones may or may not be connected to the target property y.
The vector b can be estimated in various ways, one of the most
popular being partial least-squares regression (PLS, see below) [1].
Once estimated, b can be employed to predict the property of a new
sample (y) through:

y = xTb ð2Þ

where x is the spectrum for a test specimen (size J×1) and the
subscript ‘T’ implies transposition.

Variable selection is usually performed in PLS analysis, implying
that a limited number of signals is employed for building the
multivariate model, discarding the remaining ones. The main purpose
of this selection is the building of models with spectral data having a
richer information content regarding the analyte or property of
interest, as well as less spectral overlapping with potential inter-
ferences [2]. Both theory and practice shows that improved analytical
performance is achieved in PLS upon variable selection, hence the
interest in this chemometric activity through the years [3–8]. Other
multivariate techniques such as principal component analysis, ridge
regression, etc. may also benefit from variable selection, either for
quantitative or classification purposes. In this sense, all the selection
procedures to be discussed in the present paper are applicable to the
latter methods, and therefore they are not restricted to PLS regression.

Two general types of variable selectionmethod exist, namely: 1) the
inspection of regression coefficients or latent variables for the full
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spectral PLS model, and 2) the search for sensor ranges where the
prediction error isminimum. The former are appealing because they are
considerably faster than the latter. Perhaps the simplest one, which is
still being advocated by many authors, is based on visual inspection of
thevectorof regression coefficients [2,9]. Regionswith significantvalues
of the regression vector (either positive or negative) are suggested to be
included in the model, while spectral windows where the regression
vector is noisy or low-intensity are discarded. Several modifications of
this simple strategy are known, including: 1) the setting of critical limits
to the values of the regression coefficients at each wavelength based on
uncertainty considerations [10], 2) the elimination of uniformative
variables (UVE) based on the addition of noise [11], and 3) the concept
of variable importance in projection (VIP) [12]. These more elaborate
versions of the inspection of regression coefficients intend to provide
automatic, analyst-independent, variable selection alternatives.

It should be noticed that the intuitive power of regression
coefficients to aid in variable selection has been challenged [13–15].
Recently, Brown and Green have shown in detail which are the dangers
of performing variable selection based on regression coefficients,
concluding that they strongly depend on the specific data under
analysis and their noise structure [16]. Regions where the regression
coefficients are low or near zero may actually correspond to spectral
windowswhere the analyte of interest is highly responsive. Conversely,
regions with significant values of the regression coefficients may arise
from spectral ranges where the analyte does not respond [16]. Due to
the extremely complexbehaviour of thevector of regression coefficients
in inverse calibration, the relevant conclusion of this recent work is that
“direct comparison of the regression vector to the pure-component
spectrum of the analyte is simply not meaningful in either the negative
or the affirmative” [16].

Other alternatives exist for selecting variables for PLS regression
which avoid carrying out extensive searches. Lindgren et al. described,
for example, interactive variable selection (IVS)-PLS, in which
elements of the PLS latent vectors are selectively modified during
the modelling phase, under the guide of an estimate for predictive
quality [17]. Teófilo et al. have recently discussed the inspection of
several vectors in search for informative spectral regions, such as: 1)
the correlation vector between variables and concentrations, 2) the
vector of residuals of the reconstruction of the original variables, 3)
the vector of net analyte signals, or 4) the signal-to-noise vector [18].
However, the consideration of the regression coefficients seemed to
perform better than any of the remaining alternatives [18].

Another important group of variable selection tools includes the
search for sensor ranges where the predictive indicators are optimum.
They assume that sensor ranges with improved analytical ability are
related to spectral windows with maximum information content
regarding the analyte of interest. The simplest of these methods is the
so-called interval-PLS (i-PLS), where a multivariate model is con-
structed in each of the spectralwindows provided by amoving-window
strategy with a fixed window size [19]. The minimum prediction error
corresponds, ideally, to the best spectral region for regression. A
somewhat more elaborate method involves variable-size moving-
window: the error indicator is now a matrix with two indexes, the
first sensor and the sensorwidth [20,21]. Thismethod allows one tofind
regions with a width which can be considerably larger than the
minimum spectral window. However, it is unable to find regions which
combine separate spectral sub-regions. An interesting derivation of
i-PLS and window search has been recently described [22].

