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Abstract 
We obtain explicit expressions for one unknown thermal coefficient (among the conductivity, 
mass density, specific heat and latent heat of fusion) of a semi-infinite material through the 
one-phase fractional Lamé-Clapeyron-Stefan problem with an over-specified boundary condition 
on the fixed face x = 0 . The partial differential equation and one of the conditions on the free 
boundary include a time Caputo’s fractional derivative of order < <0 1α . Moreover, we obtain the 
necessary and sufficient conditions on data in order to have a unique solution by using recent re-
sults obtained for the fractional diffusion equation exploiting the properties of the Wright and 
Mainardi functions, given in: 1) Roscani-Santillan Marcus, Fract. Calc. Appl. Anal., 16 (2013), 802 - 
815; 2) Roscani-Tarzia, Adv. Math. Sci. Appl., 24 (2014), 237 - 249 and 3) Voller, Int. J. Heat Mass 
Transfer, 74 (2014), 269 - 277. This work generalizes the method developed for the determination 
of unknown thermal coefficients for the classical Lamé-Clapeyron-Stefan problem given in Tar-
zia, Adv. Appl. Math., 3 (1982), 74 - 82, which is recovered by taking the limit when the order 

−→ 1α . 
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Free Boundary Problems, Fractional Diffusion, Lamé-Clapeyron-Stefan Problem, Unknown 
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1. Introduction 
Heat transfer problems with a phase-change such as melting and freezing have been studied in the last century 
due to their wide scientific and technological applications, see [1]-[8].  
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A review of a long bibliography on moving and free boundary problems for phase-change materials (PCM) 
for the heat equation is given in [9]. The importance of obtaining explicit solutions to some free boundary prob-
lems is given in the work [10]. 

We consider a semi-infinite material, with constant thermal coefficients, which is initially solid at its melting 
temperature Tm. At time 0t = , we impose a constant temperature ( )0 0 mT T T>  at the fixed face 0x = , and a 
solidification process begins. 

We consider that one of the four thermal coefficients is unknown and that it will be determined by a fractional 
phase-change problem by imposing an over-specified heat flux condition of the type described in [2] [11] [12]. 

Fractional differential equations have been developed in the last decades, see for example the books [13]-[15] 
and the articles [16]-[19], and some papers on the fractional Lamé-Clapeyron-Stefan problem are published in 
the last few years, see [20]-[26]. 

In this paper, the differential equation and a governing condition for the free boundary include a fractional 
time derivative of order 0 1α< <  in the Caputo sense, which is defined as [27]: 

( ) ( )
( )

( )
( ) ( )

0

1 d if 0 1; and if 1
1

t f
D f t D f t f t

t
α α

α

τ
τ α α

α τ

′
′= < < = =

Γ − −
∫             (1) 

where Γ  is the Gamma Function defined by: 

( ) ( )1

0

exp dxx t t t
+∞

−Γ = −∫ .                                 (2) 

We also define two very important functions, which will be useful in the next section: 
1) Wright Function [28]: 

( ) ( )0
; , , , 1,

!

n

n

zW z z
n n

α β α β
α β

+∞

=

= ∈ > − ∈
Γ +∑   .                     (3) 

2) Mainardi Function [16]: 

( ) ( ) ( )
( )0

; ,1 , , 1
! 1

n

n

z
M z W z z

n nυ υ υ υ
υ υ

+∞

=

−
= − − − = ∈ <

Γ − + −∑  .                 (4) 

We note that the Mainardi Function is a particular case of the Wright Function. 
Some basic properties for the Caputo fractional derivative and for the Wright Function are the following: 

( ) ( ) ( ) ( )
( )

1
; , ; , ,

1
W z W z D t t
z

α β β αβ
α β α α β

β α
−Γ +∂

= + =
∂ Γ + −

,                  (5) 

1 1; ,1 , 1 ; ,1
2 2 2 2

x xW x erfc W x erf       − − = − − − =       
       

,                    (6) 

where the classical error and the complementary error functions are defined by:  

