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a b s t r a c t

The concepts of ultimate bounds and invariant sets play a key role in several control theory problems, as
they replace the notion of asymptotic stability in the presence of unknown disturbances. However, when
the disturbances are unbounded, as in the case of Gaussian white noise, no ultimate bounds nor invariant
sets can in general be found. To overcome this limitation we introduced, in previous work, the notions
of probabilistic ultimate bound (PUB) and probabilistic invariant set (PIS) for discrete-time systems. This
article extends the notions of PUB and PIS to continuous-time systems, studying their main properties
and providing tools for their calculation. In addition, the use of these concepts in robust control design by
covariance assignment is presented.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamical systems under the influence of non-vanishing un-
known disturbances cannot achieve asymptotic stability in gen-
eral. However, under certain conditions, the ultimate boundedness
of the system trajectories can be guaranteed and invariant sets can
be found. Consequently, the notions of ultimate bounds (UB) and
invariant sets (IS) play a key role in control systems theory and de-
sign.

A necessary condition to ensure the existence of ultimate
bounds and invariant sets is that the disturbances must be
bounded. However, in systems theory, disturbances are often
represented by unbounded signals such as Gaussianwhite noise, in
which case ultimate bounds and invariant sets cannot be obtained
in a classical sense. To overcome this problem, the authors have
introduced inKofman,DeDoná, and Seron (2011, 2012) thenotions
of probabilistic ultimate bound (PUB) and probabilistic invariant set
(PIS), as sets where the trajectories converge to and stay in with a
given probability.

✩ The material in this paper was partially presented at the 19th IFAC World
Congress, August 24–29, 2014, Cape Town, South Africa. This paper was
recommended for publication in revised form by Associate Editor Akira Kojima
under the direction of Editor Ian R. Petersen.

E-mail addresses: kofman@cifasis-conicet.gov.ar (E. Kofman),
Jose.Dedona@newcastle.edu.au (J.A. De Doná), Maria.Seron@newcastle.edu.au
(M.M. Seron), pizzi@cifasis-conicet.gov.ar (N. Pizzi).
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Classic UB and IS are an important tool in modern treatments
of model predictive control (see, e.g., Mayne, Rawlings, Rao, &
Scokaert, 2000; Rawlings & Mayne, 2009), fault diagnosis and
fault tolerant control (see, e.g., Olaru, De Doná, Seron, & Stoican,
2010; Seron, Zhuo, De Doná, & Martínez, 2008) and several other
applications of set invariance in control problems (see Blanchini,
1999 and the references therein). With the usage of the PUB and
PIS notions,many of these applications can be extended to consider
also the presence of unbounded disturbances. In fact, some recent
works on model predictive control use concepts that are related to
probabilistic invariant sets (see, e.g., Cannon, Kouvaritakis, & Wu,
2009; González et al., 2014; Hashimoto, 2013).

Although the concepts in Kofman et al. (2011, 2012) are limited
to the discrete-time domain, ultimate boundedness and invariance
are also important concepts in continuous-time systems, and
they experience the same limitations regarding unbounded
disturbances.

Motivated by these facts, this work firstly extends the notions,
properties and tools for PUB and PIS developed in Kofman et al.
(2011, 2012) to the continuous-time domain. While in the case
of PUB the extension is almost straightforward, the concept of
probabilistic invariance in continuous time needs to be redefined
because of the limitations imposed by the infinite-bandwidth
nature of continuous-time white noise disturbances (see, e.g., the
insightful discussions in Åström, 1970).

Finally, the problem of designing a feedback controller so that
the closed-loop system under white noise disturbances has a
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desired PUB is addressed. Preliminary results covering only single
input systems in controller canonical form were presented by the
authors in the conference paper (Kofman, De Doná, Seron, & Pizzi,
2014). The current journal version completes the contribution by
presenting new results that generalise the techniques to multiple
input systems given in general form.

The paper is organised as follows: Section 2 introduces the
concepts of continuous timePUB andPIS and establishes their basic
properties. Then, Section 3 presents closed-form formulas for the
calculation of PUB and PIS, respectively. Section 4 develops the
technique for control design and Section 5 illustrates the results
with a numerical example.

2. Background and definitions

We consider a continuous-time LTI system given by the
following stochastic differential equation
dx(t) = Ax(t)dt + dw(t) (1)
with x(t), w(t) ∈ Rn and A ∈ Rn×n being a Hurwitz matrix.