Since a fully comprehensive search may be prohibitively time
consuming when the full spectral range includes a large number of
sensors, such as those employed in visible/near infrared (Vis–NIR)
spectroscopy, alternative strategies have been proposed, based on
algorithms for global searches inspired in natural processes. Genetic
algorithms (GA) [23–27], particle swarm optimization (PSO) [28],
simulated annealing [29] and ant colony optimization (ACO) [30] are
pertinent examples. A potential problem with these methods is the
time required to complete the calculations, especially when leave-
one-out cross-validation is employed at each algorithmic step to set
the optimum number of PLS latent variables in each studied spectral
region. Alternatives have been proposed based on penalized errors or
generalized cross-validation errors [28]. However, they easily tend to
overfit the data, pointing to excessive number of PLS components. A
good alternative is the random division of the calibration set, with
judicious selection of the number of latent variables by analyzing the
prediction error on a monitoring sub-set of samples. Repeated
calculations with different random divisions of the calibration set
make the method as close as possible to full cross-validation.

In the present report, several of the above variable selection
methodologies were applied to a simulated data set and to the
determination of Brix in sugar cane juice from Vis/NIR data. The best
results were obtained by wavelength searches conducted with the GA
version described below. The connections with the method of
inspection of the regression coefficients are also discussed. Brix
analysis is a relevant industrial parameter characterizing sugar cane
juice, which is conveniently measured by combining Vis/NIR
spectroscopy and multivariate calibration [31–36]. In this context,
Lima et al. have recently reported the use of PLS pruning based on the
Hessian matrix of errors for discrete wavelength selection [37],
reaching an average error of 0.4 units in the analysis of Brix. However,
this approach employs a very limited number of wavelengths (eleven
in the latter case), which may compromise the sensitivity of the
determination. We report on wavelength ranges including a signif-
icantly larger number of wavelengths, including sensitivity estimates
in each of the analyzed cases.

2. Theory

2.1. PLS regression

In PLS regression analysis, a model is constructed relating the
calibration spectral data matrix X (size J× I, J is the number of sensors,
I the number of samples) with the vector of calibration concentrations
of the analyte or property of interest y (size I×1). The basic
underlying assumption of the PLS model is that the studied system
is driven by a small number of latent variables, which are linear
combinations of the observed variables, and are defined in order to
maximize the covariance of the signal matrix X to the vector of
properties y. Particularly important are the latent variables known as
scores, because they replace the observed variables in Eq. (1), in order
to predict the y values by the following inverse least-squares model:

y = Tv + e ð3Þ

where v is the vector of regression coefficients in the latent space. If
the number of significant latent variables is A, then the sizes of T and v
are I×A and A×1 respectively. The matrix T is related to the original
data matrix X through additional latent variables provided by the PLS
model: thematrix P (J×A) of loading vectors, and the matrixW (J×A)
of weight loading vectors:

T = XW PTW
� �–1 ð4Þ

A new sample vector of signals (x) is first projected onto the latent
variables, producing a score vector t (A×1):

t = PTW
� �

–1
WTx ð5Þ

which renders the predicted concentration (or property) y through:

y = tTv ð6Þ
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Prediction can also proceed from the original spectrum x by
Eq. (2), where b is given in terms of the latent variables as:

b = W PTW
� �–1

v ð7Þ

The sensitivity of the analysis is provided by the length of the
vector of regression coefficients, i.e. [38,39]:

SEN = 1= kbk ð8Þ

where || || indicates the Euclidean norm. The SEN is a relevant figure of
merit which directly affects the uncertainty in predicted values
[38,39].

2.2. Inspection of regression coefficients

One simple way to select relevant spectral region from the vector b
of Eq. (7) is to compare the individual values of bj at each of the J
wavelengths with its associated uncertainty s(bj). Coefficient uncer-
tainties are easily estimated in principal component regression (PCR)
analysis [10], but this is not straightforward in PLS [40]. Recently,
Faber has analyzed several methods for estimating the variance in PLS
regression coefficients [41], concluding that the following approxi-
mate expressions are useful for this purpose:

s bj
� �

= V bð Þjj
h i1=2 ð9Þ

V bð Þ = MSEC × RRT
� �

ð10Þ

where V(b) is the covariance matrix of the vector b, MSEC is the mean
squared error of the concentration or property of interest (i.e., ||ynom−
ypred||2 / I, where ynom and ypred are the nominal and predicted property
values), and R is a J×Amatrix of weights relating the calibration matrix
X and the matrix scores T (T=XTR) in the PLS formalism known as
SIMPLS [42]. Once b and s(b) are available, data points are simply
selected at wavelengths where the modulus |bj| is larger than 3×s(bj).
Eqs. (9) and (10) constitute one of the several available approximations
for obtaining the variance in PLS regression coefficients [43].

