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Abstract

Expression and activity of jejunalmultidrug resistance-associated protein 2 (Mrp2) and glutathione-S-transferase (GST)were examined in fructose fedWistar rats,
an experimental model of metabolic syndrome. Animals were fed on (a) control diet or (b) control diet plus 10% w/vol fructose in the drinkingwater. Mrp2 and theα
class of GST proteins aswell as their correspondingmRNAswere decreased, suggesting a transcriptional regulation by fructose. Confocalmicroscopy studies reaffirmed
down-regulation of Mrp2. Everted intestinal sacs were incubated with 1-chloro-2,4-dinitrobenzene in the mucosal compartment, and the glutathione-conjugated
derivative, dinitrophenyl- S-glutathione (DNP-SG;modelMrp2 substrate),wasmeasured in the samecompartment to estimateMrp2 activity. ExcretionofDNP-SGwas
substantially decreased by fructose treatment, consistent with simultaneous down-regulation of Mrp2 and GST. In addition, the effect of fructose on intestinal barrier
function exertedbyMrp2was evaluated in vivousingvalsartan, a recognizedMrp2 substrate of therapeutic use.After intraduodenal administrationas a bolus, intestinal
absorption of valsartan was increased in fructose-drinking animals. Fructose administration also induced oxidative stress in intestinal tissue as demonstrated by
significant increases of intestinal lipid peroxidation end products and activity of the antioxidant enzyme superoxide dismutase, by a decreased GSH/GSSG ratio.
Moreover, fructose treatment conduced to increased intestinal levels of the proinflammatory cytokines IL-β1 and IL-6.

Collectively, our results demonstrate that metabolic syndrome-like conditions, induced by a fructose-rich diet, result in down-regulation of intestinal Mrp2
expression and activity and consequently in an impairment of its barrier function.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Multidrug resistance protein 2 (Mrp2, ABCC2) is a drug efflux pump
belonging to the ATP-binding cassette (ABC) transporter superfamily. It
is constitutively expressed at the apical membrane of hepatocytes,
enterocytes, renal tubule cells and other epithelial cells [1–3]. In small
intestine, Mrp2 coupled to metabolizing enzymes, such as Glutathione
S-Transferase (GST; EC 2.5.1.18), plays a crucial role as intestinal
biochemical barrier to prevent absorption of food contaminants and
drugs incorporated orally [4].Mrp2 expression is concentrated at the tip
of the villus, with significantly higher expression in proximal jejunum
respect to distal ileum [5], thus playing a major role as a “first line of
defense” against the action of potentially harmful xenobiotics. Likewise,
Mrp2 is of clinical relevance since it modulates the pharmacokinetics
and consequently determines the safety and efficacy of many orally
administered drugs by limiting its absorption and distribution [6].

The metabolic syndrome (MetS), also called insulin resistance
syndrome, is a pathological condition characterized by a cluster of
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metabolic abnormalities including elevated blood pressure, elevated
triglycerides, reducedhigh-density lipoprotein (HDL)-cholesterol serum,
hepatic steatosis, glucose intolerance, hyperinsulinemia and insulin
resistance, with the last one being considered the common etiologic
factor in this syndrome [7–9]. MetS is rapidly growing worldwide and is
associated with increased risk to multiple chronic pathologies including
cardiovascular disease and Type 2 diabetes. Consumption of fructose has
increased throughout the world, contributing to increased total caloric
intake and resulting in an increase in the incidence ofMetS [7–10].Many
investigations have demonstrated that administration of a fructose-rich
diet to normal rats induces several features of the MetS, associated with
increased indices of inflammation andoxidative stress, affectingmultiple
tissues and organs [11–13]. Accordingly, fructose administration along
21-days period to normal rats induces MetS-like conditions, as
demonstrated by development of insulin resistance, impaired glucose
tolerance, hyperlipidemia, as well as a significant enhancement of
oxidative stress markers in several organs [14–17].

Pharmacotherapy targeting different components of the MetS and
associated comorbidities has been generally accepted as appropriate
management of high-risk patients [18]. Since these drugs are mostly
administered orally, the intestinal barrier function strongly influences
their bioavailability and therefore their efficacy and safety. In particular,
the MetS represents a predisposing factor for development of toxicity
induced by drugs, though the underlying mechanism remains essen-
tially uncertain [19–21]. Interestingly, some of these drugs are at the
same timeMrp2 substrates, and therefore, amodification in the activity
of Mrp2 may be one of the factors contributing to their adverse effect.

