
Automatica 73 (2016) 27–37
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Dynamic state estimation for power networks using distributed MAP
technique✩

Yibing Sun a, Minyue Fu c,b, Bingchang Wang a, Huanshui Zhang a, Damián Marelli c,d

a School of Control Science and Engineering, Shandong University, Jinan 250061, China
b School of Electrical Engineering and Computer Science, University of Newcastle, NSW 2308, Australia
c School of Automation, Guangdong University of Technology, Guangzhou, China
d CIFASIS/CONICET, 2000 Rosario, Argentina

a r t i c l e i n f o

Article history:
Received 15 May 2015
Received in revised form
21 May 2016
Accepted 31 May 2016
Available online 3 September 2016

Keywords:
Distributed state estimation
Distributed MAP estimation
Kalman filter
Power systems

a b s t r a c t

This paper studies a distributed state estimation problem for a network of linear dynamic systems
(called nodes), which evolve autonomously, but their measurements are coupled through neighborhood
interactions. Power networks are typical networked systems obeying such features, with other examples
including traffic networks, sensor networks andmanymulti-agent systems.Wedevelop a newdistributed
state estimation approach, for each node to update its local state. The core of this distributed approach is a
distributedmaximum a posteriori (MAP) estimation technique, which delivers a globally optimal estimate
under certain assumptions. We apply the distributed approach to an IEEE 118-bus system, and compare
it with a centralized approach, which provides the optimal state estimate using all the measurements,
and with a local state estimation approach, which uses only local measurements to estimate local states.
Simulation results show that under different scenarios including normal operation, bad measurements
and sudden load change, the distributed approach is clearly more accurate than the local state estimation
approach and distributed static state estimation approach. Although the result is a bit less accurate than
that by a centralized algorithm, the distributed algorithm enjoys low computational complexity and
communication load, and is scalable to large power networks.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

As our society emphasizes the importance of smarter electric-
ity networks to support sustainable energy utilization, power net-
works are undergoing tremendous changes. The main goal is to
maintain the smart grid in an efficient, secure and reliable oper-
ating environment, for the production and distribution of electric-
ity. In practice, a wide range of uncertainties in measurements and
communication give rise to inaccuracies, whichmay affect the per-
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formance of optimization and control algorithms, and finally af-
fect the stability of the power plant. State estimation is a necessary
tool to deal with these uncertainties. Ever since the introduction of
state estimation, by Schweppe andWildes (1970), this area has re-
ceived increasing attention from researchers in different fields, and
particularly in recent years, owing to the multidisciplinary nature
of smart grids (Wu, 1990). State estimators are broadly utilized to
obtain, from redundant noisy measurements, an estimation of the
state of a subnetwork, which is not directly monitored, for compu-
tational or economical reasons. State estimation is a key module
in the energy management system (EMS) and plays a vital role in
security analysis, power dispatch, voltage stability analysis, eco-
nomic optimization, optimal power flow, diagnosis and recovery
(Wu, Moslehi, & Bose, 2005).

State estimation algorithms for power networks can be roughly
divided into three classes: centralized, hierarchical and distributed
ones. In centralized state estimation, there is a control center
which aggregates all measurements over the whole power
network and provides the optimal state estimate of the entire
network. In the 1980s, some researchers put forward hierarchical
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estimation techniques (Bose, Abur, Poon, & Emami, 2010; Cutsem
& Ribbens-Pavella, 1983; Gomez-Exposito & de la Villa Jaen,
2009; Jiang, Vittal, & Heydt, 2008). Cutsem and Ribbens-Pavella
(1983) proposed a hierarchical estimation method for multi-area
power systems, in which the local state estimation, obtained at
the first hierarchical level, is coordinated at a higher level. In
Bose et al. (2010), a star-like hierarchical state estimation scheme
was proposed. However, hierarchical estimation methods still
require a centralized coordinator to perform global estimation.
Thus, centralized and hierarchical state estimation approaches
may suffer from communication bottlenecks and reliability issues,
due to the following reasons.

There are at least twomajor aspects thatmake it difficult to sup-
port the development of the above two state estimation methods.
Firstly, themeasurements used in the state estimationmethods are
traditionally captured by a Supervisory Control and Data Acquisi-
tion (SCADA) system (Abur & Exposito, 2004). However, this sys-
tem has intrinsic limitations, i.e., low sampling rate and relatively
low accuracy of measurements which limit the reliability of state
estimation. Modern power systems are likely to involve many fast
measuring and processing devices, such as Phasor Measurement
Units (PMUs), featured with synchronous sampling and high data
updating rates (Huang, Werner, Huang, Kashyap, & Gupta, 2012;
Tai,Marelli, Rohr, & Fu, 2013).More importantly, PMUs can directly
measure both the voltage magnitudes and phase angles of the bus,
which make simple linear state estimation possible, giving rise to
higher precision and faster calculation than conventional nonlin-
ear methods (Tai et al., 2013). However, it is impossible to install a
PMU on each local area, due to the expensive cost of PMUs. Thus, it
is a challenge to combine PMU measurements with conventional
measurements to obtain an optimal state estimation. Secondly,
policy and market pricing competition require utility companies
to share more information and monitor the power network over
wide-scale areas. Furthermore, the deregulation of electricity in-
dustry has led to the creation of regional transmission organiza-
tions (RTOs), within a large-scale complex system (Wuet al., 2005).
Therefore, there is an urgent need for distributed estimation algo-
rithms. Distributed state estimation algorithms are necessary for
many other types of large-sized networked systems, such as traf-
fic networks and sensor networks; see Feng and Zeng (2012), Liang,
Wang, and Liu (2011), Olfati-Saber (2007) and Yu, Chen,Wang, and
Yang (2009).