( ) ( ) ( )2 2

0

2 2e d , 1 e d
π π

x
u u

x

erf x u erfc x erf x u
+∞

− −= = − =∫ ∫                   (7) 

The method for the determination of unknown thermal coefficients through a one-phase fractional Lamé- 
Clapeyron-Stefan problem with an over-specified boundary condition at the fixed face 0x =  is a new and 
original problem, which is defined as: Finding the free boundary ( )x s t= , and the temperature ( ),T T x t= , 
and one thermal coefficient such that the following equation and conditions are satisfied: 

( )2 , 0 , 0xxD T T x s t tα λ= < < > ,                            (8) 

( )0 0s = ,                                      (9) 

( ) ( ),0 , , 0, 0mT x T t T x t= +∞ = > > ,                          (10) 
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( )( ), , 0mT s t t T t= > ,                                (11) 

( )( ) ( ), , 0xkT s t t D s t tαρ− = > ,                            (12) 

( ) 00, , 0mT t T T t= > > ,                               (13) 

( ) 0
20, , 0x

q
kT t t

tα
= − > ,                               (14) 

where ρ  is the density of mass, k is the thermal conductivity, c is the specific heat by unit of mass,   is the  

latent heat of fusion by unit of mass, 2 0k
c

λ
ρ

= >  is the diffusion coefficient, ( )0 mT T>  is the temperature at  

the fixed face 0x =  and 0 0q >  is the coefficient which characterizes the heat flux at the fixed face 0x = . 
We assume that data 0T  and 0q  are determined experimentally. 

The unknown thermal coefficient can be chosen among the four following ones: , ,k cρ  and  . 
The goal of the present work is to obtain in Section II:  
1) The solution of the one-phase time fractional Lamé-Clapeyron-Stefan of order 0 1α< <  (8)-(13) with an 

over-specified boundary condition of the heat flux type (14) by giving the explicit expression of the temperature 
( ),T T x t= , the free boundary ( )x s t=  and the unknown thermal coefficient for the four different cases (see 

Table 1); 
2) The restrictions on the data of the corresponding problem for the four different cases in order to have a 

unique explicit solution (see Table 1). 
We remark that the results and explicit formulae obtained in [12] for the determination of one unknown ther-

mal coefficient through the classical one-phase Lamé-Clapeyron-Stefan problem are generalized for the frac-
tional case 0 1α< < , and they can be recovered when 1α −→  (see Table 2). 

2. Determination of One Unknown Thermal Coefficient 
First, we obtain a preliminary property in order to have a solution to problem (8)-(14). 

Lemma 1. The solution of the problem (8)-(14) with 0 1α< <  and one unknown thermal coefficient is 
given by: 

( ) 2 , 0s t tαλξ ξ= > ,                                 (15) 

( ) 0
0 2, 1 ; ,1

21 ; ,1
2

mT T xT x t T W
tW
α

α
α λξ

−   = − − − −      − − − 
 

,                  (16) 

where the dimensionaless coefficient 0ξ >  and the unknown thermal coefficient must satisfy the following 
system of equations: 

( )0

0

1 ; ,1
21

2

mk T T
W

q

αξ
αλ

−  = − − −    Γ − 
 

,                            (17) 

( )

( )
0

2

1 1 ; ,1
2 2

1
2

mc T T W

Mα

α αξ
ξ

α ξ

   − Γ − − − −   
   =

 Γ + 
 



.                        (18) 

Proof. Following [23] and [24], by using properties (5) and (7) we have that the expressions (16) and (15) for 
the temperature and the free boundary satisfy Equation (8) and conditions (9)-(11) and (13). Exploiting condi-
tions (12) and (14), we obtain that the dimensionaless coefficient ξ  and the unknown thermal coefficient must 
satisfy conditions (17) and (18). 
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Now, we will study the four following cases: 
Case 1: Determination of { },cξ ; 

Case 2: Determination of { },ξ  ; 

Case 3: Determination of { }, kξ ; 

Case 4: Determination of { },ξ ρ , 
whose results are summarized in Table 1. 