The expression and activity of Mrp2 can be regulated under specific
physiological and pathological conditions, either at posttranscriptional
and transcriptional levels [1,22,23]. Whether MetS-like conditions
generated by high-fructose consumption affect intestinal Mrp2 expres-
sion and activity and, in consequence, its role as biochemical barrier is
currentlyunknown. Theaimof our studywas to evaluate the effectof the
administration of 10% fructose with the drinking water along a 21-days
period on intestinal Mrp2 expression and activity in rats.

2. Materials and methods

2.1. Chemicals

Fructose was obtained from Laboratorio Cicarelli (BsAs, Argentina). Leupeptin,
phenylmethylsulfonyl fluoride, pepstatin A, 3-isobutyl-1-methylxanthine, glutathione,
dithiothreitol, 1-chloro-2,4-dinitrobenzene (CDNB), MK571 (MK), valsartan, 2-
thiobarbituric acid, nitroblue tetrazolium and hydrogen peroxide (H2O2) were obtained
from Sigma–Aldrich (St. Louis, MO, USA). 2-Methylbutane was obtained from Acros
Organics (Pittsburgh, PA, USA), and 2-vinylpyridine was obtained from Fluka Chemical
Corp (Milwaukee, WI, USA). All other chemicals and reagents used were commercial
products of analytical-grade purity.

2.2. Animals and treatments

Adult maleWistar rats (220–250 g; 70-day old), received standard commercial diet
ad libitum and tapwater (control group), or tapwaterwith 10% (w/v) fructose (FRU), for
21 days [14–17]. Animals were grouped (two animals per cage) and kept under
controlled conditions (23±2 °C) with a fixed 12-h light–dark cycle (06:00–18:00 h).
Liquid intake was monitored every other day and body weight once per week
throughout the duration of the treatment. Total drinking volume of animals housed
together was averaged and considered as a single data. All the experimental protocols
were performed according to the Regulation for the Care and Use of Laboratory Animals
(Expedient 6109/012 E.C. Resolution 267/02) and were approved by the Institutional
Animal Use Committee of the National University of Rosario, Argentina.

2.3. Specimen collection

Fasting animals were anesthetized (between 08:00 and 09:00 h) with an
intraperitoneal dose of ketamine [100 mg (0.42 mmol)/kg b.wt.]/xylazine [15 mg
(0.07 mmol)/kg b.wt.]. After an abdominal incision, blood samples were taken through
cardiac puncture and placed into heparinized tubes to measure plasma glucose, TAG
(triacylglycerol) and immunoreactive insulin levels. For collection of jejunum
specimens, the first 15 cm starting from the pyloric valve and corresponding to the
duodenum were excluded, and the following 30 cm were taken and considered as the
proximal jejunum. This segmentwas carefully rinsedwith ice-cold saline and driedwith
filter paper. ForWestern blot studies, the jejunumwas immediately opened lengthwise,
the mucus layer was carefully removed and the mucosa was obtained by scraping,
weighed and used for brush border membrane (BBM) or cytosol preparations. For
confocal microscopy analysis of Mrp2 localization, small rings were cut from this same
region of the intestine, gently frozen in liquid nitrogen-cooled 2-methylbutane and kept
at−70 °C until use in slice preparation or frozen in liquid nitrogen and kept at−70 °C
until use in total RNA isolation by using TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
following the manufacturer's protocol. For Mrp2 transport studies in vitro, 3-cm
segments of the proximal jejunum were immediately used in the everted sac
preparation. Aliquots of proximal jejunum were homogenized in saline (1:2) for
assessment of glutathione content, lipid peroxidation and antioxidant enzyme activities
or in ice-cold phosphate-buffered saline (pH: 7.40) (1:2) for assessment of IL-1β and IL-6.
In addition, epididymal fat pads were excised and weighed.
2.4. Biochemical assays

Plasma glucose and TAG levels were determined by spectrophotometric methods.
Bothweremeasuredwith a commercial kit (Wiener Laboratorios, Rosario, Argentina) in
a Lambda 9 (Perkin Elmer) spectrophotometer. Plasma insulin levels were measured
with a commercial kit (Rat insulin RIA Kit, Millipore Corporation, Billerica, MA, USA),
and radioactivity was measured with a solid scintillation counter, Alfanuclear Cmos
(Buenos Aires, Argentina) [24].