Distributed state estimation algorithms can also be divided into
static and dynamic ones. Under stationary operational conditions,
the power system is usually treated as a quasi-static system,
whose operating condition is fully characterized by variables
such as bus loads, line flows, generation, and bus voltages
(magnitudes and phase angles) at a given point of time. Among
these interdependent variables, one can choose the bus voltages
as the system state, which is referred to as the static-state of the
system to avoid misunderstanding on what type of variable is
being considered (Do Coutto Filho & Stacchini de Souza, 2009).
Many studies have been made on distributed static estimation
problems; see Conejo, de la Torre, and Canas (2007), Falcao,
Wu, and Murphy (1995), Lin (1992), Pasqualetti, Carli, and Bullo
(2012), Tai, Lin, Fu, and Sun (2013) and Xie, Choi, and Kar (2011).
Tai et al. (2013) proposed a distributed weighted least-squares
(WLS) estimation approach for static state estimation with the
property that the local estimates converge to the same estimates
obtained via a centralized estimator. In this scheme, each local
estimator only needed to know its local measurements and low
dimensional boundary information exchanged from neighboring
nodes, which results in a much lighter communication load than
that of Pasqualetti et al. (2012) and Xie et al. (2011). However,
when transient dynamics are considered, power networks are
typically modeled as dynamic systems. The dynamic change of
loads gives rise to the adjustment of generators, which in turn
leads to a change in flows and injections at all buses. These
dynamic changes cannot be captured by the static state estimation
methods, thus prompting for the development of dynamic state
estimation methods (Cattivelli, Lopes, & Sayed, 2008; Do Coutto
Filho & Stacchini de Souza, 2009; Khan, Ilic, & Moura, 2008; Shih &
Huang, 2002; Valverde & Terzija, 2011;Wang, Gao, &Meliopoulos,
2012). These methods are mostly based on the Kalman filtering
technique; see Do Coutto Filho and Stacchini de Souza (2009),
Huang et al. (2012), Shih and Huang (2002), Valverde and Terzija
(2011) and Wang et al. (2012). Compared with traditional static
estimation schemes, dynamic state estimation methods have
better accuracy and the ability to predict the future state, which
is valuable for performing security analysis and real-time control.

The objective of this paper is to develop a fully distributed dy-
namic estimationmethod for large-scale interconnected networks.
Our method requires that the communication graph of the power
network is acyclic, which is a valid assumption for many practi-
cal systems. The major advantage of the distributed MAP estima-
tion algorithm is that only local computation and communication
are needed. We also show that the distributed algorithm at steady
state converges in a finite number of iterations, which is equal to
the maximum path length of the acyclic graph. The main contribu-
tion of this paper is that it generalizes known results on distributed
static state estimation (Tai et al., 2013) to the dynamic case, result-
ing in a distributed dynamic state estimator which delivers bet-
ter estimation accuracy than that by Tai et al. (2013). Furthermore,
we apply our distributed approach to an IEEE 118-bus system, and
compare it with a centralized approach, which provides the opti-
mal state estimate using all the measurements, a local state esti-
mation approach, which uses only local measurements to estimate
local states, and the distributed static state estimation algorithm
obtained in Tai et al. (2013). Simulation results using the IEEE
118-bus system in different scenarios show that the distributed
approach clearly offers more accurate estimates than the local es-
timation and static estimation approaches do. Although the sim-
ulation experiments show that the accuracy of distributed MAP
estimator is somehow worse than that of the centralized state es-
timator, the distributed algorithm enjoys low computational com-
plexity and communication load, making the method scalable to
large-sized power networks.

The rest of the paper is organized as follows. Section 2
introduces the system model and problem formulation. Section 3
details the centralized state estimation approach. Section 4
describes the local state estimation scheme. Section 5 gives the
distributed MAP estimation algorithm. Simulation examples are
presented in Section 6, and Section 7 concludes the paper. Some
proofs are contained in the Appendix.

2. Problem description

For completeness, we first introduce some notation and
preliminaries on algebraic graph theory and matrices, which will
be used in the rest of the paper.

Notation. Rl denotes the set of l-dimensional real column vectors
and Rl×q denotes the set of l × q real matrices. The superscript
T denotes the transpose of a vector or matrix. E{x} denotes the
expectation of the random variable x. Also, diag{A1, A2, . . . , An}

denotes a block diagonal matrix with the diagonal blocks being the
matrices A1, . . . , An.

Throughout the paper, we consider amulti-area interconnected
power network, to which we associate a graph G = (V, E). The
set V = {1, . . . , n} contains the nodes, each of which corre-
sponds to a control area, and E ⊂ V × V denotes the set of edges
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(i, j), connecting nodes i and j. Each edge in E corresponds to a
pair of nodes indicating that there is an edge measurement zi,j de-
pending on xi and xj, which are the states of nodes i and j. We use
Ni = {j : (i, j) ∈ E} to denote the set of neighbors of node i.
We assume that the graph is connected, undirected (i.e., there ex-
ists a two-way path between each pair of nodes) and acyclic (i.e., it
does not contain loops). For a connected graph G, without loops,
the length of a path is the number of edges forming it. The radius
εi of node i is defined as the maximum length of a path between
node i and any other node in the graph. The diameter of the graph
is Γ = max{εi : i ∈ V}.

This paper proposes a distributed state estimation algorithm
using mixed SCADA and PMUmeasurements. The available SCADA
measurements are limited to slow varying quantities, such as
voltage and power flows, whereas the PMUmeasurements include
instantaneous voltages and their phases. With the high sampling
rate, we can obtain several PMU measurements per second in the
linear form, while the SCADA system captures only one sample per
several seconds in the nonlinear form. To deal with this problem,
we first average the PMU measurements within each SCADA
sampling period to give a singlemeasurement so that the averaged
measurement is synchronized with the SCADAmeasurements and
that the amount of data to deal with is reduced. Secondly, we apply
the standard linearization technique to the SCADA measurements
so that they can be regarded as linear measurements around the
operating points, available at each SCADA sampling time (seemore
details later). These two types of measurements are then used
together to estimate the state of the power system.1

Consider the state vector of each bus i expressed as the
following dynamic model:

xi(k + 1) = fi(xi(k), k) + ωi(k), (1)

where xi(k) = (|Vi(k)|, θi(k))T is the state of bus i, Vi(k) and θi(k)
are voltage magnitude and angle at time instant k, the nonlinear
function fi represents the dynamic drift of the state due to load
changes, and ωi(k) is the Gaussian process noise. The sampling
time k takes values of 0, 1, 2, 3, . . . . The initial state xi(0) is
assumed to be Gaussian.

Using the standard linearization approach around an operating
point x0i (k), we can convert the state space model (1) into the
following model (Do Coutto Filho & Stacchini de Souza, 2009;
Valverde & Terzija, 2011):

xi(k + 1) = Ai(x0i (k), k)xi(k) + Gi(x0i (k), k) + ωi(k), (2)

where Ai(x0i (k), k) is an diagonalmatrix andGi(x0i (k), k) represents
the trend behavior of the state trajectory, namely,

Ai(x0i (k), k) =
∂ fi(xi, k)

∂xi


xi=x0i

;

Gi(x0i (k), k) = fi(x0i (k), k) − Ai(x0i (k), k)x
0
i (k).