2.3. Uninformative variable elimination

This method of variable selection intends to set an alternative
critical limit to the value of the regression coefficients [11]. First the
(unscaled) calibration data matrix X is augmented with a matrix of
the same size containing Gaussian random noise (Ref. [11] recom-
mends that the standard deviation for this noise should be very small,
even smaller than the estimated instrumental noise, such as for
example 1×10−10), so that the augmented matrix Xaugm has a size
2J× I. Samples are then left out from Xaugm one at a time, and a
regression vector baugm (2J×1) is estimated from a PLS model relating
the remaining data with the corresponding property values. The I
regression vectors are averaged over the sample population, and the
standard deviation is estimated at each of the 2J sensors. A critical
limit is established as the maximum value of the ratio of coefficient to
standard deviation in the noisy region (which ranges from J+1 to 2J
sensors). Regression coefficients are then considered as significant in
the experimental region from 1 to J when they exceed this limit. New
cut-offs have also been recently discussed and applied to the NIR
analysis of illicit drugs [44].

2.4. Variable importance in projection

The concept of variable importance in projection (VIP) uses the
regression coefficients in the variable space [i.e., the vector v in
Eq. (3)], the scores T and the weight loading factors contained inW, in
order to define an importance parameter for each intervening sensor j
[12]:

VIPj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ∑

A

a=1
Wjav

2
at

T
ata

∑
A

a=1
v2at

T
ata

vuuuuuut ð11Þ

whereWja is an element of thematrixW, ta is the ath column of T, and
va the ath element of v. Eq. (11) implies that larger contributions from
the signal at sensor j in predicting the target y are expected when the
following parameters are significant: 1) the weight loadings (Wja,
computed for the ath factor at sensor j), 2) the ath component of the
regression vector v (va), and 3) the scores for the ath factor (ta). This is
understandable in view that all these parameters contribute to the
final regression vector b [see Eqs. (5) and (7)].

The average value of the squared VIP over all sensors is 1, hence
usually VIPs larger than 1 are considered to correspond to informative
regions and included in the model, although different cut-off values
have been proposed [12].

2.5. Moving window strategies

The simplest moving window strategy is interval-PLS (i-PLS),
which adopts a fixed window size. In each of the regions defined by
this moving window, a statistical indicator of the quality of the model
is estimated. We have employed as statistical indicator the leave-one-
out cross-validation mean square error (RMSECV), which is obtained
as follows: each training samples is systematically removed, and the
remaining ones are used for construction of the latent factors and
regression. The predicted concentrations are then compared with the
actual ones for each of the calibration samples, and the predicted error
sum of squares [PRESS=Σ(ynom−ypred)2] is calculated as a function
of a trial number of factors. The RMSECV in each region is given by:

RMSECV =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PRESS

I

r
ð12Þ

After finishing the cross-validation procedure, the optimum
number of factors is suggested using the Haaland and Thomas
criterion [45], which involves the following operations: 1) compute
the ratios F(A)=PRESS(AbA*) /PRESS(A) [where A is a trial number of
factors and A* corresponds to the minimum PRESS], and 2) select the
value of A leading to a probability of less than 75% that FN1. This
procedure chooses the least complex model that is statistically
indistinguishable from the optimal cross-validation model. In this
way, less complex models with similar prediction accuracy are
obtained. The sensor region with minimum cross-validation error is
subsequently employed for model building and prediction on the
independent test sample set.

When the window size is variable, two parameters control the
spectral range employed for model building: the first sensor and the
sensor size. They are varied in order to cover all possible pairs of
values, using a certain minimum window. In each spectral region,
cross-validation is carried out, and the minimum RMSECV indicates:
1) where the best spectral region starts and 2) which is the
recommended spectral width for model building and prediction. We
call this method VS-MW (variable-size moving-window).

2.6. Genetic algorithms

In this strategy, natural selection is algorithmically mimicked. The
version employed in the present case is the so-called ranked regions
genetic algorithm (RRGA) already described [27], except that the
calibration set is randomly divided into two subsets only once in each
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computation cycle (70% for training and 30% for monitoring). During
the program execution, the PLS model is built with the signals of the
training sub-set of samples, only at the sub-region wavelengths for
which the GA string contains a 1, discarding those containing a 0.
Prediction proceeds on the monitoring sub-set for a number of latent
variables from 1 to a certain maximum, and at the same wavelengths
selected for calibration. The squared prediction errors are then
analyzed in a manner similar to the cross-validation PRESS values
discussed above, in order to estimate the number of factors. The
objective function to be minimized is the root mean square error of
prediction (RMSEP) for the monitoring sub-set using the optimum
number of latent variables. This version is faster than the already
published version of the algorithm.

