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Abstract

We obtain explicit expressions for one unknown thermal coefficient (among the conductivity,
mass density, specific heat and latent heat of fusion) of a semi-infinite material through the
one-phase fractional Lamé-Clapeyron-Stefan problem with an over-specified boundary condition
on the fixed face x=0. The partial differential equation and one of the conditions on the free
boundary include a time Caputo’s fractional derivative of order 0< a <1.Moreover, we obtain the
necessary and sufficient conditions on data in order to have a unique solution by using recent re-
sults obtained for the fractional diffusion equation exploiting the properties of the Wright and
Mainardi functions, given in: 1) Roscani-Santillan Marcus, Fract. Calc. Appl. Anal., 16 (2013), 802 -
815; 2) Roscani-Tarzia, Adv. Math. Sci. Appl,, 24 (2014), 237 - 249 and 3) Voller, Int. ]J. Heat Mass
Transfer, 74 (2014), 269 - 277. This work generalizes the method developed for the determination
of unknown thermal coefficients for the classical Lamé-Clapeyron-Stefan problem given in Tar-
zia, Adv. Appl. Math., 3 (1982), 74 - 82, which is recovered by taking the limit when the order

a—>1.
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1. Introduction

Heat transfer problems with a phase-change such as melting and freezing have been studied in the last century
due to their wide scientific and technological applications, see [1]-[8].
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A review of a long bibliography on moving and free boundary problems for phase-change materials (PCM)
for the heat equation is given in [9]. The importance of obtaining explicit solutions to some free boundary prob-
lems is given in the work [10].

We consider a semi-infinite material, with constant thermal coefficients, which is initially solid at its melting
temperature T, Attime t=0, we impose a constant temperature T, (T, >T, ) at the fixed face x=0, and a
solidification process begins.

We consider that one of the four thermal coefficients is unknown and that it will be determined by a fractional
phase-change problem by imposing an over-specified heat flux condition of the type described in [2] [11] [12].

Fractional differential equations have been developed in the last decades, see for example the books [13]-[15]
and the articles [16]-[19], and some papers on the fractional Lamé-Clapeyron-Stefan problem are published in
the last few years, see [20]-[26].

In this paper, the differential equation and a governing condition for the free boundary include a fractional
time derivative of order 0<a <1 inthe Caputo sense, which is defined as [27]:

Dﬂf(t):r(ll_a)j(tf'(r)) dr if 0<a<L and Df (t)=1'(t) if @=1 o

where T is the Gamma Function defined by:

X) = Tt“ exp(-t)dt. 2

We also define two very important functions, which will be useful in the next section:
1) Wright Function [28]:

. _ < Zn _
W(Z’a’ﬂ)_g—n!l”(na+ﬂ)’ zeC,a>-1 BeR. 3)
2) Mainardi Function [16]:
MU(Z)=W(—Z;—U,1—U)=+ZQOL zeC,v<l. 4)

nIC(-nv+1-v)’

We note that the Mainardi Function is a particular case of the Wright Function.
Some basic properties for the Caputo fractional derivative and for the Wright Function are the following:

r(1+ﬂ) tﬂ*a
r(l+p-a)

W(—x;—l,lj:erfc[ﬁj, 1-W [—x;—l,ljzerf (5) (6)
2 2 2 2

where the classical error and the complementary error functions are defined by:

%—V;I(z;a,,b’):W(z;a,a+ﬂ), D (/)= (5)

erf ( Ie‘” du,  erfc(x)=1-erf (x) “*du (7

- F e

The method for the determination of unknown thermal coefficients through a one-phase fractional Lamé-
Clapeyron-Stefan problem with an over-specified boundary condition at the fixed face x=0 is a new and
original problem, which is defined as: Finding the free boundary x =s(t), and the temperature T =T (x,t),
and one thermal coefficient such that the following equation and conditions are satisfied:

DT =T, O<x<s(t), t>0, ®)
5(0)=0, ©

T(x,0)=T (+o0,t)=T

m?

x>0, t>0, (10)
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T(s(t).t)=T,, t>0, (11)
—KT, (s(t),t)= p¢Ds(t), t>0, (12)
T(0,t)=T,>T,, t>0, (13)
ka(o,t)=—t‘332, t>0, (14)

where p is the density of mass, k is the thermal conductivity, c is the specific heat by unit of mass, ¢ is the

latent heat of fusion by unit of mass, A° :Lc >0 is the diffusion coefficient, T, (> Tm) is the temperature at
L

the fixed face x=0 and g, >0 is the coefficient which characterizes the heat flux at the fixed face x=0.

We assume that data T, and ¢, are determined experimentally.

The unknown thermal coefficient can be chosen among the four following ones: k, p,c and 7.