In practice, we can replace x0i (k) with the state prediction. Alter-
natively, thematrices Ai(x0i (k), k) and Gi(x0i (k), k) can be identified
on-line byusing theHolt’s 2-parameter linear exponential smooth-
ing method of forecasting (Makridakis & Wheelwright, 1978).

We assume that all the buses are installed with SCADA
measurements, which can measure voltage magnitudes of each
bus and power flows between two connected buses. So the

1 Strictly speaking, the use of a Gaussian noise model wi(k) results in an
inaccurate dynamic model because the voltage magnitudes should always be non-
negative. However, voltagemagnitudes are in the range of 100s–100,000s volts and
are typically well regulated, which means that the variances of wi(k) should be
small, which in turn means that the probability of voltage magnitudes becoming
negative is negligible.
measurement equations of each bus i can be divided into two
types: local measurements and edge measurementswhich are given
by

zi,i(k) =

1 0


xi(k) + νi,i(k),

zi,j(k) = hi,j(xi(k), xj(k)) + νi,j(k), j ∈ Ni, (3)

where zi,i(k) is the local measurement of node i, zi,j(k) is the
edge measurement describing the interaction between buses i and
j, νi,i(k) and νi,j(k) are the associated measurement noises, and
hi,j(xi(k), xj(k)) = (Pi,j(k),Qi,j(k))T is the power flow equations in
transmission lines (Monticelli, 1999), with

Pi,j(k) = gij|Vi(k)|2 − gij|Vi(k)| |Vj(k)| cos(θij(k))
− bij|Vi(k)| |Vj(k)| sin(θij(k)), (4)

Qi,j(k) = −(bij + bshij )|Vi(k)|2 + bij|Vi(k)| |Vj(k)|

× cos(θij(k)) − gij|Vi(k)| |Vj(k)| sin(θij(k)), (5)

where the formulas gij and bij are the series conductance and
susceptance, bshij is admittance between circuits and ground, and
θi,j(k) = θi(k) − θj(k) is the difference of voltage angles between
buses i and j.

If bus i is installed with a PMU, then there exists an additional
local measurement equation, which is

z ′

i,i(k) = xi(k) + ν ′

i,i(k).

Since PMU measurements are much more accurate than SCADA
measurements, the covariance of noise ν ′

i,i(k) is much smaller
than that of νi,i(k). Moreover, PMU can directly measure the
voltage angle θi(k), so we use z ′

i,i(k) rather than zi,i(k) as the
local measurement of bus i, and for uniformity, we write zi,i(k) as
follows:

zi,i(k) = Cixi(k) + νi,i(k). (6)

Similarly in Leite da Silva, Do Coutto Filho, and de Queiroz
(1983), linearizing around the operating points x0i (k) and x0j (k) of
(3), we have

zi,j(k) = hi,j(x0i (k), x
0
j (k)) + Bij(k)(xi(k) − x0i (k))

+ Bji(k)(xj(k) − x0j (k)) + νi,j(k), (7)

where

Bij(k) =
∂hi,j(xi, xj)

∂xi


xi=x0i ,xj=x0j

,

Bji(k) =
∂hi,j(xi, xj)

∂xj


xi=x0i ,xj=x0j

,

are the Jacobian matrix of hi,j(·) depending on x0i (k) and x0j (k).
For notational simplicity, we will drop the time, x0i (k) and x0j (k)
dependence in Ai, Gi, Bij and Bji in the sequel. Furthermore, the
vector zi,j(k) will replace zi,j(k) − hi,j(x0i (k), x

0
j (k)) + Bijx0i (k) +

Bjix0j (k); i.e., (2) and (7) can be written as

xi(k + 1) = Aixi(k) + Gi + ωi(k), (8)
zi,j(k) = Bijxi(k) + Bjixj(k) + νi,j(k). (9)

As mentioned earlier, Ai and Gi can be evaluated at the estimated
operating point of x0i (k), or by an online identificationmethod. The
computation of Bij and Bji can also be done using the estimates of
x0i (k) and x0j (k). Wewill ignore the resulting approximation errors.

Remark 1. Actually, the parameters Ai, Gi, Bij and Bji are time-
variant, and we just simplify these notations here.
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Fig. 1. Topological structure of the IEEE 118-bus system.
Fig. 2. The graph G depicting the partition of the 118-bus system.

Remark 2. We use the term ‘node’ to refer to a cluster of buses,
as depicted in Fig. 1. The state of each node is formed by stacking
the states of all its buses. Fig. 2 shows the resulting network,
where a link between two nodes indicates the existence of joint
measurements involving the corresponding two states. In order to
avoid introducingmorenotation, in the rest of the paper,weuse i to
index the different nodes (rather than buses) of a given system, and
we use Eqs. (8), (6) and (9) to describe the model of node (rather
than bus) i. We use si to denote the dimension of the state xi.

The local measurements include those involving the buses
within node i only (e.g., voltage magnitudes and angles at the
buses), whereas the edge measurements are the so-called tie-
line measurements, including those involving both nodes i and j
(e.g., power flowmeasurements across twobuses, one in node i and
one in node j). It is assumed that the measurement vector zi,j(k) is
shared by both nodes i and j. We also assume that the noises ωi(k),
νi(k) and νi,j(k) are independent white Gaussian with zero mean
and covariances Ri, Si and Ti,j, respectively. Furthermore, the initial
state xi(0) is a Gaussian variable, independent fromωi(k), νi(k) and
νi,j(k), with mean x̄i(0) and covariance Σi(0).

Fig. 2 shows the graphG resulting from thepartitionmadeof the
118-bus system in Fig. 1. Here, edge (1, 3), for example, means that
there exists an edge measurement associated with nodes 1 and 3,
and they can exchange data with each other.