Glucose tolerance test was performed a day before the animals were sacrificed.
A glucose bolus (2 g/kg pc in saline solution, ip) was administered to conscious animals
(12-h fasting). Glycemia was measured, in blood taken from the tail, prior to injection of
glucose (time 0) and at 15 min, 30 min, 60 min and 90 min postinjection. For the
calculation of the area under the curve (GraphPad Prism5software), baseline glycemia
value was subtracted from subsequent readings. The area under the curve was expressed
in mM/min.

Serum insulin and fasting blood glucose values were used to estimate IR (insulin
resistance) by HOMA (homoeostatic model assessment)–IR index, using the equation:
serum insulin (μUI/ml) × fasting blood glucose (mmol/l)/22.5 [25]. When the value of
HOMA–IR increases, IR augments, thus indicating a decrease in insulin sensitivity.
2.5. Western blot studies

BBM were prepared from mucosa samples as described by [5] Mottino et al. (2000).
Cytosolic fractions were obtained from intestinal mucosa by ultracentrifugation
methodology [26]. Protein concentration was measured by using bovine serum albumin
as standard [27]. Aliquots of the BBM and cytosol preparations were kept on ice and used
the same day in Western blot studies. Apical Mrp2, P-glycoprotein (P-gp), breast cancer
resistance protein (Bcrp) and villin were detected in BBMs as described previously [5,28].
The expression of the major GST classes present in intestine was evaluated in citosol as
described previously [29]. Equal loading and transference of protein was systematically
checked by both detection of β-actin or glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), respectively, and stainingof themembraneswithPonceauS.Primaryantibodies
used were: MRP2, M2 III-6 (Alexis Laboratories, San Diego, CA, USA), P-glycoprotein,
H-241; Bcrp, BXP-21; villin, H-60; GAPDH, FL-335 (Santa Cruz Biotechnology, Inc.,
Santa Cruz, CA, USA), GSTα, GS9; GSTμ, GS23 (Oxford Biomedical Research, Oxford,
MI), GSTπ (Immunotech, Marseille, France) and β-actin, A-2228 (Sigma–Aldrich).
Finally, the immunoreactive bands were quantified with Gel-Pro Analyzer software
(Media Cybernetics, Inc., Bethesda, MD, USA).
2.6. Microscopy studies

For in situ immunodetection of Mrp2, intestinal rings from jejunum were sectioned
(thickness, 5 μm) and fixed as described previously [28]. Mrp2 was detected with the
respective antibody, and the cell nuclei were detected with 4,6-diamino-2-phenylindole
bluefluorescence as described previously [28]. All confocal studieswere performedwith a
Nikon (Tokyo, Japan) C1 Plus microscope. To ensure comparable staining and image
capture performance for the different groups belonging to the same experimental
protocol, intestinal sliceswereprepared on the sameday,mountedon the sameglass slide
and subjected to the staining procedure and microscopy analysis simultaneously. In
addition, sectioned intestinal rings were stained with hematoxylin and eosin for light
microscopy examination.
2.7. Real-time polymerase chain reaction studies

Quantitative real-time PCR studies of Mrp2 and GST mRNAs were performed as
described previously [29] using the following primer pairs: forward, 5′-accttccacgtagtgatcct-
3′ and reverse, 5′-acctgctaagatggacggtc-3 for Mrp2; forward, 5′-gattgacatgtattcagagggt-3′
and reverse, 5′-tttgcatccatggctggctt-3′ for GSTYa2 belonging to GST class Alpha; and
forward, 5′-gtaacccgttgaaccccatt-3′ and reverse, 5′-ccatccaatcggtagtagcg-3′ for 18S rRNA
(housekeeping gene).



Table 1
Serum markers of MetS

C FRU

Plasma glucose (mmol/l) 5.88±0.66 6.15±0.23
Plasma triglycerides (mmol/l) 0.56±0.15 1.05±0.18 ⁎

Plasma insulin (ng/ml) 1.18±0.24 2.02±0.42 ⁎

HOMA-IR 7.50±1.42 13.49±2.30 ⁎

Area under curve (mM/min) 1.89±0.20 2.79±0.32 ⁎

The HOMA-IR was calculated with the formula: serum insulin (μUI/ml) × fasting blood
glucose (mmol/l)/22.5. An increment in the HOMA–IR index indicates an insulin
resistance state in FRU rats.
Data are expressed as means ± S.D. of six-eight rats per group.
⁎ Significantly different from C, Pb0.05.
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2.8. Assessment of Mrp2 activity in vitro