Assumption 1. The disturbancew(t) is a stochastic processwhose
increments are stationary and uncorrelated with zeromean values
(i.e., a Lévy process, that in the case of a normal distribution
becomes a Wiener process). We assume also that w(t) has
incremental covariance Σwdt , cov[dw(t)] = E[dw(t)dwT (t)]
with Σw being a finite covariance matrix.

2.1. Expected Value and Covariance of x(t)

The characterisation of probabilistic ultimate bounds and
invariant sets is based on the stochastic properties of the solution
x(t) of Eq. (1). Given a time t , the covariance of the solution is
defined as

Σx(t) , cov[x(t)] = E[(x(t) − E[x(t)])(x(t) − E[x(t)])T ]. (2)
Both, Σw and Σx(t) are symmetric positive semidefinite matrices.
The expected value µx(t) = E[x(t)] can be computed (see e.g.
Åström, 1970, Theorem 6.1, page 66) as the solution of µ̇x(t) =

Aµx(t). We assume that the initial state x(t0) is known, then
µx(t0) = x(t0) and the previous equation has the solution

µx(t) = eA(t−t0)x(t0). (3)
The covariance matrix Σx(t) verifies (see e.g. Åström, 1970,
Theorem 6.1, page 66) the following differential equation:

Σ̇x(t) = AΣx(t) + Σx(t)AT
+ Σw (4)

with Σx(t0) = 0 (since x(t0) is known). Since A is a Hurwitz
matrix, the latter expression converges as t → ∞. Then, defining
Σx , limt→∞ Σx(t) we have from Eq. (4) that Σx can be obtained
from the Lyapunov equation

AΣx + ΣxAT
= −Σw. (5)

2.2. Definition of PUB and γ -PIS

We next define the two notions that concern this article.

Definition 2 (Probabilistic Ultimate Bounds). Let 0 < p ≤ 1 and let
S ⊂ Rn. We say that S is a PUB with probability p for system (1) if
for every initial state x(t0) = x0 ∈ Rn there exists T = T (x0) ∈ R
such that the probability1 Pr[x(t) ∈ S] ≥ p for each t ≥ t0 + T .

1 In this work, the expression Pr[x(t) ∈ S ⊂ Rn
] denotes the probability that the

solution x(t), at time t , is in the set S ⊂ Rn . Thus, Pr[·] is the probability measure
on Euclidean space induced by the stochastic process {w(τ)|t0 ≤ τ ≤ t} via the
solution, at time t , of the stochastic differential equation (1) with known initial
condition x(t0) at time t0 .
For the definition of PIS, we first introduce the product of a scalar
γ ≥ 0 and a set S as γ S , {γ x : x ∈ S}. Notice that when
0 ≤ γ ≤ 1, and provided that S is a star-shaped set with respect
to the origin,2it follows that γ S ⊆ S.

Definition 3 (γ -Probabilistic Invariant Sets). Let 0 < p ≤ 1, 0 <
γ ≤ 1 and let S ⊂ Rn be a star-shaped set with respect to the
origin. We say that S is a γ -PIS with probability p for system (1) if
for any x(t0) ∈ γ S the probability Pr[x(t) ∈ S] ≥ p for each t > t0.

Remark 4. The definitions of PUB for discrete and continuous
time systems are almost identical. However, PIS for discrete-time
systems were defined to ensure that any trajectory starting in
the set remains in the set with a given probability. By choosing a
sufficiently large set, the contractivity of the system’s dynamics at
the boundary of the set dominates the noise and the probability
of the trajectory leaving the set at the next step can be made
arbitrarily small. In continuous time, however, this is not possible.
Irrespective of the contractivity, when a trajectory starts at time
t0 at the boundary of the set, taking t sufficiently close to t0
the dynamics is always dominated by the white noise due to its
infinite-bandwidth nature. Thus, for t → t+0 the probability that
x(t) leaves the set S only depends on the noise and becomes
independent of the size of S. In order to overcome this fundamental
difficulty, the initial states of a PIS are restricted in Definition 3 to
a subset γ S, with γ less than one.

The previous remark can be simply illustrated by the solution of
the scalar case of Eq. (1) with w(t) a Wiener process and A =

−λ, in which case x(t) = e−λ(t−t0)x(t0) +
 t
t0
e−λ(t−τ)dw(τ).