Let us denote the aggregate state and measurement by

x(k) = (xT1(k), . . . , xTn(k))
T
;

z(k) = (. . . , zTi,i(k), . . . , zTi,j(k), . . .)T ,
respectively. Then, the state and measurement equations of the
whole power network, take the following forms:

x(k + 1) = Ax(k) + G + ω(k), (10)
z(k) = Hx(k) + ν(k), (11)

where A = diag {A1, . . . , An} is a diagonal matrix according with
the assumption in Shih and Huang (2002),

G = (GT
1, . . . , GT

n)
T ,

H =


· · ·

· · · 0 Ci 0 · · ·

· · ·

· · · 0 Bij 0 Bji 0 · · ·

· · ·

 ,

and the noises ω(k) = (ωT
1 (k), . . . , ωT

n (k))
T and ν(k) = (. . . ,

νT
i,i(k), . . . , νT

i,j(k), . . .)T , have covariance matrices R =

cov(ω(k)) = diag{R1, . . . , Rn} and R∗ = cov(ν(k)) = diag
{. . . , Si, . . . , Ti,j, . . .}, respectively. Due to the interconnec-
tion structure of the power system, we note that the measure-
ment matrix H is usually sparse. Also, the initial state x(0) has
mean x̄(0) = (x̄T1(0), . . . , x̄Tn(0))

T and covariance Σ(0) =

diag{Σ1(0), . . . , Σn(0)}.
We make the following two assumptions:

Assumption 1. The graph G is acyclic.

Assumption 2. The matrix H has full column rank and the
covariances of noises R, R∗ and the initial state Σ(0) are positive
definite.

Notice that Assumption 1 means that the graph resulting from
a partition of the power network does not have cycles. There is a
large number of practical power systems which can be abstracted
as acyclic graphs, such as the power systems constructed along the
coastline. Also, many microgrids are designed specifically to have
a radial, and therefore acyclic, network. Fig. 2 shows how the IEEE
118-bus system of Fig. 1 can be partitioned into an acyclic network.
More precisely, each node in Fig. 2 corresponds to a cluster of nodes
from the IEEE 118-bus system, as indicated in Fig. 1.
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Assumption 2 implies that, when the measurements for all
the nodes are collectively available, the network satisfies the so-
called topological observability (TO) condition (Xie et al., 2011). TO
is an essential requirement for power networks. This guarantees
that state estimation error covariance will be bounded when
the measurements of all the nodes are jointly used. Due to
operational safety reasons, EMS for every power network is
designed to ensure that TO is always satisfied (Wu, 1990). It
is also a common requirement for EMS that TO is guaranteed
with sufficient redundancy in the sense that even in the event
of partial measurement failure (loss of certain measurements
or existence of certain outliers), TO is still preserved using
the remaining measurements. For EMSs equipped with SCADA
measurements, not only TO is guaranteed, the so-called local
topological observability is usually ensured as well, which means
that the local measurements in one area are sufficient to give a
local state estimate with a bounded estimation error covariance.
The IEEE 118-bus system is an example of such. For EMSs equipped
with PMUs only, numerous algorithms exist for the placement of
PMUs to ensure the TO; see, e.g., Tai et al. (2013) and the references
thereof.With this background, it is practical and realistic to assume
that Assumption 2 holds.

3. Centralized state estimation

This section describes the (standard) centralized state estima-
tion approach. Let x̂(k|k) denote the estimate of x(k), conditioned
on the measurements from time 0 to k, and Σ(k|k) be the associ-
ated estimation error covariancematrix. Also, let x̂(k|k−1) denote
the one-step-ahead prediction of x(k), conditioned on the mea-
surements from time 0 to k − 1, and Σ(k|k − 1) denote its co-
variance matrix. We have (Anderson & Moore, 1979)

x̂(k|k) = E{x(k)|Z(k)},

Σ(k|k) = E{(x(k) − x̂(k|k))(x(k) − x̂(k|k))T |Z(k)},

where Z(k) = {z(0), z(1), . . . , z(k)}, and x̂(k|k−1) andΣ(k|k−

1) are expressed in a similar way.
Let p(x(k)|Z(k)) denote the probability density function of x(k)

conditioned on the measurements Z(k), and p(x(k)|Z(k − 1)) can
be defined similarly. Then, they are given by the followingGaussian
distributions:

p(x(k)|Z(k − 1)) = N (x(k); x̂(k|k − 1), Σ(k|k − 1)),

p(x(k)|Z(k)) = N (x(k); x̂(k|k), Σ(k|k)). (12)

The centralized state estimator is obtained using a standard
Kalman filter. It comprises two steps, namely, update and
prediction. The update step is done by using MAP estimator and
theprediction stepuses a one-step-aheadpredictor.Wedetail each
step below.

3.1. Centralized MAP estimation

In this section, our main focus is on the update step. Its purpose
is to compute x̂(k|k) from the posterior density p(x(k)|Z(k)), using
a centralized MAP estimator. Different from the weighted least
square (WLS) estimator, the MAP estimator also incorporates the
prior density p(x(k)|Z(k − 1)) in computing p(x(k)|Z(k)), thus
offering a much more accurate estimate. As described in Kay
(1993), the MAP estimator x̂MAP(k|k) is the value that maximizes
the posterior density, i.e.,

x̂MAP(k|k) = argmax
x(k)

p(x(k)|Z(k)).
Using the Bayesian rule (Arulampalam, Maskell, Gordon, & Clapp,
2002) and from (12), we get

p(x(k)|Z(k)) ∝ p(z(k)|x(k))p(x(k)|Z(k − 1))

∝ exp

−

1
2
(eT (k)R−1

∗
e(k)

+ ∆T (k)Σ−1(k|k − 1)∆(k))


,

where e(k) = z(k) − Hx(k) and ∆(k) = x(k) − x̂(k|k − 1). We
can see that maximizing p(x(k)|Z(k)) is equivalent to minimizing
its negative logarithm, which leads to

x̂MAP(k|k) = argmin
x(k)


(eT (k)R−1

∗
e(k)

+∆T (k)Σ−1(k|k − 1)∆(k))

.

Then, it is easy to obtain that the optimal estimate and the
estimation error covariance are

x̂MAP(k|k) =

HTR−1

∗
H + Σ−1(k|k − 1)

−1

×

HTR−1

∗
z(k) + Σ−1(k|k − 1)x̂(k|k − 1)


, (13)

ΣMAP(k|k) =

HTR−1

∗
H + Σ−1(k|k − 1)

−1
, (14)

initialized by x̂(0| − 1) = x̄(0) and Σ(0| − 1) = Σ(0).