The final string of 1s and 0s is then weighted inversely to the
prediction error on the monitoring set, estimated by an i-PLS model
for each of the wavelength sub-regions. In order to avoid chance
predictions, which are common in GA analysis, the calculations are
repeated ten times, and the averages at each sub-region are stored in a
histogram. Wavelengths are then selected as those corresponding to
values of histogram averages exceeding a certain tolerance, for
example, 30 (on a scale where the maximum value is 100). The
corresponding standard errors at each sub-region are also stored, in
order to investigate the robustness of the procedure. For further
details, see Ref. [27] and the material provided as Supplementary
information.

2.7. Particle swarm optimization

PSO is designed to mimic the process of bird flocking [46,47]. This
algorithm provides the relative importance of a given sensor (or
sensor window) for building the PLS model. Notice that in the GA the
inclusion of sub-regions encoded in the chromosomes is discrete, i.e.,
they are either included or excluded, whereas in PSO all sub-regions
are included with a certain weigh.

In the present work the algorithm was implemented as described
by Clerc and Kennedy [47], which differs from a previous work where
PSO was applied to PLS variable selection [28]. In the present version,
the objective function to be minimized is defined as in the case of the
GA. We have also repeated the calculations 10 times, registering a
histogram of the relative sub-region weight in each cycle (along with
the corresponding uncertainties), in the same manner described
above for GA. This tends to compensate for the random selection of
the monitoring sub-set of samples, which is different for each
algorithmic cycle. The Supplementary information collects additional
specific details.

3. Data

3.1. Experimental data

3.1.1. Apparatus
Vis/NIR spectra were measured with a NIRSystems 6500 spec-

trometer, equippedwith a cell with 1.0 mm optical path. Spectra were
acquired using the spectrometer software ISISCAN, and then con-
verted to ASCII files for further data processing.

Reference Brix data were measured with a Leica AR600
refractometer.

3.1.2. Samples
Sugar cane juices were analyzed at the quality control laboratory of

the Estación Experimental Obispo Colombres, Tucumán, Argentina.
The laboratory receives samples from several different cane proces-
sing units of the sugar-producing province of Tucumán. Cane samples
are first processed in the sugar mills, where juice (65% of the cane) is
extracted, and are then sent to the laboratory. For the calibration set,
59 samples were randomly selected, having Brix values in the range
11.76–23.15, as measured with the refractometer. The test set was
composed of 46 samples with Brix values in the range 12.26–23.79,
different than those employed for calibration. Vis/NIR spectra were
measured in random order, in the wavelength range 400–2498 nm
each 2 nm (i.e., 1050 data points). Absorbance spectra were pre-
processed by applying standard normal variate, detrending and
mean-centering (see below).

3.2. Simulated data

A synthetic data set was created with the purpose of illustrating
the dangers in selecting informative wavelengths by inspection of the
PLS regression coefficients. In the simulated data set, three compo-
nents occur, with component 1 being the analyte of interest. All
constituents are present in ten calibration samples and 100 test
samples, at randomly chosen concentrations ranging from 0 to 20
units for components 1 and 2, and from 0 to 100 units for component
3. Fig. 1A shows the pure component spectra, all at concentrations of
20 units. From these noiseless profiles, calibration and test spectra
were built. Specifically, each spectrum x, whether belonging to the
calibration or to the test set, was created using the following
expression:

x = y1S1 + y2S2 + y3S3 ð13Þ

where S1, S2 and S3 are the pure component spectra at unit
concentration, and y1, y2 and y3 are the component concentrations
in a specific sample. Gaussian noise with a standard deviation of 0.1
units was added to all concentrations, before inserting them in
Eq. (13). Finally, a vector of signal noise (size J×1, standard
deviation=0.003 units) was added to each x vector after applying
Eq. (13).

3.3. Data pre-processing

Pre-processing is usually performed in order to furnish more
parsimonious PLS models, by avoiding the presence of certain spectral
trends before regression. In the present work, it was only applied to
the experimental Vis/NIR data set, where scattering corrections are
frequently applied. Multiplicative scattering correction (MSC) [48] is
used to correct for light scattering variations in reflectance spectros-
copy. The standard normal variate (SNV) transformation, first
introduced by Barnes et al. [49], is used to remove interferences due
to light scattering and path length variations. Barnes et al. also
described the use of detrendingwith a quadratic polynomial, together
with the SNV transformation, in order to correct for curvilinear trends
and linear baseline shifts in the spectra.