Then, it can be shown that limt→t+0
Pr[|x(t)| > |x(t0)|] =

limt→t+0
Pr
 t

t0
dw(τ) > 0


= 0.5 independently of x(t0) and

λ (since
 t
t0
dw(τ) is a zero-mean Gaussian process). That is, no

matter how contractive the term e−λt is, nor how big the initial
condition |x(t0)| is, the probability of confinement in |x(t)| ≤

|x(t0)| is dominated by the noise.

2.3. Some properties of PUB and γ -PIS

Here we present some basic properties of PUB and γ -PIS
that are analogous to those of deterministic ultimate bounds
and invariant sets. Although these properties are not used to
derive the main results of the paper, they corroborate that the
definitions of PUB and γ -PIS provided above are consistent with
their deterministic counterparts.

The basic properties of continuous-time PUB are identical to
the discrete-time ones, i.e., Lemma 3 and Corollaries 7 and 10 in
Kofman et al. (2012) are also valid for continuous-time PUB. These
properties establish that a PUB with probability p for (1) is also a
PUB with probability p̃ ≥ 0 for any p̃ < p and that the union and
intersection of PUB sets define PUB sets.

In the case of the unions and intersections of γ -PIS, the presence
of the parameter γ introduces some changes to their discrete time
counterparts. Lemma 4 in Kofman et al. (2012) is still valid (a γ -
PIS with probability p is also PUB with the same probability) but
the union and intersection of γ -PIS are now ruled by the following
proposition.

Proposition 5 (Intersection and Union of γ -PIS). Let {Si}ri=1 be a
collection of γi-PIS for system (1) with probabilities pi, i = 1, . . . , r,
respectively, then

2 A set S ⊂ Rn is star shaped, or a star domain, with respect to the origin if
x ∈ S ⇒ γ x ∈ S for all 0 ≤ γ ≤ 1.
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• Provided that
r

i=1 pi > (r − 1), the set S∩ = ∩
r
i=1 Si is a γ -PIS

with probability p =
r

i=1 pi − (r − 1) where γ = min{γi : i =

1, . . . , r}.
• The set S∪ = ∪

r
i=1 Si is a γ -PIS with probability p = min{pi : i =

1, . . . , r} where γ = min{γi : i = 1, . . . , r}.

The proof of this Proposition can be derived from those of
Lemma 8 in Kofman et al. (2014) and Lemma 9 in Kofman et al.
(2012).

3. Characterisation of PUB and γ-PIS

We develop a method to characterise and compute Prob-
abilistic Ultimate Bounds and Invariant Sets for (1) based on
Chebyshev’s inequality which can be used for arbitrary stochastic
processes w(t) satisfying Assumption 1. The results, summarised
in Theorems 6 and 7, also provide tighter bounds for the special
case of Gaussian disturbances.

Given a parameter (probability) p such that 0 < p < 1, the
method uses n arbitrary parameters p̃i chosen such that

0 < p̃i < 1, i = 1, . . . , n;
n

i=1

p̃i = 1 − p. (6)

In the sequel, for a vector x, xi denotes its ith component, and for
a square matrix Σ , the notation [Σ]i,i indicates its ith diagonal
element. The symbol ≼ will denote the elementwise inequality
between two vectors, i.e., for α, β ∈ Rn, α ≼ β if and only if
αi ≤ βi, i = 1, . . . , n. For a matrix M with complex entries, M∗

will denote the conjugate transpose ofM .

Theorem 6 (PUB Characterisation). Consider the system (1). Assume
that A ∈ Rn×n is a Hurwitz matrix and suppose that w(t) is a
stochastic process whose increments are uncorrelated with zero mean
values and with incremental covariance matrix Σwdt. Let 0 < p < 1
and p̃i, i = 1, . . . , n, satisfy Eq. (6). Then, any set of the form S = {x :

|xi| ≤ bi +ε; i = 1, . . . , n}with ε > 03 is a PUB for the systemwith
probability p, with

bi ,


[Σx]i,i

p̃i
; i = 1, . . . , n (7)

and Σx is the solution of the Lyapunov equation (5).
Additionally, when w(t) is a Wiener process, Eq. (7) can be

replaced with

bi ,

2[Σx]i,ierf−1(1 − p̃i); i = 1, . . . , n (8)

where erf is the error function: erf(z) , 2
√

π

 z
0 e−ζ 2

dζ .

The proof of Theorem 6 follows those of Theorem 12 in Kofman
et al. (2012) (general case) and Theorem 1 in Kofman et al. (2011)
(Gaussian case) for discrete-time systems. The only difference is
that Σx is now computed from the continuous-time Lyapunov
equation (5).