Remark 1. 
In a analogous manner, we can compute the explicit formulae for the four thermal coefficients of the solid 

phase of the semi-infinite material by using a solidification process instead of a fusion process. 
Theorem 2 (Case 1: Determination of the thermal coefficient c). 
If data verify the condition: 

( )0

2
0

1
2 1

1
2

mk T T

q

αρ

α

 − Γ + 
  <

 Γ − 
 



,                              (19) 

then the solution of the Case 1 (problem (8)-(14) with 0 1α< <  and the unknown thermal coefficient c) is 
given by: 

( ) ( )2
0

1
2 1 ; ,1

21
2m

c c W
MT T

α
α α

α α

α
ξ αξ

α ξ

 Γ +     = = − − −      − Γ − 
 



,                  (20) 

where the coefficient ( )0 0, , , , , 0mk q T Tα αξ ξ ξ α ρ= = − >  is the unique solution of the equation: 

( )

( )
0

2 3 2
0

1 ; ,1 1
12 2 , 0

1
2

mW x k T T
x

x M xq α

α αρ

α

   − − − − Γ +   
   = >

 Γ − 
 



.                 (21) 

Moreover, the temperature ( ) ( ), ,T x t T x tα=  and the free boundary ( ) ( )s t s tα=  are given by the follow-
ing expressions ( )0 1α< < : 

( ) 0
0 2, 1 ; ,1

21 ; ,1
2

mT T xT x t T W
tW

α α
α

α

α
α λξ

  −
= − − − −  

     − − − 
 

,                  (22) 

( ) 2s t tαα α αλ ξ= ,                                   (23) 

the dimensionless coefficient ( )0 0, , , , , 0mk q T Tα αξ ξ α ρ= − >  is the unique solution of the Equation (21) and 
the diffusion coefficient 2

αλ  is given by the following expression: 

( )0
22

1 ( )2

1 1 ; ,1
2 2

mk T T Mk
c W

α α
α

α
α α

α
ξ

λ
αρ αρ ξ ξ

 − Γ − 
 = =

    Γ + − − −        


.                  (24) 

Proof. From condition (18) we obtain expression (20), taking into account the definition of the diffusion co-
efficient and the expression (20) from condition (17), we obtain the Equation (21) for the dimensionless coeffi-
cient αξ . The Equation (21) has a unique positive solution if and only if data verify condition (19). In order to 
prove this fact we can see that the following real functions: 
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( ) ( ) ( )1 2 3
2

( ) , ; ,1 , 1 ; ,1 , 0
2 2

G x M x G x W x G x W x xα α α α
α α   = = − − = − − − >   

   
,        (25) 

have the following properties [23]: 

( ) ( ) ( )1 1 1
10 0, 0, 0, 0

1
2

G G G x xα α αα
+ ′= > +∞ = < ∀ >

 Γ − 
 

,                (26) 

( ) ( ) ( )2 2 20 1, 0, 0, 0G G G x xα α α
+ ′= +∞ = < ∀ > ,                     (27) 

( ) ( ) ( )3 3 30 0, 1, 0, 0G G G x xα α α
+ ′= +∞ = > ∀ > ,                     (28) 

and the real function  

( )5

1 ; ,1
2 , 0

W x
F x x

xα

α − − − 
 = > ,                           (29) 

is a positive strictly decreasing function because 

( ) ( )5 5
10 0, 0

1
2

F Fα αα
+ = > +∞ =

 Γ − 
 

,                         (30) 

and  

( ) ( ) ( ) ( ) ( )3
3 3 2

5 2 2 0, 0
xM x G x

xG x G x
F x x

x x

α α
α α

α

−
′ −

′ = = < ∀ > ,                (31) 

owning to the fact 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3
0 0 02 2 2

0 d d d , 0.
x x x

G x G x G G t t M t t M x t xM x xα α α α α α α
+ ′= − = = > = ∀ >∫ ∫ ∫       (32) 