3.2. Centralized prediction

This step computes the optimal prediction of the state vector
x(k + 1) based on the available measurements Z(k), i.e., the
conditional mean x̂(k + 1|k). By taking conditional expectation
on both sides of (10), and using the previously obtained
state estimation x̂MAP(k|k), with its associated error covariance
ΣMAP(k|k), we have

x̂(k + 1|k) = Ax̂MAP(k|k) + G,

Σ(k + 1|k) = AΣMAP(k|k)AT
+ R.

Once z(k + 1) becomes available, the centralized state estimation
x̂MAP(k + 1|k + 1), and its error covariance ΣMAP(k + 1|k + 1), are
computed using the priors x̂(k+ 1|k) and Σ(k+ 1|k), as described
in the previous subsection. In this way, the optimal estimation and
its associated covariance are obtained in a recursive manner.

As mentioned earlier, the state estimate obtained from the
centralized MAP estimation scheme is optimal. However, the
centralized state estimator creates a heavy computational burden
and a communication bottleneck for a large-scale network. To
avoid this, we will describe a local state estimation method and
a distributed one in the next two sections.

4. Local state estimation

We describe a local state estimation method, which only uses
local measurements. This method is essentially the same as the
centralized one, with the difference in that edgemeasurements are
not employed.

Using (6) and (8), the local Kalman filtering algorithm for every
node i ∈ V , is given as follows:
Measurement-update equations:

x̂i(k|k) = x̂i(k|k − 1) + Ki(k)

zi,i(k) − Cix̂i(k|k − 1)


,

Σi(k|k) = Σi(k|k − 1) − Ki(k)CiΣi(k|k − 1),

initialized by x̂i(0| − 1) = x̄i(0), Σi(0| − 1) = Σi(0), and

Ξi(k) = CiΣi(k|k − 1)CT
i + Si,

Ki(k) = Σi(k|k − 1)CT
i Ξ−1

i (k)
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are the covariance of the innovation term zi,i(k)−Cix̂i(k|k−1) and
the Kalman gain, respectively.

Time-update equations:

x̂i(k + 1|k) = Aix̂i(k|k) + Gi,

Σi(k + 1|k) = AiΣi(k|k)AT
i + Ri.

Obviously, this method leads to a suboptimal estimator. However,
it will play a role in the performance comparison of Section 6.

5. Distributed state estimation

This section bears the main contribution of this paper. We will
describe the proposed distributed state estimation method. It also
involves two steps: a distributed MAP estimator, which replaces
the centralized MAP estimator in the centralized control center,
and a local state predictor, which is the same as the local state
estimator described in Section 4.

5.1. Distributed MAP estimation

In the distributed MAP estimation algorithm, each node i ∈ V
obtains, at time instant k, an estimate x̂i(k|k) of the local state xi(k).
This is done by using (6) and (9), and the exchanged information
from its neighboring nodes j ∈ Ni, along an iterative procedure.
The purpose is to minimize the global objective function

J(x(k)) = eT (k)R−1
∗

e(k) + ∆T (k)Σ̃−1(k|k − 1)∆(k),

where Σ̃(k|k − 1) = diag{Σ1(k|k − 1), . . . , Σn(k|k − 1)} with
Σ1(k|k − 1), . . . , Σn(k|k − 1) being the diagonal elements of
Σ(k|k − 1).

Remark 3. Although we assume that Σ(0) is a block diagonal
matrix, the centralized estimation method leads to Σ(k − 1|k −

1), for k > 1, being no longer diagonal. Hence, Σ(k|k − 1) is
not diagonal either. As explained above, in our distributed MAP
estimation method we replace Σ(k|k − 1) with Σ̃(k|k − 1).
According to the Kalman filter theory (Anderson & Moore, 1979),
such modification means that optimality is no longer maintained,
i.e., the resulting state estimation becomes suboptimal. However,
this algorithm will eliminate many of the numerical difficulties
present when a full covariance matrix is used, and in practice
this suboptimal estimator may perform better than the optimal
one (Larson, Tinney, & Peschon, 1970). We denote this suboptimal
estimate by x̂∗(k|k) = argminx(k) J(x(k)), and its associated
estimation error covariance by Σ∗(k|k). Also, for each i =

1, . . . , n, we useΣ∗

i (k|k) to denote the block diagonal sub-matrix
in Σ∗(k|k) corresponding to the state xi(k).

Our next step is to derive the proposed distributed MAP esti-
mator, for carrying out the update step. This requires computing
the state estimate x̂i(k|k), and its error covariance Σi(k|k), for each
i ∈ V . We do this derivation in three steps. In Lemma 1 we solve
the distributedMAP estimation problem for a network formed only
by two nodes. Then, Lemma 2 generalizes this result to networks
forming a radial graph, i.e., in which there exists a single node
(called the central node),whose radius is one, and the radii of all re-
maining nodes (called leaf nodes) are two (an example is shown in
Fig. 3). Finally, using Lemma 2, we derive our proposed distributed
MAP estimation algorithm, andwe show in Theorem 1 that it is ap-
plicable to networks with arbitrary acyclic topology. The proofs of
these results appear in the Appendix.
Fig. 3. Topological structure of a radial graph.

Lemma 1. Consider the system (8)–(9) with V = {1, 2} (i.e., an
connected graph with two nodes). Then, for each i ∈ V , and j ∈ Ni,
we have

x̂∗

i (k|k) = Σ∗

i (k|k)(ᾱi(k) + BT
ijS

−1
ji (k)yji(k)),

Σ∗

i (k|k) = (Q̄i(k) + BT
ijS

−1
ji (k)Bij)

−1,

where

ᾱi(k) = CT
i S

−1
i zi,i(k) + Σ−1

i (k|k − 1)x̂i(k|k − 1),

Q̄i(k) = CT
i S

−1
i Ci + Σ−1

i (k|k − 1),

yji(k) = zi,j(k) − β i
j (k),

Sji(k) = Ti,j + Φ i
j (k), (15)

β i
j (k) = BjiQ̄−1

j (k)ᾱj(k), Φ i
j (k) = BjiQ̄−1

j (k)BT
ji,

initialized by x̂i(0| − 1) = x̄i(0) and Σi(0| − 1) = Σi(0).