Notice that the bound provided by Eq. (8) is tighter than that of
Eq. (7) but it is only valid for a noise with Gaussian distribution.

Theorem 7 (γ -PIS Characterisation). Consider the system (1), where
matrix A is assumed to be Hurwitz and diagonalisable4. Suppose that

3 The only role played by ε > 0 is to ensure that T (x0) in Definition 2 is finite (for
details, we refer to the proof of Theorem 12 in Kofman et al., 2012).
4 In an important number of applications, the matrix A in (1) is given by some

closed-loop matrix, e.g., Ã − B̃K or Ã − LC̃ [where (Ã, B̃, C̃) is the open-loop system
and K is a feedback gain, L is an observer gain, etc.]. Under standard controllability
and observability conditions on (Ã, B̃, C̃) the design of K , L, etc., can be readily done
by pole placement techniques so that the assumptions on Amade here are, without
loss of generality, satisfied.
w(t) is a stochastic process whose increments are uncorrelated with
zero mean values and incremental covariance matrix Σwdt. Let 0 <
p < 1 and p̃i, i = 1, . . . , n, satisfy Eq. (6). Then, the set S = {x :

|V−1x| ≼ b} is a γ -PIS for the system with probability p, where V is a
similarity transformation such that Λ = diag(λ1, . . . , λn) = V−1AV
is the Jordan diagonal decomposition of matrix A, and the components
of b = [b1 . . . bn]T are computed according to

bi ,


[Σv]i,i

2|Re(λi)|(1 − γ 2)p̃i
; i = 1, . . . , n (9)

with Σv = V−1Σw(V−1)∗.
Additionally, when w(t) is a Wiener process and the parameters

p̃i satisfying (6) are chosen with the restriction that for each pair of
complex conjugate eigenvalues λi, λj = λ̄i of matrix A we take
p̃i = p̃j, Eq. (9) can be replaced with

bi ,


[Σv]i,i

|Re(λi)|(1 − γ 2)
erf−1(1 − p̃i); i = 1, . . . , n. (10)

Proof. We follow the idea of the proofs of Theorems 15 and 16 in
Kofman et al. (2012): With the linear transformation x(t) = Vz(t),
system (1) becomes

dz(t) = Λz(t)dt + V−1dw(t) (11)

with z ∈ Cn, w(t) ∈ Rn, V−1
∈ Cn×n, and Λ ∈ Cn×n being

a diagonal matrix. Defining v(t) , V−1w(t), the incremental
covariance of v(t) satisfies Σvdt = V−1Σw(V−1)∗dt , and the ith
component of (11) is

dzi(t) = λizi(t)dt + dvi(t). (12)

The expected value of the random variable5 zi(t) then verifies
E[zi(t)] = eλi(t−t0)zi(t0), since we assume that zi(t0) is known. The
variance of zi(t) can be computed from (12) as

var[zi(t)] =
1 − e2Re(λi)(t−t0)

2|Re(λi)|
[Σv]i,i.

Suppose that x(t0) ∈ γ S, i.e., |V−1x(t0)| ≼ γ b with b defined by
Eq. (9). Thus, |z(t0)| = |V−1x(t0)| ≼ γ b and |zi(t0)| ≤ γ bi. Then,
for all t > t0 it results (see, e.g., Equation (6.6) from Åström, 1970,
Page 66) that

|E[zi(t)]| = |eλi(t−t0)zi(t0)| ≤ eRe(λi)(t−t0)γ bi. (13)

From Inequality (13), it follows that

Pr[|zi(t)| ≥ bi]

= Pr[|zi(t)| − eRe(λi)(t−t0)γ bi ≥ bi(1 − γ eRe(λi)(t−t0))]

≤ Pr[|zi(t)| − |E[zi(t)]| ≥ bi(1 − γ eRe(λi)(t−t0))]

≤ Pr[|zi(t) − E[zi(t)]| ≥ bi(1 − γ eRe(λi)(t−t0))].

Chebyshev’s inequality establishes that

Pr

|zi(t) − E[zi(t)]| ≥ bi(1 − γ eRe(λi)(t−t0))


≤

var[zi(t)]
b2i (1 − γ eRe(λi)(t−t0))2

(14)

5 E[zi(t)] refers to the expected value of the random variable zi ∈ C at time t with
respect to the probability measure defined in footnote 1.
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and then it results that

Pr[|zi(t)| ≥ bi] ≤
var[zi(t)]

b2i (1 − γ eRe(λi)(t−t0))2

=
1 − e2Re(λi)(t−t0)

2|Re(λi)|b2i (1 − γ eRe(λi)(t−t0))2
[Σv]i,i.