Then, we get the expression (24) for the diffusion coefficient. 
Theorem 3. If the parameter 1α −→  then, under the hypothesis (19), the solution of the Case 1, given by 

(22), (23), (20) and (21) coincides with the one given in [12]: 

( ) 1 2
1 1 1 12 , 0s t tλ µ µ= > ,                               (33) 

( ) ( )
0

1 0 1 2
1 1

,
2

mT T xT x t T erf
erf tµ λ

 −
= −  

 
,                           (34) 

( )
( ) ( )

( )

2
020

1 1 12
1 0 10

π
,

π
m

m

k T Tq kc erf
c q erfk T T

µ λ
ρ µρ

−
= = =

−
,                  (35) 

where the dimensionless coefficient 1 0µ >  is the unique solution of the equation: 

( ) ( )
( )2

2 0

0

π
exp , 0

m

erf xq
x x

k T T xρ
= >

−

.                         (36) 

In particular, the inequality (19) is transformed in the following one: 

( )0
2
0

1
2

mk T T
q

ρ −
<



.                                  (37) 

Proof. It follows from (6) and properties of functions Γ  and W . 
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Theorem 4 (Case 2: Determination of the thermal coefficient ). 
If data verify the condition: 

( )0

0

1
1

2

mck T T

q

ρ
α
−

<
 Γ − 
 

,                                  (38) 

then the solution of the Case 2 (problem (8)-(14) with 0 1α< <  and the unknown thermal coefficient  ) is 
given by: 

( )

( )

0

4

1
2

1
2

mc T T

F
α

α

α

α ξ

 − Γ − 
 = =

 Γ + 
 

  ,                            (39) 

where the coefficient ( )0 0, , , , , 0mk c q T Tα αξ ξ α ρ= − >  is the unique solution of the equation: 

( )0

0

1 ; ,1 , 0
2 1

2

mck T T
W x x

q

ρα
α
− − − − = >     Γ − 

 

,                        (40) 

and the real function 4F α  is defined by: 

( ) ( )4
2

1 ; ,1
2

, 0
x W x

F x x
M xα

α

α  − − −    = > .                         (41) 

Moreover, the temperature ( ) ( ), ,T x t T x tα=  and the free boundary ( ) ( )s t s tα=  are given by the follow-
ing expressions ( )0 1α< < : 

( ) 0
0 2, 1 ; ,1

21 ; ,1
2

mT T xT x t T W
tW

α α
α

α

α
α λξ

  −
= − − − −  

     − − − 
 

,                  (42) 

( ) 2s t tαα αλξ= ,                                   (43) 

the dimensionless coefficient ( )0 0, , , , , 0mk c q T Tα αξ ξ ξ α ρ= = − >  is the unique solution of the Equation (40) 
and the diffusion coefficient 2

αλ  is given by the following expression: 

2 2 k
cαλ λ

ρ
= = .                                    (44) 

Proof. From (17), we obtain the Equation (40) for the coefficient αξ , which has a unique solution if and only 
if data verify the condition (38) because function 3G α  (see (28)) is a positive increasing function that satisfies 
the properties given in (28). From (18), we obtain the expression (39), and then we have that (43) holds.  

Theorem 5. If the parameter 1α −→  then, under the hypothesis (38), the solution of the Case 2 given by 
(42), (43), (39) and (40) coincides with the one given in [12]: 

( ) 1 2
1 1 12 , 0s t tλµ µ= > ,                               (45) 

( )1 0 0 1 2

π,
2

xT x t T q erf
ck tρ λ

 = −  
 

,                           (46) 

( )2
1

1 0
1

exp
,c kq

k c

µ
λ

ρ µ ρ

−
= = ,                           (47) 

where the dimensionless coefficient 1 0µ >  is the unique solution of the equation: 
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( ) ( )0

0

, 0
π

mT T ckerf x x
q

ρ−
= > .                            (48) 

In particular, the inequality (38) is transformed in the following one: 

( )0

0

1
π

mT T ck
q

ρ−
< .                                 (49) 