The goal of the present work is to obtain in Section II:

1) The solution of the one-phase time fractional Lamé-Clapeyron-Stefan of order 0 <a <1 (8)-(13) with an
over-specified boundary condition of the heat flux type (14) by giving the explicit expression of the temperature
T =T(x,t), the free boundary x=s(t) and the unknown thermal coefficient for the four different cases (see
Table 1);

2) The restrictions on the data of the corresponding problem for the four different cases in order to have a
unique explicit solution (see Table 1).

We remark that the results and explicit formulae obtained in [12] for the determination of one unknown ther-
mal coefficient through the classical one-phase Lamé-Clapeyron-Stefan problem are generalized for the frac-
tional case 0< «a <1, and they can be recovered when « —1" (see Table 2).

2. Determination of One Unknown Thermal Coefficient

First, we obtain a preliminary property in order to have a solution to problem (8)-(14).
Lemma 1. The solution of the problem (8)-(14) with 0<a <1 and one unknown thermal coefficient is

given by:
s(t)=A&t"?, &é>0, (15)
To-Tn wl_ X . «a
T(X,t)—TO Wl}l W( ﬂta/z ’ 2 11j:| ’ (16)

where the dimensionaless coefficient £ >0 and the unknown thermal coefficient must satisfy the following
system of equations:

KM -To) 1w (‘5;‘2’1) (17)
ﬂqor(l—aj 2
2
o(T, —Tm)l"(l—gj 1-w [—5;—‘;,1)
=¢ : (18)

M, (£)

T (1+ “)
2

Proof. Following [23] and [24], by using properties (5) and (7) we have that the expressions (16) and (15) for
the temperature and the free boundary satisfy Equation (8) and conditions (9)-(11) and (13). Exploiting condi-
tions (12) and (14), we obtain that the dimensionaless coefficient & and the unknown thermal coefficient must

satisfy conditions (17) and (18).
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Now, we will study the four following cases:
Case 1: Determination of {¢,c};

i

{&.0
Case 3: Determination of {&,k};
{¢

P
whose results are summarized in Table 1.

Remark 1.

In a analogous manner, we can compute the explicit formulae for the four thermal coefficients of the solid
phase of the semi-infinite material by using a solidification process instead of a fusion process.

Theorem 2 (Case 1: Determination of the thermal coefficient c).

If data verify the condition:

Case 2: Determination of

Case 4: Determination of

kpz(TO—Tm)r(uoz‘j

2T 1—“)
e

then the solution of the Case 1 (problem (8)-(14) with 0<a <1 and the unknown thermal coefficient ¢) is
given by:

<1, (19)

zr[1+ “j
coc ? 2 {1_w (- —ﬁ,lﬂ , (20)
(TO _Tm)r(l_gj Ma/z (éa) 2

where the coefficient &=¢&, =&, (a,k, p,£,0,,T, =T, )>0 is the unique solution of the equation:

1-W| —x-Z1| kpt(T,-T,)T[1+Z
2 2) 1
- . x>0, (21)
X G (1-2‘) Mo ()

Moreover, the temperature T (x,t)=T,(x,t) and the free boundary s(t)=s, (t) are given by the follow-
ing expressions (0 <a <1):

T T-T, wl X . a
e
s, (t)=2,E,t, (23)

the dimensionless coefficient &, =¢&, (a, k,p,0,0,, T, T, ) >0 is the unique solution of the Equation (21) and
the diffusion coefficient /15 is given by the following expression:

k(TO—Tm)F(l—aj
Pr k _ 2 Ma/z(fa) _ (24)

“ pc, a wl . @
pzr[1+2) 50{1 W( £ 2,1)}

Proof. From condition (18) we obtain expression (20), taking into account the definition of the diffusion co-
efficient and the expression (20) from condition (17), we obtain the Equation (21) for the dimensionless coeffi-
cient & . The Equation (21) has a unique positive solution if and only if data verify condition (19). In order to
prove this fact we can see that the following real functions:
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G, (x)=M, (x), GZa(x):W[—x;—%,lj, Gsa(x):l—W(—x;—%,lj, x>0, (25)

N R

have the following properties [23]:

GM(O*)=;>O, G, (+0)=0, G, (x)<0, Vx>0, (26)
r(l-“]
2
G, (07)=1 G, (+0)=0, G, (x)<0, Vx>0, (27)
G, (0)=0, Gy, (+0)=1 Gy, (x)>0, ¥x>0, (28)
and the real function
1-wW (—x;—g,lj
R (X)=————"7 x>0, (29)

is a positive strictly decreasing function because

]

>0, Fy, (+0)=0, (30)

and

Ry (X)= — = . <0, Vx>0, 31)

owning to the fact

Gy, (X) =G, (X)-Gs, (07) = jG j 3 c|t>j|v|g dt=xM, (x), ¥x>0. (32)