Spectral derivatives may also be employed to improve resolution
and to highlight the selectivity towards a particular analyte when
strong multicollinearity is present. Mean centering is almost univer-
sally applied, consisting of subtracting the mean calibration spectrum
from both calibration and test spectra, and also the mean calibration
concentration from the calibration values. After prediction, the value
of y [see Eq. (6)] should be de-centered.

In our case, several alternatives were checked, with the best results
obtained by applying detrending with SNV, no derivatives and mean-
centering.

4. Software

PLS regression and variable-size moving window were applied
using the software MVC1, already described for first-order multivar-
iate calibration [50]. The variable selection algorithms based on
regression coefficients, UVE, VIP, i-PLS and PSO were all implemented
in MATLAB [51] according to the literature description of these
methods. GA was applied using the RRGA algorithm, as already



Fig. 1. A) Synthetic data set: thin black lines, the ten calibration spectra, thick red
dashed line, pure component 1, thick green dashed-dotted line, pure component 2,
thick blue dotted line, pure component 3. The pure components are at a concentration
of 20 units. B) Vis/NIR calibration spectra for sugar cane juices, recorded in the range
400–2498 nm. The six spectral regions described in the text are shown on the top.

Table 1
Analytical results for the simulated data set on the 100 independent test samples.a

Method Selected regions/sensors A RMSEP

None 1–100 3 0.16
b and s(b) 1–65 3 0.16
VIP 65–85 1 10
UVE 1–60 2 0.16
i-PLS 45–55 2 0.20
VS-MW 10–60 2 0.17
GA 40–55 2 0.17
PSO 45–55 2 0.20

a A=number of PLS latent variables, RMSEP= root mean square error of prediction.
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described [27]. All simulations were done with suitable in-house
MATLAB routines.

5. Results and discussion

5.1. General considerations

It is first important to discuss the figures of merit which are
relevant to the application of the strategies discussed in the present
work. Some of them are: 1) the number of calibration latent variables,
2) the number of selected wavelength regions, 3) the speed of
program operation, and 4) the prediction accuracy on an independent
test sample set. Among the latter, the most relevant one is the
accuracy in prediction, which is of paramount importance from the
analytical perspective. The remaining issues have a comparably lower
importance: the number of latent variables and selected sensors do
not pose limitations on the calibration/prediction process. Finally, the
time consumed by variable selection is small for most algorithms, and
this activity is performed only once before the calibration phase, with
the selected regions remaining constant during the prediction of all
future samples.
5.2. Full spectra

5.2.1. Simulated data
In the synthetic calibration spectra (Fig. 1A), three major regions

can be distinguished: sensors 1–30, dominated by component 2,
sensors 30–60, where strong overlapping between 1 and 2 occurs, and
sensors 60–100, where the main feature is a saturated signal due to
component 3. These spectra intend tomimic the experimental Vis/NIR
data set to be described below, andwill be employed to test the ability
of the different variable selection algorithms in choosing the analyte
spectral features occurring at sensors 40–60. The full-spectrum PLS
model requires 3 latent variables, and renders an RMSEP value of 0.16
units (Table 1), 1.6% with respect to the mean calibration concentra-
tion. As with all ideal data sets, PLS with the proper number of factors
(three in this case) is able to provide a satisfactory answer upon
employing all of the available spectral sensors. However, this may not
be the case with the complex experimental data do be discussed
below.

5.2.2. Experimental Vis/NIR data
Fig. 1B shows the calibration Vis/NIR spectra employed to train the

PLS models for the determination of Brix in sugar cane juices. In order
to assess the number of PLS latent variables, adequately pre-processed
full spectral data (see above) were submitted to leave-one-out cross
validation, with the result that a rather large number of factors (12)
was required to model the data. Regression analysis of the
independent test samples by PLS furnished the results for Brix
which are collected in Table 2: a disappointing RMSEP value of 0.52
units is obtained. In comparison, refractometric measurements have
errors which are typically less than 0.3 units.

These results can be explained by inspecting Fig. 1B, where six
major spectral windows are apparent in the calibration spectra: 1) a
small signal below ca. 800 nm, 2) a noisy region extending from 800
to 1350 nm, 3) a significant signal in the range 1350–1850 nm, 4) a
high-absorbance noisy region (dominated by the intense NIR
absorption by water) from 1850 to 2100 nm, 5) another significant
signal in the range 2100–2350 nm, and 6) a noisy region at
wavelengths longer than 2350 nm. The inclusion of noisy regions
(especially the one corresponding to water absorption) is likely to be
responsible for the low analytical performance of the full spectral
model.