To characterize the effect of the fructose-rich diet on intestinal Mrp2 efflux activity,
the in vitromodel of everted sacs was chosen. The everted sacs, prepared from proximal
jejunum, were incubated in the presence of 100 μMCDNB in the mucosal compartment
as described previously [30], for 30min. After diffusion of CDNB into the enterocyte and
further endogenous conjugation with glutathione, the product dinitrophenyl-S-
glutathione (DNP-SG) was detected by high-performance liquid chromatography in
the same mucosal compartment [30]. All experiments were performed in the presence
or absence of 10 μM MK571 [31] in both the mucosal and serosal sides to inhibit
Mrp2 activity.

2.9. Assessment of Mrp2 activity in vivo

Rats were anesthetized, and the femoral and portal veins were cannulated with
polyethylene tubing (PE50 and PE10, respectively). The bile duct was ligated to prevent
enterohepathic recirculation, and a cannula was introduced into the duodenum, as
previously described [32]. Valsartan, a specific angiotensin II receptor blocker and well-
known Mrp2 substrate, was administered directly into the duodenum (10 mg/kg) [33].
Blood samples from the portal vein were drawn every 5 min and up to 30 min after
valsartan administration. Appropriate volumesof 5%bovine serumalbumin in salinewere
administered via the femoral vein to replenish body fluids. Valsartan concentrations in
portal blood were determined by HPLC. Samples were deproteinized by mixing 120 μl of
portal plasma aliquots and 500 μl ofmethyl alcohol. After centrifugation at 16,099 g for 10
min, the upper organic layer was transferred into a polythene tube and was concentrated
to dryness under a gentle stream of nitrogen at 37 °C. The dried residue was dissolved in
100 μL of mobile phase solution and subject to HPLC analysis as described previously [34].

2.10. Assessment of GST activity

The glutathione-conjugating activity toward CDNBwas assayed in the cytosol from
the proximal jejunum as described previously [26].

2.11. Determination of intestinal glutathione content and lipid peroxidation (LPO)

Two volumes of proximal jejunum homogenates were mixed with 1 volume of 10%
sulfosalicylic acid and centrifuged at 5000 g for 5 min, and the supernatants were
immediately used in the assessment of total glutathione [reduced (GSH) + oxidized
(GSSG)] and GSSG [35]. GSH values were determined from total glutathione and GSSG
concentrations, and oxidative stress index was calculated from the GSH/GSSG ratio.

LPO was estimated by measuring thiobarbituric acid reactive substances (TBARS)
using the procedure of [36] Ohkawa et al. (1979). Intestinal homogenates were mixed
with 10% trichloroacetic acid and then centrifuged at 3000 g for 10 min. The clear
supernatant was mixed with 0.7% thiobarbituric acid and heated at 95 °C for 1 h.
Samples were cooled at room temperature, and the corresponding absorbance was
measured at 532 nm against a blank consisting in reaction mixture without intestinal
homogenate but subjected to the same procedure.

2.12. Assessment of antioxidant enzyme activities

After homogenization of jejunum in saline solution, insoluble material was removed
by centrifugation (2000 g, 5min), and the supernatants were subjected to enzyme assays.
Protein concentration was measured by using bovine serum albumin as standard [27].
Superoxide dismutase (SOD) assay was based on the method of [37] Beauchchamp and
Fridovich (1971) with modifications of [38] Donahue et al. (1997), which measures the
SOD inhibition of photochemical reduction of nitroblue tetrazolium. The enzyme activity
was expressed as % of controls. Catalase (CAT) activity was determined bymonitoring the
rate of decomposition of H2O2 as a function of decrease in absorbance at 240 nm for 2min
[39]. The enzyme activity was also expressed as % of controls.

2.13. Assessment of interleukins

Jejunumhomogenateswere sonicatedwith anultrasonifier [Sonics (Newtown, CT,USA)
Vibra-cell VCX130] by six cycles (20 s sonications and40 s pause on ice), centrifuged (15,000
g, 10 min, 4 °C), and the supernatants were subjected immediately to IL-1β and IL-6
determination [40]. They were measured by the enzyme-linked immunosorbent assay
(ELISA) method according to the protocol provided by the manufacturer (eBioscience, San
Diego, CA, USA, for IL-1β; Biosource International, Camarillo, CA, USA, for IL-6).