Lemma 2. Suppose that Assumptions 1 and 2 hold. Consider an
interconnected system represented by a radial graphG. At time instant
k and node i ∈ V , the distributed MAP estimation and its error
covariance matrix are

x̂∗

i (k|k) = Σ∗

i (k|k)


ᾱi(k) +


j∈Ni

BT
ijS

−1
ji (k)yji(k)


, (16)

Σ∗

i (k|k) =


Q̄i(k) +


j∈Ni

BT
ijS

−1
ji (k)Bij

−1

. (17)

Our proposed distributed MAP estimation algorithm follows
from Lemma 2. Its basic idea is as follows. Initially, each node
i computes a local estimation x̆i(k|k, 0) and its associated
estimation error covariance Σ̆i(k|k, 0), using only its prior
information about xi(k) and its local measurements zi,i(k). Then
it builds β

j
i (k, 0) and Φ

j
i (k, 0), and sends them to node j ∈ Ni.

Then, the method follows an iterative procedure. At iteration h,
using the values of β i

j (k, h − 1) and Φ i
j (k, h − 1), received from its

neighbors j ∈ Ni, node i updates the edge information yji(k, h) and
Sji(k, h), and uses them to compute its current estimation x̆i(k|k, h)
and covariance Σ̆i(k|k, h). Also, for each neighbor j ∈ Ni, node
i computes β

j
i (k, h) and Φ

j
i (k, h) and sends them to node j. The

details of these steps are given in Algorithm 1. A key observation is
that the information β

j
i (k, h) and Φ

j
i (k, h) transmitted from node

i to node j, do not include the information that node i previously
receives from node j.

Distributed MAP estimation algorithm
Initialization:
(1) At time instant k = 1, 2, . . . , each node i ∈ V computes the
local state estimation and its error covariance

x̆i(k|k, 0) = Q̄−1
i (k)ᾱi(k),

Σ̆i(k|k, 0) = Q̄−1
i (k),
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with ᾱi(k) and Q̄i(k) defined as in Lemma 1. If k = 0, x̂i(0|−1) and
Σi(0| − 1) are replaced by x̄i(0) and Σi(0), respectively.
(2) For each node j ∈ Ni, node i computes

β
j
i (k, 0) = Bijx̆i(k|k, 0),

Φ
j
i (k, 0) = BijΣ̆i(k|k, 0)BT

ij,

and sends them to node j.
Main loop: At iteration h = 1, 2, . . . , and for each i:
(1) Using β i

j (k, h−1) andΦ i
j (k, h−1) received from its neighbors

j ∈ Ni, node i updates the edge information

yji(k, h) = zi,j(k) − β i
j (k, h − 1),

Sji(k, h) = Ti,j + Φ i
j (k, h − 1).

(2) Node i calculates the current state estimation and its
covariance:

x̆i(k|k, h) = [Qi(k, h)]−1αi(k, h),

Σ̆i(k|k, h) = [Qi(k, h)]−1,

where

αi(k, h) = ᾱi(k) +


j∈Ni

BT
ijS

−1
ji (k, h)yji(k, h),

Qi(k, h) = Q̄i(k) +


j∈Ni

BT
ijS

−1
ji (k, h)Bij.

(3) For each j ∈ Ni, node i computes

β
j
i (k, h) = Bij[Q

j
i (k, h)]−1α

j
i(k, h),

Φ
j
i (k, h) = Bij[Q

j
i (k, h)]−1BT

ij,

where

α
j
i(k, h) = ᾱi(k) +


m∈Ni/{j}

BT
imS

−1
mi (k, h)ymi(k, h),

Q j
i (k, h) = Q̄i(k) +


m∈Ni/{j}

BT
imS

−1
mi (k, h)Bim,

and transmits β
j
i (k, h) and Φ

j
i (k, h) to node j.

Theorem 1, shows that, by doing so, the algorithm converges
in a finite number of steps to the suboptimal estimate x̂∗

i (k|k) and
Σ∗

i (k|k). See Appendix for proof.

Theorem 1. Suppose that Algorithm 1 is used under Assumptions 1
and 2. Then, for each k = 0, 1, . . . and each node i ∈ V , we have

x̂i(k|k, εi + l) = x̂∗

i (k|k),
Σi(k|k, εi + l) = Σ∗

i (k|k), for all l ≥ 0,

where εi + l is the step number of iteration.

Remark 4. Theorem 1 states that the local state estimates on all
nodes converge to the suboptimal estimates afterΓ = max{εi, i ∈

V} steps.

Remark 5. Notice that the edge measurement zi,j(k) is usually of
lowdimension. Hence, every control center only needs to exchange
the low-dimensional information Bjix̂j(k|k) with its neighbors,
instead of the entire local estimate x̂j(k|k). This leads to a very light
communication requirement; see Tai et al. (2013).

5.2. Local prediction

In this sectionwe describe the prediction step of our distributed
state estimation method. From (8), and using the MAP estimation
x̂∗

i (k|k) and its error covariance matrix Σ∗

i (k|k), obtained from
Theorem 1, we get

x̂i(k + 1|k) = Aix̂∗

i (k|k) + Gi,

Σi(k + 1|k) = AiΣ
∗

i (k|k)AT
i + Ri.

The state prediction is used as the prior information to initialize
Algorithm 1 once the new measurements at time k + 1 become
available.

6. Simulation

In this section, we compare the performances of the distributed
state estimator (or distributed Kalman filter (DKF)), with the
centralized state estimator (or centralized Kalman filter (CKF)),
the distributed static state estimator (DSSE) in Tai et al. (2013)
and the local Kalman filter (LKF). To this end, we use the IEEE
118-bus system (Christie, 1993). We split this system into six
areas, as shown in Fig. 1. Each area (considered as a single node)
is monitored and operated by a control center. The resulting
network has the radial topology as shown in Fig. 2, and therefore
Assumption 1 is satisfied. We assume that PMUs (which produce
linearmeasurements) are located at somebuses,which aremarked
as blocks in Fig. 1. The placement of PMUs is designed using
the method proposed in Tai et al. (2013), which guarantees
the topological observability. Measurements for the system state
estimation consist of voltage magnitudes at all the buses, voltage
angles at 32 buses on which PMUs are installed, and power flows
measured at all the line terminals. The parameters gij, bij and bshij
used in (4) and (5) are taken from Christie (1993).