0 2 2

Then, we get the expression (24) for the diffusion coefficient.
Theorem 3. If the parameter o — 1" then, under the hypothesis (19), the solution of the Case 1, given by
(22), (23), (20) and (21) coincides with the one given in [12]:

s,(t) =247, 44>0, (33)
T, -T, X
L) =To -5 (1) o (%t”z j ’ &
nqg 2 k k(TO_Tm)
= Mo erf?(y), A= =0 ) 35
hom oy e g e () >

where the dimensionless coefficient g >0 is the unique solution of the equation:

@en erf(x)

kpt(T,-T,) x

exp(x*) = , x>0. (36)

In particular, the inequality (19) is transformed in the following one:
kpt(T,-T,)
297

Proof. It follows from (6) and properties of functions T' and W .

<1. (37)
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Theorem 4 (Case 2: Determination of the thermal coefficient £).

If data verify the condition:
N ek (T, =T
—( 0 m) <1

a 1
ri-—
Qo ( 2]

then the solution of the Case 2 (problem (8)-(14) with 0<a <1 and the unknown thermal coefficient ¢) is
given by:

(38)

c(T, —Tm)l“(l—gj

(=0 = , (39)

REarE
where the coefficient £, =¢, (a, k,p,c,0,T, - T, ) >0 is the unique solution of the equation:

1_W[_x;_z,1jzm 50, “0)

wl-g)
vl

M,z (X)

Moreover, the temperature T (x,t)=T,(x,t) and the free boundary s(t)=s, (t) are given by the follow-
ing expressions (O <a< 1) :

and the real function F,, is defined by:

F4a(x): x>0. (41)

To =T {1—W [—La/z;—ﬁ,lﬂ, (42)
1-W [—s‘a;—ZJJ Z 2

s, (1) = A&,t7, (43)

T, (xt)=T,—

a

the dimensionless coefficient £=¢ =&, (a,k,p,c, G To —Tm) >0 is the unique solution of the Equation (40)
and the diffusion coefficient A’ is given by the following expression:
A2=2"= X .
a pC
Proof. From (17), we obtain the Equation (40) for the coefficient &, , which has a unique solution if and only
if data verify the condition (38) because function G,, (see (28)) is a positive increasing function that satisfies
the properties given in (28). From (18), we obtain the expression (39), and then we have that (43) holds.
Theorem 5. If the parameter o« — 1" then, under the hypothesis (38), the solution of the Case 2 given by
(42), (43), (39) and (40) coincides with the one given in [12]:

s, (t)=24uwt”, 1 >0, (45)

[ n X
T, (xt)=T,—q, Herf (WJ (46)
[c exp(-4 k
l=0y ——( ) A=,—, (47)
Pk 1y pe

where the dimensionless coefficient 4 >0 is the unique solution of the equation:

(44)
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erf (x):M p—Ck x>0. (48)

4o T
In particular, the inequality (38) is transformed in the following one:

(To=To) |pok

Uy T

<1. (49)

Proof. It follows from (6) and properties of functions I' and W .

Theorem 6 (Case 3: Determination of the thermal coefficient k).

For any data, the solution of the Case 3 (problem (8)-(14) with 0 <« <1 and the unknown thermal coeffi-
cient k) is given by:

qr? (1—aj 2
k=k, = —22[1—w (—cfa;—ﬁ,lﬂ : (50)
pC(TO _Tm) 2

where the coefficient &, =&, (a,/,p,¢,0,, T, =T, ) >0 is the unique solution of the equation:

X{l—W(—X;—Z,lﬂ c(TO—Tm)r(l—OZ‘J

Ma/Z(X) ) gr(1+aj , x>0 (51)
2

Moreover, the temperature T (x,t)=T,(x,t) and the free boundary s(t)=s, (t) are given by the follow-
ing expressions (0<a <1):

L T, -T, wl o x a
e U
a? 2'

s, ()= 4,E,t%, (53)

the dimensionless coefficient &, = ¢, (a, C,p. 0,0y T, —Tm) >0 is the unique solution of the Equation (50) and
the diffusion coefficient /lj is given by the following expression:

(et

“” pC(TO _Tm)

Proof. From (18) we have that the coefficient &, satisfies the Equation (51), which has a unique solution for
any data since the real function F,, is a positive increasing function since the following properties hold [23]
[24]:

F,., (0+ ) =0, F,, (+0)=+x, F,(x)>0, ¥x>0, (55)

Therefore, from (17) we obtain the expressions (50) and (54) for the conductivity k, and the diffusion coef-
ficient A, respectively.