2.14. Statistical analysis

Data are presented as mean ± S.D. All statistical analysis was performed by using
unpaired Student's t test, except for studies of Mrp2 activity in vitro in which we
performed one-way analysis of variance, followed by Bonferroni's test. Values of Pb0.05
were considered statistically significant.
3. Results

3.1. Effect of fructose on body weight and water intake

After the 21-days treatment period, body weight did not differ
between FRUand control animals (317±16 vs. 306±29g, respectively),
whereas the weight of epididymal fat was significantly higher in FRU
versus control group (2.32±0.09% vs. 1.92±0.07% of body weight,
respectively, Pb0.05). Liquid consumption was also significantly higher
for FRU animals than for controls (89.82±4.05 vs. 38.04±1.54 ml/day,
respectively; Pb0.001). In contrast, food consumption was higher for
control rats (32.39±1.27 vs. 27.10±0.05 g/day for control and FRU
groups, respectively; Pb0.05).
3.2. Validation of the MetS model induced by FRU administration

The results on biochemical determinations in serum are shown in
Table 1. There were no significant differences in blood glucose levels
between groups. However, the concentrations of triglycerides and
insulin in plasma were significantly increased by fructose adminis-
tration. The HOMA-IR values demonstrated development of insulin
resistance in FRU versus control group. Consistent with this, the area
under the curve in the glycemia versus time graphic was significantly
greater for FRU rats than for controls.
3.3. Effect of fructose on Mrp2 expression

Fig. 1A shows thatMrp2expression in theFRUgroupwas substantially
decreased (−89%)with respect to controls, whereas P-gp and Bcrp, other
major transporters expressed in the surface of the intestine, were
preserved. The expression of villin, a Ca2+-regulated actin-binding
protein known to be specifically associated with the cytoskeleton of the
brush border, was neither affected suggesting preservation of the
microvilli structures.

The effect of fructose administration on expression of Mrp2 at the
villus was also analyzed in situ by confocal immunofluorescence
microscopy. The nuclei of the enterocytes are shown in blue. Fig. 1B
shows thatMrp2 (red) is mostly expressed at the luminal surface of the
villus in both experimental groups, suggesting that fructose treatment
did not affect its normal localization. However, the Mrp2 immunore-
activity signal is weaker in FRU animals when compared to controls,
consistent withWestern blot studies. In addition, the histological study
of the intestinal tissue showed no apparent changes in villus structure
between groups, suggesting preservation of tissue integrity.

To establishwhether down-regulation ofMrp2 proteinwas related
to the decreased mRNA levels, we further performed real-time PCR
studies. The data reveal that fructose administration decreased the
Mrp2mRNA levels by 47% respect to controls (53±14% and 100±23%
for FRU and C, respectively, Pb0.05, n=8), suggesting participation of a
transcriptional mechanism.



Fig. 1. Effect of fructose onMrp2 expression. (A)Western blot analysis ofMrp2, P-gp, Bcrp and Villin in BBMvesicles fromproximal jejunum. Equal amounts of total protein (20 μg)were
loaded in the gels. Uniformity of loading and transfer from gel to nitrocellulosemembranewas controlledwith Ponceau S and detection ofβ-actin. Densitometry data were related to β-
actin and presented as % of controls (C). (B) Localization ofMrp2 and structure of the intestinal villus. Confocal immunofluorescence analysis revealed that the localization ofMrp2 (red)
was restricted to the apical membrane of jejunum enterocytes and preserved in the FRU group compared with controls (C). Small bottom panels show in more details the regions
indicated with arrows. The nuclei are shown in blue fluorescence. Similar patterns of staining were observed in six independent preparations per group. Representative microscopic
images fromhematoxylin–eosin staining show a similar structure of intestinal villus in both groups (small bottom panels on the right). Scale bars are indicated inwhite and correspond
to 50 μm. Data are expressed as means ± S.D. of six–eight rats per group. *Significantly different from C, Pb0.005.
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3.4. Effect of fructose on in vitro and in vivo Mrp2 activity

To determine the functional impact of down-regulation of Mrp2
expression,weevaluated the secretionofDNP-SG, a typical substrate for
Mrp2 [41], by using the model of everted intestinal sacs. In this model,
CDNB diffuses passively from the mucosal compartment (intestinal
lumen) into the enterocyte, and itsmetabolite, DNP-SG, is pumped back
to themucosal compartment byMrp2. This measure well estimates the
intestinal barrier function associated to Mrp2. Fig. 2A shows that the
excretion of DNP-SGwas substantially decreased by fructose treatment
throughout the incubation period. At the 30 min period (inset in
Fig. 2A), the amount of DNP-SG accumulated in the mucosal