Following Shih and Huang (2002), the linear trend A having
a standard deviation of 2% along with the fluctuation G is added
to the load curve and the fluctuation in G is represented by a
normally distributed random number ±3% of the value of the
trend component. For the node i which is installed with SCADA
measurements, the covariance of the local measurement noise is
Si = σ 2

1 withσ1 = 0.1. For the node jwhich is installedwith a PMU,
the covariance of the localmeasurement noise is Sj = diag(σ 2

2 , σ 2
2 )

with σ2 = 0.05. The covariance of the edge measurement noise is
Ti,j = diag(σ 2

1 , σ 2
1 ).

The centralized MAP and the local state estimators require
O((
n

i=1 si)
3) andO(s3i ) computations, whereas the computational

complexity of the distributed MAP estimator of node i is ñiO(s3i )
at each time stamp, where ñi denotes the cardinality of Ni. We
can see that the computational complexity of each distributed
estimator relates to the number of its neighbors. Due to the
interconnection structure of the power system, each node only has
a few neighbors, i.e., ñi ≪ n. Thus, the computational complexity
of the proposed distributed algorithm is smaller than that of the
centralized method, but it is larger than that of the local method.

The time step of simulations is selected to be one second, in the
simulation. In Figs. 4 and 5, we run one iteration of the DKF and the
DSSE between time steps t and t + 1. Fig. 4 shows the evolution of
the state estimation error of each method, which is made over a
period of 45 time-sample intervals. To quantify this error we usen

i=1 Tr{Σi(k|k)} as the sum of the trace of the estimation error
covariance of each subsystem. The definition of each method can
be similarly described by their own estimation error covariance.
We use 100 Monte Carlo runs to compute each estimation error
covariance. The tests presented in Fig. 4 are discussed below.
Case 1. Normal Operation Condition: These simulations are carried
out through 15 time samples. The first 15 time samples in Fig. 4
show the results of using the four methods when IEEE 118-bus
system is operated at normal operating condition. We see how the
DKF largely outperforms the LKF and the DSSE, though its values
are somehowworse than that of the CKF. The state estimation error
covariance of the DKF is bounded.
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Fig. 4. The traces of the estimation error covariances of the CKF, LKF, DKF and DSSE
estimates.

Fig. 5. Relative errors by different estimation algorithms.

Case 2. Sudden Load Change Condition: In this case, the proposed
method is applied to the scenario in which sudden load is changed
in power system. For the IEEE 118-bus system, the following
scenario is simulated: 20% load increase occurs on the buses 12,
13, 14, 16, 17, 19, 26, 32, 37, 42, 45, 56, 62, 63, 66, 69, 70, 75, 77,
80, 85, 89, 92, 96, 100, 105, 114 at the 15th time sample, achieved
by adding appropriate input noise ω(k) at k = 15. Fig. 4 plots
the evaluation results of aforementioned scenarios in different
methods between 15 and 29. Here allmethods have lowestimation
performance at k = 15, since the dynamic state estimators depend
on the previous state prediction, which is different to the actual
state condition. After the sudden load occurs, the estimation error
covariance of the DKF reduces quickly, which means that the
proposed method can come back adaptively.
Case 3. Bad Data Condition: In this case, the proposed method
under bad data scenario is investigated. The following condition
is simulated: one additional measurement error of 20% is added
at the 30th time sample. It can be seen that the estimation results
of all methods are affected when polluted measurements are not
detected. However, the four estimation methods still return to the
normal values rapidly as the first case. This also reveals that the
proposed method owns higher immunity to the influence of bad
data, and this approach can be a potential candidate of dynamic
state estimation in addition to conventional methods.

The run times of the CKF, LKF, DKF and DSSE are 0.06532 s,
0.05386 s, 0.05974 s and 0.05052 s, respectively.
Fig. 5 shows the evolution of the relative errors between the
state estimates of the DKF and CKF, i.e.,
n

i=1
∥x̂∗

i (k|k) − x̂MAP
i (k|k)∥

n
i=1

∥x̂MAP
i (k|k)∥

,

as well as the relative errors between the LKF and CKF estimates,
i.e.,
n

i=1
∥x̂i(k|k) − x̂MAP

i (k|k)∥

n
i=1

∥x̂MAP
i (k|k)∥

.

The relative errors between the DSSE and CKF estimates can be
similarly defined. Again,we see the clear advantage of theDKF over
the LKF and DSSE, and its close accuracy to that of the CKF.

7. Conclusions

We proposed a distributed algorithm for local state estimation
in large-scale interconnected networks, which could be applied
in multi-area networked power systems. The key component of
this method is a distributed MAP estimation step, which only
requires local measurements and low dimensional boundary state
estimates from neighbors. It is shown that, under the assumption
that the network topology is acyclic, at each time instant, the
distributed MAP estimator converges after a finite number of
iteration, which equals the diameter of the graph. Although
simulation experiments using the IEEE 118-bus system in different
scenarios show that the accuracy of distributed MAP estimator
is somehow worse than that of the centralized state estimator,
the former has low requirements in terms of computational
complexity and communication load at each node. This makes it
scalable to large-sized networked systems.

Appendix. Proofs of Section 5

A.1. Proof of Lemma 1

At time k, consider the centralized MAP estimator, in which
Σ(k|k − 1) is replaced by Σ̃(k|k − 1). The measurement equation
of the two-node graph can be written as (11), where

x(k) = (xT1(k), xT2(k))
T ,

z(k) = (zT1,1(k), zT2,2(k), zT1,2(k))
T ,

ν(k) = (νT
1,1(k), νT

2,2(k), νT
1,2(k))

T ,

H =

 C1 0
0 C2
B12 B21


,

R∗ = diag{S1, S2, T1,2}.

According to (14), we obtain

Σ∗(k|k) =


Γ11 Γ12

Γ T
12 Γ22

−1

=


Σ∗

1 (k|k) −Σ∗

1 (k|k)Γ12Γ
−1
22

−Σ∗

2 (k|k)Γ21Γ
−1
11 Σ∗

2 (k|k)


, (A.1)

where

Γ11 = Q̄1(k) + BT
12T

−1
1,2B12,

Γ12 = BT
12T

−1
1,2B21,

Γ22 = Q̄2(k) + BT
21T

−1
1,2B21.
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From the blockmatrix inversion formula (Kailath, Sayed, & Hassibi,
2000, A.1(v)), we obtain that the first diagonal block of Σ∗(k|k) is
given by

Σ∗

1 (k|k) = (Γ11 − Γ12Γ
−1
22 Γ T

12)
−1

=

Q̄1(k) + BT

12T
−1
1,2B12 − BT

12T
−1
1,2B21

×

Q̄2(k) + BT

21T
−1
1,2B21

−1
BT
21T

−1
1,2B12

−1
.