The spectral properties of the experimental calibration data
provides the opportunity of checking the performance of variable
selection techniques on an interesting test field, having noisy regions
with both low and high absorbance, and also several separate regions
with potentially useful signals.

5.3. Inspection of regression coefficients

5.3.1. Simulated data
The full spectrum of regression coefficients for the synthetic data,

estimated with 3 latent variables, is shown in Fig. 2A, along with the
corresponding uncertainties. The latter are plotted in Fig. 2A as thin



Table 2
Analytical results for the determination of Brix in sugar cane juice samples using
different methods of variable selection.a

Method Selected regions/nm A RMSEP REP% SENb

None 400–2498 12 0.52 2.9 0.056
b and s(b) 400–1896, 2064–2360 10 0.37 2.0 0.054
VIP 1878–2026 5 1.6 8.8 0.083
UVE 700–960, 1278–1894, 2072–2348 4 0.37 2.0 0.055
i-PLS 2260–2320 2 0.39 5.8 0.013

1420–1480, 1540–1600, 1690–1750 3 1.0 2.2 0.012
VS-MW 1480–1778 4 0.30 1.7 0.010
GA 1300–1840, 2080–2320 4 0.28 1.6 0.052
PSO 1300–1540, 1660–1780, 2020–2320 4 0.34 1.8 0.044

a A=number of PLS latent variables, RMSEP= root mean square error of prediction,
REP% = relative prediction error for the independent test sample set.

b In Absorbance units×Brix−1.
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red lines at ±3×s(bj), estimated from Eq. (10) with MSEC=0.01
squared units (recall that the noise introduced in calibration
concentrations was 0.1 units). As can be seen, the high-intensity
band at 60–100 sensors is avoided by this strategy. However, not only
the relevant spectral region 35–65 sensors where the analyte 1
responds is selected, but also the region 1–30 sensors, where only
Fig. 2. Spectra of PLS regression coefficients corresponding to models built in the full
spectral ranges (black solid lines). The thin red lines mark the uncertainties of the
regression coefficients (see text). A) Simulated data set. B) Experimental Vis/NIR data
set, with the gray boxes indicating the wavelength ranges selected for PLS regression.
component 2 is responsive. This is the type of dangers described by
Brown and Green [16].

In any case, Table 2 shows that the analysis in the selected region is
similar to the full spectral study, as expected in ideally synthetic data.

5.3.2. Experimental Vis/NIR data
The PLS regression coefficients for the experimental data set in the

full spectral range are shown in Fig. 2B, computed with the optimum
number of 12 latent variables, as suggested by cross-validation. The
importance of these coefficients may in principle be gathered from the
comparison of each value of the vector b with its associated
uncertainty. Critical limits for the regression coefficients, estimated
from Eq. (10) using an MSEC of (0.3)2 Brix squared units, are plotted
in Fig. 2B as thin red lines at ±3×s(bj).

Inspection of Fig. 2B reveals that the relevant spectral windows
where coefficients are significant involve: 1) all wavelengths below
1896 nm and 2) the region 2064–2360 nm. The noisy region 1896–
2064 nm and also the wavelengths above 2360 nm should be
discarded. Provided the criterion of the regression coefficients is
followed, Table 2 collects the prediction of Brix in the independent
test set by PLS regression, using data in these latter three regions. They
appear to be satisfactory for Brix analysis in terms of the RMSEP value,
but the number of latent variables remains rather large. In any case,
the use of regression coefficients should always be checked with
independent techniques in order to establish its validity for variable
selection.

5.4. VIP

5.4.1. Simulated data
The importance of variables in projection, measured through the

value of their VIPs, is observed in Fig. 3A in the full spectral range for
the simulated data. Surprisingly, sensors having VIP values larger than
1 do only occur in the high-absorbance noisy region 65–85 sensors,
which is unlikely to produce good analytical results. The result is
considerably worse than that obtained in the previous section from
the comparison of regression coefficients and their associated errors
(Table 1).

5.4.2. Experimental Vis/NIR data
The trend discussed in the previous section is also observed on

inspection of the VIP values for the experimental data set (Fig. 3B),
because values larger than 1 do only occur in the high-absorbance
region 1850–2100 nm. Indeed, Table 2 points to high prediction errors
and low sensitivity towards Brix determination.

The largest VIP values correspond to the edges of the high water
absorption at 1878 and 2026 nm. This may be due to the fact that the
weight loading factors have large values at these wavelengths, and
this provides unreasonably large importance to the VIPs. Since the
average VIP value is 1, large VIPs for some regions implies low VIPs for
other wavelength ranges, leading to the wrong conclusion that the
potentially useful signals at 1350–1850 nm and 2100–2350 nm are
almost unimportant (Fig. 3B).