Fig. 2. Effect of fructose on in vitro and in vivoMrp2 activity. (A) Time course of efflux of DNP-
SG into themucosal compartment. CDNB (100 μM)was added to themucosal side in everted
sacs with or without the addition of MK571 (10 μM), and accumulation of DNP-SG was
detected in the same side. The inset depicts cumulative content of DNP-SG in the mucosal
compartment by 30 min and was plotted to compare total DNP-SG transport. (B) Net
intestinal absorption of valsartan was estimated by changes in portal blood concentration
over a 30 min period. Valsartan (10 mg/kg) was administered into the duodenum of C and
FRU rats. Portal blood concentration of drugwas assayed every 5min and up to 30min after
drug administration. The inset depicts the amount of valsartan accumulated in portal blood
by 30 min. Data are expressed as means ± S.D. of six–eight rats per group. #, Significantly
different fromFRU, C + MKandFRU + MK,Pb0.005.&, Significantly different fromC + MK
and FRU + MK, Pb0.005. *, Significantly different from C, Pb0.005.
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compartment decreased by 65% with respect to controls. When the
everted intestinal sacs were incubated with the MRPs inhibitor MK571
(10 μM), the secretion of the glutathione conjugate was decreased in
both groups to similar basal values (Fig. 2A). These results confirm the
participation of an MRP transporter in the different activity detected
between FRU and control groups.

We further evaluated the effect of fructose on the role of Mrp2 as a
primary barrier limiting oral bioavailability of drugs. Valsartan is a
recognized substrate of Mrp2, used therapeutically to treat hyperten-
sion due to its angiotensin II AT1-receptor blocker activity. We
evaluated in vivo the time-course of valsartan concentration in portal
blood after intraduodenal administration of a single dose. Fig. 2B
shows that significantly higher amount of valsartan was detected in
samples taken from FRU than from control rats. This finding is
consistent with a significant impairment in Mrp2 activity and its
concomitant intestinal barrier function.
3.5. Effect of fructose on GST expression and activity

GST is a major Phase II biotransformation system acting in tandem
with Mrp2 to generate conjugated derivatives for further extrusion
from the cell. Because fructose could affect intestinal GST and thus the
formation of Mrp2 substrates, including DNP-SG, we evaluated the
expression of the major GST classes present in intestine as well as GST
activity toward CDNB. Fig. 3A shows that expression of GSTα was
significantly decreased (−50%) in FRU animals and that GSTμ and GSTπ
remained unaltered.We further assessedGSTYa2mRNA levels, the only
isoformbelonging to theα class detected in rat intestine [26]. The result
in Fig. 3B, evidenced a significant decrease (−64%) of GSTYa2mRNA in
the FRU group suggesting transcriptional regulation of GSTα. In
accordancewith GSTα expression, cytosolic GST activity was decreased
(−38%) by fructose (Fig. 3C).

3.6. Effect of fructose on intestinal redox balance and antioxidant
defenses

The effect of fructose administration on the intestinal redox balance,
evaluated through assessment of GSH/GSSG ratio and TBARS levels, is
presented in Fig. 4. The GSH/GSSG ratio was significantly reduced by
41% in the FRUgroup(22.5±2.0)when compared to control rats (38.3±
2.7; Pb0.05) (Fig. 4A). Consistent with this, the intestinal content of
GSSG, a high-affinity endogenous substrate of Mrp2, was significantly
higher in the FRU group (191±11 nmol/g intestine) than in the control
group (108±14 nmol/g intestine; Pb0.01). Detection of intestinal
TBARS levels also revealed a 50% increase in the FRU group (0.18±
0.01 nmol/mg protein) with respect to controls (0.12±0.01 nmol/mg
protein; Pb0.01) (Fig. 4B). We also evaluated the antioxidant defense
status and found an increased activity of SOD in FRU animals (+40%;
Fig. 4C), whereas CAT activity remained unchanged (11465±890 vs.
10112±649 μmol H2O2/min/mg protein for FRU and control rats,
respectively) (Fig. 4D).