The expression

1 − e2Re(λi)(t−t0)

(1 − γ eRe(λi)(t−t0))2
(15)

is maximised when eRe(λi)(t−t0) = γ . Then, it results that
Pr[|zi(t)| > bi] ≤ Pr[|zi(t)| ≥ bi] ≤

[Σv ]i,i
2|Re(λi)|b2i (1−γ 2)

= p̃i for all

t > t0. Thus, the probability

Pr[|z(t)| ⋠ b] ≤

n
i=1

Pr[|zi(t)| > bi] ≤

n
i=1

p̃i = 1 − p

for all t > t0, and then,

Pr[|z(t)| ≼ b] = Pr[|V−1x(t)| ≼ b] = Pr[x(t) ∈ S] ≥ p

which proves that S is a γ -PIS with probability p.
When w(t) is a Wiener process and λi is real, we replace

Chebyshev’s inequality of Eq. (14) by the following expression valid
for Gaussian distributions

Pr

|zi(t) − E[zi(t)]| ≥ bi(1 − γ eRe(λi)(t−t0))


= 1 − erf


bi(1 − γ eRe(λi)(t−t0))

√
2var[zi(t)]


and then we obtain

Pr[|zi(t)| > bi]

≤ 1 − erf


bi


(1 − γ eRe(λi)(t−t0))2|Re(λi)|

(1 − e2Re(λi)(t−t0))[Σv]i,i



≤ 1 − erf


bi


(1 − γ 2)|Re(λi)|

[Σv]i,i


= p̃i. (16)

In the last step we used the fact that erf(·) is a monotonically
increasing function and we maximised the expression of Eq. (15).

In the case of complex eigenvalues, Eq. (12) can be split into
real and imaginary parts zi(t) = Re[zi(t)] + jIm[zi(t)], where
both components are Gaussian processes and the variance can
be written as var[zi(t)] = var[Re[zi(t)]] + var[Im[zi(t)]]. Then,
the proof follows that of Theorem 2 in Kofman et al. (2011) for
discrete-time systems, replacing t0 + N by t and bi(1 − |λi|

N) by
bi(1 − γ eRe(λi)(t−t0)). �

Remark 8. Notice that bi in Eqs. (9) and (10) goes to infinity as
γ goes to one. This is consistent with the observation made in
Remark 4, that a PIS cannot be defined without using a factor
γ less than one to restrict the initial states due to the infinite-
bandwidth nature of the continuous-time white noise disturbance
(see, e.g., the discussions in Åström, 1970 on continuous-time
white noise).

4. Control design

We consider here the problem of, given a positive vector b and a
probability p, find a controller gain K such that any set of the form
S = {x : |x| ≼ b + ε} with ε > 0 is a PUB with probability p of the
closed loop system

dx(t) = (A + BK)x(t)dt + BGdv(t). (17)
We assume that the pair (A, B) is controllable where A ∈ Rn×n and
B ∈ Rn×m, the latter matrix corresponding to m control inputs.
Notice also that the disturbance v(t) ∈ Rq is matched6 with the
control input through a matrix G ∈ Rm×q. We assume also that
v(t) has incremental covariance Σvdt with Σv a finite covariance
matrix.

Theorem 6 shows that the PUB depends on the diagonal entries
of the state covariance matrix Σx. Thus, this is a problem of state
covariance assignment, consisting in finding a feedback gain which
assigns a specified closed-loop state covariance (Fujioka & Hara,
1994), similar to the one treated in Sreeram, Liu, and Diab (1996).

Thus, before presenting the control design procedures to obtain
a desired PUB, we first derive some auxiliary results regarding
covariance assignment.

4.1. Covariance assignment in controller canonical form

When matrix A is in its controller canonical form, and the
system has a single input, the covariance matrix that solves Eq. (5)
has a Xiao structure (Xiao, Feng, & Shan, 1992).

Definition 9 (Xiao Matrix). Given a vector 0 ≼ z ∈ Rk, we define
the Xiao matrix X(z) as

X(z) =



z1 0 −z2 0 z3 · · · ·

0 z2 0 −z3 0 · · · ·

−z2 0 z3 0 −z4 · · · ·

0 −z3 0 z4 0 · · · ·

...
...

...
...

...
. . .