5.5. UVE

5.5.1. Simulated data
Regarding the simulated data set, uninformative variable elimina-

tion renders the results shown in Fig. 4A when full spectral
information is included in the model. Again, as in the case of the
analysis of regression coefficients, two spectral regions appear to be
important for this analysis: one including the analyte peak at 35–65
sensors, but an additional one including the irrelevant region 1–30
sensors, where only component 2 responds (Fig. 4A). As expected, the
analytical results are similar than when selecting variables directly
from the regression coefficients (Table 1).



Fig. 4. Regression coefficients found by uninformative variable elimination (UVE) for A)
the synthetic data set, and B) the experimental Vis/NIR data set. In both plots the
dashed lines indicate the critical limits; coefficients with absolute values larger than the
limits are considered significant. The gray boxes in plot B) indicate the wavelength
ranges selected for PLS regression.

Fig. 3. Values of VIP estimated in the full spectral ranges for A) the synthetic data set,
and B) the experimental Vis/NIR data set. In both plots the dashed lines indicate the
critical limits of VIP=1. The gray boxes in plot B) correspond to the wavelength ranges
selected for PLS regression.
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5.5.2. Experimental Vis/NIR data
When a similar UVE analysis is performed on the experimental

data set, Fig. 4B is obtained, suggesting the following spectral zones
for Brix prediction: 700–960, 1278–1894 and 2072–2348 nm. The
analytical performance of the PLS model using these regions is shown
in Table 2: the prediction error is similar to that furnished by analysis
of the regression coefficients and their uncertainties, but the PLS
model built after UVE requires a smaller number of factors.

Overall, judging from the analytical figures of merit, the study of
the regression coefficients to the experimental data set seems to
favour the strategy of uninformative variable elimination for variable
selection. However, simulations indicate that this strategy tends to
include regions where analytes may not be responsive, prompting to
the application of alternative methods which do not rely on the
regression coefficients.

5.6. Moving-window

5.6.1. Simulated data
The i-PLS method was applied to the simulated data set using a

window of 5 sensors. In each sub-region, leave-one-out cross-
validation allowed to estimate the optimum number of factors, and
the RMSECV was computed in order to provide a guide for the
selection of informative regions. Fig. 5A shows the results, with bars
proportional to the RMSECV values. A clear window in the region 40–
60 sensors appears, corresponding to the known spectral maximumof
the analyte of interest. Indeed, using two consecutive regions, one
corresponding to the minimum error in Fig. 5A (45–50 sensors), and
another one having almost identical RMSECV (50–55 sensors),
provides satisfactory prediction results (Table 1). This encouraging
result, however, is typical of synthetic data with perfect behaviour,
and may not always be encountered when dealing with complex
experimental data (see below).

A more elaborate version of i-PLS, i.e., variable-size moving-
window, renders the results shown in Fig. 5B for this data set. A
landscape is obtained of RMSECV values as a function of first sensor
and window width of all possible variable-size windows. For the
synthetic data, the minimum RMSECV occurs at sensors 10–60
(Fig. 5B). In this region, cross-validation results appear to be
satisfactory even when including a spectral zone where only
component 2 responds (10–30, see Fig. 1A). Predictions proceed
with a quality similar to previous analysis (Table 1).
5.6.2. Experimental Vis/NIR data
For the experimental data set, the simple i-PLS strategy was

applied with a fixed interval of 30 sensors. It was found that using a
smaller number of sensors in each sub-region led to poor predictions.
Fig. 6A shows the corresponding RMSECV results. If they were blindly
applied, then the best region for PLS model building would lie at
2288–2348 nm. The predictions on the independent test set in this
latter region, collected in Table 2, shows otherwise. This is probably a
spurious result obtained by chance.



Fig. 5. A) Results from interval-PLS for the synthetic data set. The bars indicate the
cross-validation root mean square error (RMSECV) in each of the sub-regions. The blue
bars indicate the minimum RMSECV and a region a value close to the minimum.
Superimposed is themean calibration spectrum in red. B) Results from the variable-size
moving window strategy. The contours correspond to values of the RMSECV as a
function of first sensor and sensor width. The optimum region is indicated.