3.7. Effect of fructose on intestinal proinflammatory cytokine levels

The effects of fructose administration on IL-1β and IL-6 levels were
investigated in intestinal homogenates prepared from proximal
jejunum. As shown in Fig. 4E–F, IL-1β and IL-6 levels increased
significantly in FRU group when compared to control group (+58%
and +59%, respectively, Pb0.05), consistent with establishment of
local inflammation.

4. Discussion

It has been documented that fructose consumption increased
dramatically in the last decades and so the incidence ofMetS. In addition,
growing information coming from both human studies and animal
models suggests that high dietary intake of fructose is an important
nutritional factor in the development of MetS and its associated
complications [11]. High-fat or high-carbohydrate diets are relevant
components of the etiology of this pathological condition in humans, and
thus, alteration in any of these diets constitutes an appropriate animal
model tomimic the disease [8,13]. In the present study,we administered
10% of fructose in drinking water to normal rats for 21 days. In line with
previous reports [14–17], our results show that fructose treatment
resulted in increased daily liquid intake and triglyceridemia, in addition
to glucose intolerance. In addition, FRU rats exhibited higher plasma
insulin levels andHOMA-IR index respect to control rats,which indicates
the establishment of an insulin resistance state. Finally, although body
weight did not differ between groups, we found larger epididymal fat
depots in fructose rats, which suggest an increase in body adipose tissue,
possibly due to adipocyte hypertrophy [42]. This metabolic profile
resembles several characteristics of the human MetS [43].



Fig. 3. Effect of fructose on GST expression and activity. (A) Western blot analysis of the major GST classes in cytosolic fractions from proximal jejunum. Equal amounts of total protein
(15 μg) were loaded in all lanes. Uniformity of loading and transfer from gel to nitrocellulose membrane was controlled with Ponceau S and detection of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH). Densitometry data were related to GAPDH and presented as % of controls (C). (B) Quantitative real-time PCR assessment of GSTYa2mRNA levels in proximal
jejunum. Results were referred to 18 s rRNA and expressed as % of controls (C). (C) GST activity toward CDNB in cytosolic fractions from proximal jejunum. Data are expressed as
means ± S.D. of six–eight rats per group. *, Significantly different from C, Pb0.005.

183A.S. Londero et al. / Journal of Nutritional Biochemistry 40 (2016) 178–186
While most of the studies under MetS-like conditions are focused on
the consequences onmajormetabolic tissues including liver, muscle and
adipose tissue, there is limited information in relation to the intestine.
Notably, the small intestine is the main site of exposure and/or
absorption of nutrient as well as potentially toxic food contaminants
and therapeutic drugs. More importantly, the alteration of the integrity
and functionality of the intestinal epithelium negatively impacts on the
rest of the organism. It is well known that intestinal Mrp2 plays an
important role in preventing toxicity of xenobiotics since it restricts the
amount of substances that eventually get into the systemic circulation
afteroral incorporation [44].Weheredemonstrated for thefirst time that
the expression of Mrp2 (protein and mRNA) is significantly down-
regulated in rats under fructose-rich diet. Consistent with its decreased
expression,Mrp2 activity as biochemical barrierwas severely affected, as
demonstrated in vitro by experiments in everted sacs. GST activity was
also decreased in fructose rats through reduction of the expression of the
α class, one of themajor isoforms ofGSTmediating conjugation of CDNB.
Because GST acts in tandemwithMrp2, taken together, the data suggest
altered disposition of hydrophobic compounds requiring sequential
participation of both systems. This may involve compounds of
therapeutic use, eventually leading to alterations in their bioavailability
and safety. To test this possibility,we additionally exploredMrp2 activity
in vivo using valsartan, an antihypertensive drug, as a model [45].
Importantly, it is mainly excreted (85% of orally administered dose) into
feces in its unchanged form [46]. Thepresent data clearly demonstrate an
increase in intestinal valsartan absorption under MetS-like conditions.