...
· · · · · · · · · · · · · · · · · · zk

 . (18)

For the multiple input case, we derive the following lemma:

Lemma 10. Consider the system of equation (17) and assume that
the pair (A, B) is in its controller canonical form, with A ∈ Rn×n and
B ∈ Rn×m; and let dj, j = 1, . . . ,m, be the controllability indices
of (A, B). Assume also that the disturbance v(t) has incremental
covariance Σvdt. Further, define

Σ , GΣvGT (19)

and assume that the pair (A, BΣ1/2) is controllable. Then, the block
diagonal Xiao matrix

Σx = diag(Σ1
x , . . . , Σm

x ) (20)

where Σ
j
x ∈ Rdj×dj for j = 1, . . . ,m are positive definite Xiao

matrices, is an assignable covariance matrix for the system under the
feedback law u = Kx with

K = −BĎ(AΣx + ΣxAT
+ BΣBT )(I − BBĎ/2)Σ−1

x (21)

where BĎ is the Moore–Penrose inverse of matrix B. Moreover, the
closed-loop matrix A + BK is Hurwitz.

Proof. Let Σvdt be the incremental covariance matrix of v.
Defining w(t) , BGv(t), the covariance of w(t) is given by

Σw = BGΣvGTBT
= BΣBT

where Σ = GΣvGT is the covariance of Gv(t). Substituting A+ BK
for A in (5) we have that the closed-loop state covariance matrix
Σx satisfies the Lyapunov equation

(A + BK)Σx + Σx(A + BK)T = −BΣBT . (22)

6 Thematcheddisturbance assumption, or ‘matching condition’ (see, e.g., Chapter
14 in Khalil, 2002) is a usual hypothesis in robust control applications, modelling –
in particular, but not limited to – all kinds of input perturbations.
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From Corollary 4.6 of Fujioka and Hara (1994), Eq. (22) has a
solution K (one such solution is given by (21)) if and only if

(I − BBĎ)(AΣx + ΣxAT
+ BΣBT )(I − BBĎ) = 0. (23)

We next analyse the form of condition (23) when (A, B) are in the
controller canonical form, that is,

A =

A11 A12 · · · A1m
...

...
. . .

...
Am1 Am2 · · · Amm

 B =

B1
...
Bm

 (24)

where the submatrices Aii ∈ Rdi×di , Bi ∈ Rdi×m, for i = 1, . . . ,m,
have the form

Aii =

 0 1 0 ... 0
0 0 1 ... 0
...
...
...
...

...
∗ ∗ ∗ ... ∗

 , Bi =

 0 ...

i
↓

0 0 ... 0
0 ... 0 0 ... 0
...

...
...

0 ... 1 ∗ ... ∗

 (25)

with the ∗’s representing arbitrary entries, and Aij ∈ Rdi×dj , for
i, j = 1, . . . ,m, i ≠ j, have zero elements everywhere except
for possibly nonzero elements in the last row. We first find the
form of (I − BBĎ). Note that the matrix B in (24), (25) has only
m nonzero rows of the form


0 · · · 0 1 ∗ · · · ∗


, where

the 1 is in the ith position. Thus, eliminating the redundant rows
containing only zeros, we can express BTB = B̃

T
B̃, where B̃ ∈ Rm×m

is an upper triangular matrix with 1’s in the main diagonal. Simple
calculations then show that BBĎ = B(BTB)−1BT

= BB̃
−1

B̃
−T

BT

has zero entries everywhere except for 1’s in the (σi, σi) positions,
where σi ,

i
j=1 dj, for i = 1, . . . ,m. It follows that (I − BBĎ) has

the form

(I − BBĎ) = diag(1, . . . , 1,

σ1
↓

0, 1, . . . , 1,

σ2
↓

0, 1 . . . , 1,

σm
↓

0). (26)

Hence, (I − BBĎ)B = 0, BT (I − BBĎ) = 0 and in the multiplication
(I − BBĎ)Awe have that the rows of Awith arbitrary entries ∗’s are
multiplied by zero whereas the remaining rows are multiplied by
one. We thus conclude that Ā , (I − BBĎ)A has the form

Ā = diag(Γ1, . . . , Γm), Γi ,


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 ∈ Rdi×di .