Using thematrix inversion lemma (Kailath et al., 2000, A.1(vii)), we
get

T−1
1,2 − T−1

1,2B21

Q̄2(k) + BT

21T
−1
1,2B21

−1
BT
21T

−1
1,2

= (T1,2 + B21Q̄−1
2 (k)BT

21)
−1

= S−1
21 (k). (A.2)

Therefore, we obtain

Σ∗

1 (k|k) = [Q̄1(k) + BT
12S

−1
21 (k)B12]

−1.

Following the same argument, we have that

Σ∗

2 (k|k) = [Q̄2(k) + BT
21S

−1
12 (k)B21]

−1.

On the other hand, from (13), we have

x̂∗(k|k) =


Γ11 Γ12

Γ T
12 Γ22

−1 
Υ1(k)
Υ2(k)


,

where

Υi(k) = ᾱi(k) + BT
ijT

−1
i,j zi,j(k), i = 1, 2.

From (A.1), we get

x̂∗

1(k|k) = Σ∗

1 (k|k)Υ1(k) − Σ∗

1 (k|k)Γ12Γ
−1
22 Υ2(k). (A.3)

Similar to (A.2), and using (15), we obtain

Γ −1
22 = Q̄−1

2 (k) − Q̄−1
2 (k)BT

21S
−1
21 (k)B21Q̄−1

2 (k),

and

B21Γ
−1
22 = B21(Q̄−1

2 (k) − Q̄−1
2 (k)BT

21S
−1
21 (k)B21Q̄−1

2 (k))

= (S21(k) − B21Q̄−1
2 (k)BT

21)S
−1
21 (k)B21Q̄−1

2 (k)

= T1,2S−1
21 (k)B21Q̄−1

2 (k).

Using z1,2(k) = z2,1(k) and T1,2 = T2,1, it follows that

Υ1(k) − Γ12Γ
−1
22 Υ2(k)

= ᾱ1(k) + BT
12T

−1
1,2 z1,2(k)

− BT
12T

−1
1,2B21Γ

−1
22 (ᾱ2(k) + BT

21T
−1
2,1 z2,1(k))

= ᾱ1(k) + BT
12T

−1
1,2 z1,2(k)

− BT
12S

−1
21 (k)B21Q̄−1

2 (k)(ᾱ2(k) + BT
21T

−1
2,1 z2,1(k))

= ᾱ1(k) − BT
12S

−1
21 (k)B21Q̄−1

2 (k)ᾱ2(k)

+ BT
12S

−1
21 (k)(S21(k) − B21Q̄−1

2 (k)BT
21)T

−1
1,2 z1,2(k)

= ᾱ1(k) + BT
12S

−1
21 (k)(z1,2(k) − B21Q̄−1

2 (k)ᾱ2(k))

= ᾱ1(k) + BT
12S

−1
21 (k)y21(k).

The last step above used (A.2). Returning to (A.3) yields

x̂∗

1(k|k) = Σ∗

1 (k|k)(ᾱ1(k) + BT
12S

−1
21 (k)y21(k)).

Using the same proof, we also get

x̂∗

2(k|k) = Σ∗

2 (k|k)(ᾱ2(k) + BT
21S

−1
12 (k)y12(k)).

This completes the proof. �
Fig. A.1. Illustration for the proof of Theorem 1.

A.2. Proof of Lemma 2

A radial graph, as shown in Fig. 3, can be considered as a two-
node graph, by combining nodes 1, . . . , n into a single node.
Doing so, we can use Lemma 1 to obtain the local update on node i
at time instant k, which is

x̂∗

i (k|k) = Σ∗

i (k|k)αi(k),

Σ∗

i (k|k) = Q−1
i (k),

where

αi(k) = ᾱi(k) +


Bi1
Bi2
...
Bin


T

S̃−1(k)


y1i(k)
y2i(k)

...
yni(k)

 , (A.4)

Qi(k) = Q̄i(k) +


Bi1
Bi2
...
Bin


T

S̃−1(k)


Bi1
Bi2
...
Bin

 , (A.5)

and S̃(k) = diag

S1i(k), S2i(k), . . . , Sni(k)


. Then, it is easy to see

that (16)–(17) follow from (A.4)–(A.5). �

A.3. Proof of Theorem 1

The proof is based on the estimation at node i. Consider the
acyclic graph G depicted in Fig. A.1. Consider also the radial sub-
graph of G, having i as its central node, as well as all its neighbors
as leaf nodes. At the first iteration h = 1, Algorithm 1 consists
in applying the result of Lemma 2 to this radial sub-graph. Hence,
after the first iteration, node i can compute the desired suboptimal
estimate corresponding to this sub-graph.

For the second iteration, consider the radial sub-graph having i
as central node. Also, each leaf node of this sub-graph, is formed by
grouping together, as a single node, each neighbor j ∈ Ni of i, with
the neighbors of j different from i. Now, according to Algorithm
1, each node j ∈ Ni builds the quantities β i

j (k, 2) and Φ i
j (k, 2) to

be transmitted to node i, without using the information β
j
i (k, 1)

and Φ
j
i (k, 1) that it previously received from node i. Hence, the

second iteration is equivalent to applying the result of Lemma 2
to the aforementioned radial graph, and therefore node i is able to
compute the suboptimal estimate of the sub-graph formed by all
nodes which are two hops away from it.

The above argument applies at each iteration. More precisely,
at iteration h, we consider the radial sub-graph having i as
central node. Also, each leaf node of this sub-graph, is formed
by grouping together, as a single node, each neighbor j ∈ Ni of
i, with all the neighbors of j which are h − 1 hops away from
it, but not having node i as intermediate node. Then, following
the above argument, we obtain that node i is able to compute
the suboptimal estimate corresponding to this radial sub-graph,
i.e., to the sub-graph formed by all nodes which are h hops
away from i. Hence, node i will achieve the suboptimal estimate
corresponding to the whole graph in a number of steps equal to its
radius. Moreover, this estimate will remain unchanged in all the
subsequent iterations. �
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