Proof. It follows from (6) and properties of functions Γ  and W . 
Theorem 6 (Case 3: Determination of the thermal coefficient k). 
For any data, the solution of the Case 3 (problem (8)-(14) with 0 1α< <  and the unknown thermal coeffi-

cient k) is given by: 

( )

2 2
20

2
0

1
2 1 ; ,1

2
m

q
k k W

c T T
α α

α
αξ

ρ

 Γ −     = = − − −   −  
,                      (50) 

where the coefficient ( )0 0, , , , , 0mc q T Tα αξ ξ α ρ= − >  is the unique solution of the equation: 

( )

( )0

2

1 ; ,1 1
2 2 , 0

1
2

mx W x c T T
x

M xα

α α

α

    − − − − Γ −        = >
 Γ + 
 



.                    (51) 

Moreover, the temperature ( ) ( ), ,T x t T x tα=  and the free boundary ( ) ( )s t s tα=  are given by the follow-
ing expressions ( )0 1α< < : 

( ) 0
0 2, 1 ; ,1

21 ; ,1
2

mT T xT x t T W
tW

α α
α

α

α
α λξ

  −
= − − − −  

     − − − 
 

,                 (52) 

( ) 2s t tαα α αλ ξ= ,                                   (53) 

the dimensionless coefficient ( )0 0, , , , , 0mc q T Tα αξ ξ α ρ= − >  is the unique solution of the Equation (50) and 
the diffusion coefficient 2

αλ  is given by the following expression: 

( )
0

0

1
2 1 ; ,1

2m

q
W

c T Tα α

α
αλ ξ

ρ

 Γ −     = − − −  −   
.                          (54) 

Proof. From (18) we have that the coefficient αξ  satisfies the Equation (51), which has a unique solution for 
any data since the real function 4F α  is a positive increasing function since the following properties hold [23] 
[24]: 

( ) ( ) ( )4 4 40 0, , 0, 0F F F x xα α α
+ ′= +∞ = +∞ > ∀ > ,                    (55) 

Therefore, from (17) we obtain the expressions (50) and (54) for the conductivity kα  and the diffusion coef-
ficient αλ , respectively. 

Theorem 7. For any data, if the parameter 1α −→  then the solution of the Case 3 given by (52), (53), (50) 
and (51) coincides with the one given in [12]: 

( ) 1 2
1 1 1 12 , 0s t tλ µ µ= > ,                               (56) 

( ) ( )
0

1 0 1 2
1 1

,
2

mT T xT x t T erf
erf tµ λ

 −
= −  

 
,                           (57) 
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( )
( )

( )22
120 0

1 1 12
10

expπ
,

m

q q
k erf

c T T

µ
µ λ

ρ µρ

−
= =

− 

,                     (58) 

where the dimensionless coefficient 1 0µ >  is the unique solution of the equation: 

( ) ( ) ( )02exp , 0
π

mc T T
x x erf x x

−
= >



.                          (59) 

Proof. It follows from (6) and properties of functions Γ  and W . 
Theorem 8 (Case 4: Determination of the thermal coefficient ρ). 
For any data, the solution of the Case 4 (problem (8)-(14) with 0 1α< <  and the unknown thermal coeffi-

cient ρ ) is given by: 

( )

2 2
20

2
0

1
2 1 ; ,1

2
m

q
W

kc T T
α α

α
αρ ρ ξ

 Γ −     = = − − −   −  
,                      (60) 

where the coefficient ( )0 0, , , , , 0mk c q T Tα αξ ξ α= − >  is the unique solution of the Equation (51). Moreover, 
the temperature ( ) ( ), ,T x t T x tα=  and the free boundary ( ) ( )s t s tα=  are given by the following expressions 
0 1α< < : 

( ) 0
0 2, 1 ; ,1

21 ; ,1
2

mT T xT x t T W
tW

α α
α

α

α
α λξ

  −
= − − − −  

     − − − 
 

,                  (61) 