(27)

Based on the above calculations we can rewrite (23) as

ĀΣ̄ + Σ̄
T Ā

T
= 0, where Σ̄ , Σx(I − BBĎ). (28)

Due to the structure of Σx in (20) and using (26), we can write
Σ̄ = diag(Σ̄1, . . . , Σ̄m), where Σ̄ i ∈ Rdi×di , i = 1, . . . ,m, is
equal to the Xiao matrix Σ i

x with zeros in the last column. Hence,
(28) leads to them equations

ΓiΣ̄ i + Σ̄i
T
Γ T
i = 0, i = 1, . . . ,m. (29)

From the formofΓi in (27) and that of Σ̄ i just discussed, it is easy to
see that (29) (equivalently, (23)) are satisfied and hence Σx in (20)
is a closed-loop covariancematrix for the controller canonical form
system (A, B), assignable by state feedbackwith gain (21). From the
assumption that the pair (A, BΣ1/2) is controllable and the fact that
Σx is positive definite, it follows (see Khalil, 2002, Chapter 4) that
A + BK satisfying the Lyapunov equation (22) is Hurwitz. �

Next, the following Lemma relates the construction of a positive
definite Xiao matrix with the choice of the probabilities p̃i in The-
orem 6. This result will be used later to build an assignable covari-
ance matrix having the diagonal entries required by Theorem 6 to
ensure that the closed-loop system has the desired PUB.
Lemma 11. Let g : (0, 1] → R+ be a strictly monotonically
decreasing function with Im(g) = [a, ∞) for some constant a ≥ 0.
Let b ≻ 0 be a vector in Rn and let 0 < p < 1. Then, there exist n
constants 0 < p̃i < 1 for i = 1, . . . , n such that

n
i=1 p̃i = 1 − p

and the Xiao matrix

Σx = X


(b1)2

g(p̃1)2
(b2)2

g(p̃2)2
. . .

(bn)2

g(p̃n)2

T
is positive definite.

Proof. Let us suppose that there exist 0 < p̃(k)
i < 1 for i = 1, . . . , n

with
n

i=1 p̃
(k)
i = 1 − p such that the matrix

Σk , X

 (b1)2

g(p̃(k)
1 )2

(b2)2

g(p̃(k)
2 )2

. . .
(bk)2

g(p̃(k)
k )2

T
 (30)

is positive definite. In order to use induction, we shall prove that
there exist 0 < p̃(k+1)

i < 1 for i = 1, . . . , n with
n

i=1 p̃
(k+1)
i =

1 − p such that the matrix

Σk+1 , X

 (b1)2

g(p̃(k+1)
1 )2

(b2)2

g(p̃(k+1)
2 )2

. . .
(bk+1)

2

g(p̃(k+1)
k+1 )2

T


(31)

is also positive definite. As a first attempt to find Σk+1, we define
the matrix

Σ̃k+1 , X

 (b1)2

g(p̃(k)
1 )2

(b2)2

g(p̃(k)
2 )2

. . .
(bk+1)

2

g(p̃(k)
k+1)

2

T


=

Σk ck

cTk
(bk+1)

2

g(p̃(k)
k+1)

2

 =


Σk ck
cTk d̃k+1


. (32)

If the product cTk (Σk)
−1ck < d̃k+1 then Σ̃k+1 > 0 and we can

choose p̃(k+1)
i = p̃(k)

i and the matrix Σk+1 defined as in Eq. (31)
is positive definite.

Otherwise, if cTk (Σk)
−1ck ≥ d̃k+1, we first compute

rk+1 =
cTk (Σk)

−1ck
d̃k+1

(33)

and choose a constant α > 1 to calculate

[Σk+1]i,i =
[Σk]i,i

αrk+1
for 1 ≤ i ≤ k. (34)

Then, noticing that

bi
[Σk+1]i,i

=
bi

√
αrk+1

[Σk]i,i
>

bi
[Σk]i,i

= g(p̃(k)
i )

it results that
bi

[Σk+1]i,i
∈ Im(g)

and we can take

p̃(k+1)
i =



g−1


bi

[Σk+1]i,i


for 1 ≤ i ≤ k

p̃(k)
i

1 − p −

k
j=1

p̃(k+1)
j

1 − p −

k
j=1

p̃(k)
j

for i > k

(35)
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resulting p̃(k+1)
i < p̃(k)

i for 1 ≤ i ≤ k, which implies that p̃(k+1)
i >

p̃(k)
i > 0 for k+1 ≤ i ≤ n. Thus, the parameters defined in Eq. (35)

satisfy p̃(k+1)
i > 0 and

n
i=1 p̃

(k+1)
i = 1 − p. Then, we have

Σk+1 = X

 (b1)2

g(p̃(k+1)
1 )2

(b2)2

g(p̃(k+1)
2 )2

. . .
(bk+1)