Fig. 6. A) Results from interval-PLS for the experimental Vis/NIR data set. The bars
indicate the cross-validation root mean square error (RMSECV) in each of the sub-
regions. The blue bar corresponds to the minimum RMSECV. Superimposed is the mean
calibration spectrum in red. B) Results from the variable-size moving window strategy.
The contours correspond to values of the RMSECV as a function of first sensor and
sensor width. The optimum region is indicated.
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The variable-size moving-window alternative, on the other hand,
rendered the results shown in Fig. 6B concerning the Brix determination
in the experimental samples. The best region lies at 1480–1778 nm
(Fig. 6B), which provides the results of Table 2 on the independent test
set. Overall, this latter strategy leads to good results, comparable to
those obtained on visual inspection of the regression coefficients,
although with considerably lower sensitivity.
5.7. GA

5.7.1. Simulated data
The application of the above described genetic algorithm allowed

us to obtain the relative weight for each sub-region encoding 5
sensors. The weights are pictorially represented in a bar graph in
Fig. 7A, with the corresponding uncertainties. Superimposed to this
Figure is the mean calibration spectrum, for better appreciation of the
selected wavelengths. The results is a net selection of the region
where the analyte of interest is known to respond, avoiding both the
high-intensity region due to component 3 at sensors 60–80, and the
irrelevant region due to component 2 at sensors 1–30. This is in line
with previous applications describing the success of RRGA in selecting
regions for improving the analytical figures of merit in other complex
systems [27].
Table 1 implies good prediction ability towards new test samples
in the GA selected region. The final RMSEP is close to those obtained
with other strategies, as is usual with ideally synthetic data.

5.7.2. Experimental Vis/NIR data
The application of the genetic algorithm to the experimental set

proceeded by encoding 30 sensors (60 nm) in each sub-region. The
final weights (including uncertainties) are shown in Fig. 7B, with the
mean calibration spectrum superimposed. The first conclusion is that
the GA avoids the potentially harmful region with high water
absorbance. Comparatively larger weight is given to the important
regions 1330–1870 and 2110–2350 nm (blue bars in Fig. 7B), implying
that they are informative for the determination of Brix in these studied
samples.When a final PLSmodel is built with all calibration samples in
these spectral regions, the RMSEP and REP values are seen to be
satisfactory, andbetter than those achieved on simple inspection of the
regression coefficients (Table 2). The associated sensitivity using these
ranges does also appear to be reasonable.

An important outcome of this window search strategy is the
avoidance of the spectral wavelengths below 800 nm, in contrast to
the analysis based on regression coefficients. It is likely that the
spectral features observed in Fig. 1 at these wavelengths are unrelated
to the sugar cane juice property being analyzed. This implies that the
use of regression coefficients (see above) should be taken with some



Fig. 7. Variable selection results from: genetic algorithms applied to the synthetic data set (A) and to the experimental data set (B), and particle swarm optimization applied to the
synthetic data set (C) and to the experimental data set (D). In all cases, the bars indicate the relative weight of each of the sub-regions, with uncertainties indicated on top of each bar.
The mean calibration spectrum superimposed in red. Blue bars correspond to sub-regions included in the final model, while gray bars correspond to the excluded sub-regions.
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caution, and that conclusions based on the latter analysis should be
confirmed by independent sources.

5.8. PSO

5.8.1. Simulated data
Particle swarm optimization was finally applied to the calibration

data set. The final histogram registering the relative weight and
uncertainties assigned to each spectral sub-region is shown in Fig. 7C.
In the case of the application of this algorithm, as well as with the
genetic algorithm discussed above, the inclusion of a final weighting
of the sub-regions by i-PLS was needed in order to better discriminate
among the different regions [27]. Otherwise, these algorithms tend to
given unreasonably large weight to spectral ranges carrying low
signal intensities.

Inspection of Fig. 7C provides support to PSO as a variable selection
technique, although the analytical results are somewhat poorer in
comparison with GA (Table 1).

5.8.2. Experimental Vis/NIR data
The PSO histogram of spectral sub-region weights for the

experimental sugar cane juices is shown in Fig. 7D. As can be seen,
PSO is highly efficient in removing the high-absorbance uninforma-
tive region due to intense water absorption. Moreover, as in the case
of the application of GA, PSO avoids the region below 800 nm.

Using the wavelength ranges suggested by PSO, Table 2 shows
reasonable figures of merit, although somewhat poorer than from GA,
as was the case with the synthetic data set.

6. Conclusion

The analysis of both simulated and experimental data shows that
regression coefficients should always be complemented with some
sort of window search in order to properly select sensor ranges for
successful PLS regression. In this regard, algorithms based on natural
computation appear to be highly useful, because they are able to
interrogate a large variable space in search of the best combination of
wavelength regions, defined by a suitable statistical indicator. In the
present case, genetic algorithms provided the most adequate answer
to variable selection in multivariate calibration.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.chemolab.2010.04.009.
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