( ) 2s t tαα α αλ ξ= ,                                   (62) 

the dimensionless coefficient ( )0 0, , , , , 0mc k q T Tα αξ ξ ξ α= = − >  is the unique solution of the Equation (51) 
and the diffusion coefficient 2

αλ  is given by the following expression: 

( )0

0 1 1 ; ,1
2 2

mk T T

q W
α

α

λ
α αξ

−
=

    Γ − − − −        

                          (63) 

Proof. It is similar to the proof of the Case 3 (see Theorem 6). 
Theorem 9. For any data, if the parameter 1α −→  then the solution of the Case 4 given by (61), (62), (60) 

and (51) coincides with the one given in [12]: 

( ) 1 2
1 1 1 12 , 0s t tλ µ µ= > ,                               (64) 

( ) ( )
0

1 0 1 2
1 1

,
2

mT T xT x t T erf
erf tµ λ

 −
= −  

 
,                           (65) 

( )
( ) ( )

( )

2
020

1 1 12
0 10

π
,

π
m

m

k T Tq
erf

q erfkc T T
ρ µ λ

µ

−
= =

−
,                     (66) 

where the dimensionless coefficient 1 0µ >  is the unique solution of the equation: 

( ) ( ) ( )02exp , 0
π

mc T T
x x erf x x

−
= >



.                          (67) 

Proof. It is similar to the proof of the Case 3 (see Theorem 7). 
Now, in order to summarize our results on the determination of one unknown thermal coefficient through a frac-

tional Lamé-Clapeyron-Stefan problem with an over-specified heat flux boundary condition on the fixed face, we 
show the formula and restrictions for data for the four cases for the fractional Lamé-Clapeyron-Stefan problem 
with 0 1α< <  (see Table 1) and for the classical Lamé-Clapeyron-Stefan problem with 1α =  (see Table 2). 
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Table 1. Summary of the results corresponding to the determination of one unknown thermal coefficient through a fractional 
Lamé-Clapeyron-Stefan problem with an over-specified heat flux boundary condition on the fixed face (4 cases). 

Case # Explicit formulae for the 
unknown thermal coefficient 

Equation that must satisfy the parameter ξ  Restrictions on data 

1 
( )

( )4

0

1
2

1
2m

c F
T T

α

α

ξ
α

 Γ + 
 =

 − Γ − 
 



 
( )

( )
0

2 3 2
0

1 ; ,1 1
12 2 , 0

1
2

mW x k T T
x

x M xq α

α αρ

α

   − − − − Γ +   
   = >

 Γ − 
 



 
( )0

2
0

1
2 1

1
2

mk T T

q

αρ

α

 − Γ + 
  <

 Γ − 
 



 

2 
( )0

4

1
2

1 ( )
2

mc T T

F α

α

α ξ

 − Γ − 
 =

 Γ + 
 

  ( ) ( )0
3

0

, 0
1

2

mck T T
G x x

q
α

ρ
α
−

= >
 Γ − 
 

 ( )0

0

1
1

2

mck T T

q

ρ
α
−

<
 Γ − 
 

 

3 ( )

2 2
20

2

0

1
2 1 ; ,1

2
m

q
k W

c T T

α
αξ

ρ

 Γ −     = − − −  −   

 

( )
( )0

4

1
2 , 0

1
2

mc T T
F x xα

α

α

 − Γ − 
 = >

 Γ + 
 



 ----------- 

4 
( )

2 2
20

2

0

1
2 1 ; ,1

2
m

q
W

kc T T

α
αρ ξ

 Γ −     = − − −  −   
 ( )

( )0

4

1
2 , 0

1
2

mc T T
F x xα

α

α

 − Γ − 
 = >

 Γ + 
 



 ----------- 

 
Table 2. Summary of the results corresponding to the determination of one unknown thermal coefficient through a classical 
Lamé-Clapeyron-Stefan problem ( )1α =  with an over-specified heat flux boundary condition on the fixed face (4 cases). 

These results were obtained by taking 1α −→  in the results given in Table 1 [12]. 
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