Theorem 7. For any data, if the parameter o — 1" then the solution of the Case 3 given by (52), (53), (50)
and (51) coincides with the one given in [12]:

s, (t)=24mt", 1 >0, (56)
T, -T, X
T (xt)=T, - erf () erf (224“/2 J , (57)

2188



D. A. Tarzia

o exp (-~
R —— T zqu_oﬁ, (58)
pc(T,-T,) Pl
where the dimensionless coefficient 4 >0 is the unique solution of the equation:
c(T,—-T
xexp(xz)erf(x):M x>0, (59)

N

Proof. It follows from (6) and properties of functions T' and W .

Theorem 8 (Case 4: Determination of the thermal coefficient p).

For any data, the solution of the Case 4 (problem (8)-(14) with 0<« <1 and the unknown thermal coeffi-
cient p)is given by:

qgrz(l—Zj o 2
=p =—— “Z11-W| =& -2 1|, 60
PP kc(To—Tm)z{ (5” 2 ﬂ 0

where the coefficient &, =
the temperature T (x,t)=T,

a

g, (o:,é,k,c,qo,T0 —Tm) >0 is the unique solution of the Equation (51). Moreover,
(x,t) and the free boundary s(t)=s,(t) are given by the following expressions

O<ax<l:
To—Ta wl X L a
e
s, ()= 24, E.t7, (62)

the dimensionless coefficient £=¢, =¢, (a,c,k,(,qO,To —Tm) >0 is the unique solution of the Equation (51)
and the diffusion coefficient /15 is given by the following expression:

A = K (TO _Tm ) (63)

gl

Proof. It is similar to the proof of the Case 3 (see Theorem 6).
Theorem 9. For any data, if the parameter « — 1 then the solution of the Case 4 given by (61), (62), (60)
and (51) coincides with the one given in [12]:

s (t)=24ut", >0, (64)
T, (xt)=T,- ;?f_(;;n) erf [22}/2 ] (65)
ae kc(T:q—gTm ) erf*(m). 4= q:\(/ljer_fT(i) ' (60)
where the dimensionless coefficient 4 >0 is the unique solution of the equation:
xexp(xz)erf(x)zc(g—\/_;m), x>0. (67)

Proof. It is similar to the proof of the Case 3 (see Theorem 7).

Now, in order to summarize our results on the determination of one unknown thermal coefficient through a frac-
tional Lamé-Clapeyron-Stefan problem with an over-specified heat flux boundary condition on the fixed face, we
show the formula and restrictions for data for the four cases for the fractional Lamé-Clapeyron-Stefan problem
with 0<a <1 (see Table 1) and for the classical Lamé-Clapeyron-Stefan problem with « =1 (see Table 2).
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Table 1. Summary of the results corresponding to the determination of one unknown thermal coefficient through a fractional
Lamé-Clapeyron-Stefan problem with an over-specified heat flux boundary condition on the fixed face (4 cases).

Explicit formulae for the

Case # unknown thermal coefficient Equation that must satisfy the parameter ¢ Restrictions on data
zr(nﬂj 1-w [4;11} kpt(T, 7Tm)r(1+5) kpt(T, 7Tm)r(1+ﬁ)
2 2 2 1 2
1 c=———=2 _F, (&) = M( ) x>0 <1
a X 2 a , (X ) a
(T, —Tm)l“(l—z) Qe (l_fj o qal“(l—Ej
o(r,-T,)r(1-5) N A ok (1,T,)
2 l=—F————2 3“()()_7(1‘ X T a)
a Til-— ri-—
F[1+5]FM(§) % ( 2) % ( 2J
qr (17%] . c(T, —Tm)l"(l—%j
3 k=72[17w[7§;i,1ﬂ F.(X)=—F——=4, x>0 e
T,-T, 2 e
pe(To=Ta) zr(pﬁ)
2
a
qzl—z(l_g) ) C(TO _Tm)r[l_zj
4 onizz[l—w[—cf?—g,lﬂ Fe()s——F—5— x>0 e
ke(T, - T,,) 2 zr(1+5)

Table 2. Summary of the results corresponding to the determination of one unknown thermal coefficient through a classical
Lamé-Clapeyron-Stefan problem (a =1) with an over-specified heat flux boundary condition on the fixed face (4 cases).

These results were obtained by taking « — 1~ in the results given in Table 1 [12].

Case#  Explicit formulae for the unknown thermal coefficient ~ Equation that must satisfy the parameter x  Restrictions on data

nq? erf (x) _kp((T,-T,) pk(T,-T,)
! o= ert’ = o exp(x?), x>0 PR Tn) 4
Pk(T,-T, ) («) X N p(x*), x> T
— 2 _ 3
2 (=q, [c exo(or) erf(x):(To o) ek o T,-T, [pck _,
P # % T s T
. T,-T
’ s ST e )ert (=0 oo
0 m
Z : T,-T
‘ Py @ U B Un A TR —
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