Fig. 4. Effect of fructose on intestinal redox balance, antioxidant defenses and interleukin levels. GSH/GSSG ratio (A), thiobarbituric acid reactive substances (TBARS) (B), superoxide
dismutase (SOD) activity (C), catalase (CAT) activity (D), interleukin 1β (E) and interleukin 6 (F) were determined in intestinal homogenate of rats from C and FRU groups. All results
were expressed as % of controls (C). Data are expressed as means ± S.D. of six–eight rats per group. *, Significantly different from C, Pb0.005.
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Thus, the impairment in Mrp2 activity constitutes an important factor
increasing plasma bioavailability of valsartan under MetS-like condi-
tions, which can result in adverse effects. Frequently, patients withMetS
are treated not only for the primary disorder but also for comorbid
conditions, including cardiovascular complications, hypertension and
dyslipidemia.Many of the agents prescribed to treat these conditions are
potential substrates of GST/Mrp2 and consequently may present altered
oral bioavailability and challenge the safety of the treatment. If intestinal,
MRP2 is down-regulated in patients with MetS is unknown. Interest-
ingly, some drugs reported to present increased incidences of drug-
induced toxicity in liver from patients with metabolic disease such as
MetS are at the same time MRP2 substrates [19–21]. Examples of these
drugs are methotrexate and cyclosporine A. Whether this finding
responds to a failure inMRP2 function needsmore direct demonstration.

Similar studies focusing on systems involved in drug disposition
were conducted in animal models of diabetes or metabolic syndrome
[47–51]. However, only [52]Mei et al. (2012) described changes in the
expression of intestinal Mrp2. These authors used streptozotocin to
induce diabetes, and in contrast to our findings, they reported an
induction of intestinal Mrp2. Higher levels of total bile acids and
conjugated bilirubin in plasma of diabetic animals, together with
insulin deficiency, were proposed as the mechanisms underlying
Mrp2 alteration. Our experimental model clearly differs from that of
streptozotocin-induceddiabetes, as higher levels of insulin are present
and total bile acids and conjugated bilirubin in plasma are not
expected to change.

In the present work, the specific mechanisms underlying the
reduction of expression and activity of intestinal Mrp2 under MetS
conditions have not been studied. Oxidative stress and inflammatory
response have been suggested tomediate, at least partially, the action of
fructose in the generation ofMetS [11,16,17]. For example, high-fructose
feeding rats showed increased levels of oxidative stress markers [53],
plasma release of proinflammatory cytokines IL-1β, IL-6 [54] and content
of tumor necrosis factor (TNF)–α in tissues [55] and reactive oxygen
species in circulatory leukocytes [56]. Together, these data confirm that
fructose administration is associated with an inflammatory response,
which in turn, is probably mediated by increased oxidative stress. The
possibility that high-fructose diet generates local inflammation and a
prooxidant status in intestine, as demonstrated previously for other
tissues, was also considered in the current study. This postulation was
indeed confirmed, as higher levels of proinflammatory cytokines IL-1β,
IL-6 were detected in intestinal tissue of fructose rats versus controls.
Likewise, higher levels of lipid peroxidation end products and activity
of the antioxidant enzyme SOD, as well as a lower value of intestinal
GSH/GSSG ratio were detected in the fructose groupwhen compared to
control rats. Notably, proteins of the MRP family are involved in the
efflux of glutathione conjugates as well as GSSG [57] and may play an
important role in maintaining the GSH/GSSG ratio in response to an
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oxidative challenge. Thus, the impairment in Mrp2 function currently
reported likely constitutes an additional component leading to
exacerbation of the oxidative stress found in the intestinal tissue.

Even though themainmechanismsexplainingMrp2down-regulation
in FRU rats remains uncertain, it is possible to associate the marked
inflammation and oxidative stress produced in the intestine under
treatment with fructose. This connection was indeed demonstrated in
the liver under conditions of lipopolysaccharide-induced cholestasis
and by single ethacrynic acid administration [58,59], where Mrp2
down-regulation were proposed to be at posttranscriptional level.
Increased levels of proinflammatory cytokines such as IL-1β and IL-6,
which were responsible for down-regulation of intestinal Mrp2
expression at transcriptional and posttranscriptional levels in obstruc-
tive cholestasis and in endotoxin-treated rats, could also explain the
current findings [60–62]. These observations strongly suggest that
oxidative stress and inflammation may play a pivotal role in the Mrp2
down-regulation induced by fructose administration. However, further
experiments are needed to confirm this postulation and identify the
specific molecular mechanism.

In conclusion, the present study demonstrated for the first time that
MetS-like conditions generated in normal rats fed with 10% fructose
solution for 21 days resulted in reduction in the intestinal expression
and function of Mrp2, as well as in GSTα. Co-regulation of the enzyme-
transporter systems is of frequent occurrence in the small intestinewith
important implications in drug toxicology–pharmacology. While more
studies are needed to translate these findings to humans, the current
results suggest that toxicity of food contaminants as well as availability
of therapeutic drugs, substrates of GST/Mrp2, may be exacerbated in
MetS patients.
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