2

g(p̃(k+1)
k+1 )2

T


=


Σk

αrk+1

ck
αrk+1

cTk
αrk+1

(bk+1)
2

g(p̃(k+1)
k+1 )2

 =


Σk

αrk+1

ck
αrk+1

cTk
αrk+1

dk+1


with dk+1 > d̃k+1. Thus, it results that

cTk
αrk+1


Σk

αrk+1

−1 ck
αrk+1

=
cTk (Σk)

−1ck
αrk+1

=
d̃k+1

α
< dk+1

and then Σk+1 is positive definite.
The proof by induction then concludes by observing that Σ1

is positive definite for any choice of the parameters p̃(1)
i > 0

such that
n

i=1 p̃
(1)
i = 1 − p. We can initially take, in particular,

p̃(1)
i =

1−p
n . �

4.2. Control design with PUB guarantee

Making use of Lemmas 10 and 11, the following theorem
establishes that a feedback gain K can be computed so that the
closed-loop system of equation (17) has an arbitrarily prescribed
PUB.

Theorem 12 (PUB Assignment). Given a system

dx(t) = Ax(t)dt + Bu(t)dt + BGdv(t) (36)

where the pair (A, B) is controllable, the disturbance vector v(t) is a
zeromean stationary stochastic process with uncorrelated increments
and incremental covariance Σvdt, and the pair (A, BΣ1/2) with Σ

defined in (19) being controllable, and given a vector b ≻ 0 and a
probability 0 < p < 1, there exists a control law u(t) = Kx(t) such
that any set of the form S = {x : |xi| ≤ bi + ε; i = 1, . . . , n} with
ε > 0, is a PUB with probability p of the closed-loop system (17).

Proof. Given a control gainK such thatA+BK is Hurwitz, if we find
certain constants p̃i > 0 subject to

n
i=1 p̃i = 1−p, then, according

to Theorem6, the set S = {x : |xi| ≤ bi+ε; i = 1, . . . , n}would be
a PUBwith probability p for the closed loop systemof equation (17)
provided that

bi =


[Σx]i,ig(p̃i)

with

g(p̃i) =


1/

p̃i general distribution

√
2erf−1(1 − p̃i) Gaussian distrib.

(37)

and where Σx is the solution of the Lyapunov equation (22).
Let us suppose first that the pair (A, B) is in controller canonical

form. Notice that in both cases (general and Gaussian distribution),
the function g(·) verifies the hypothesis of Lemma 11 (with a = 1
and a = 0, respectively).

Then, taking m constants qj > 0, j = 1, . . . ,m, such thatm
j=1 qj = 1, and defining σj for j = 1, . . . ,m as in the proof

of Lemma 10, we can use the result of Lemma 11 and, for each
j ∈ {1, . . . ,m}, find dj constants p̃i, with i = σj − dj + 1, . . . , σj
such that

σj
i=σj−dj+1

p̃i = qj(1 − p) = 1 − p̂j

and the Xiao matrix

Σ j
x = X


b2i /g(p̃i)

2
; i = σj − dj + 1, . . . , σj


is positive definite.

Then, according to Lemma 10, matrix Σx = diag(Σ1
x , . . . , Σm

x )

is an assignable positive definite covariance matrix under the
control law u = Kxwith K computed from Eq. (21), and the closed-
loop matrix A + BK is Hurwitz.

Notice that the n diagonal entries of Σx are b2i /g(p̃i)
2, and

n
i=1

p̃i =

m
j=1

σj
i=σj−dj+1

p̃i =

m
j=1

qj(1 − p) = 1 − p.

Then, using Theorem6, the set S = {x : |xi| ≤ bi+ε; i = 1, . . . , n},
for any given ε > 0, is a PUB with probability p of the closed loop
system (17).

In case the pair (A, B) is not in the controller canonical form,
there exists a linear transformation U (see, e.g., Luenberger, 1967)
that brings it into that form. Under this transformation, the system
of equation (36) becomes

dxc(t) = Acxc(t)dt + Bcu(t)dt + BcGdv(t) (38)

with Ac = U−1AU , and Bc = U−1B.
Let Σ̃ c be a positive definite block diagonal Xiao matrix that

according to Lemma 10 is an assignable covariance matrix for the
pair (Ac, Bc). Define Σ̃x , UΣ̃ cUT and let µ > 0 be a number that
also verifies

µ ≤ µmax , min
1≤i≤n

b2i
(a + δ)2[Σ̃x]i,i

with a = g(1), g(·) defined in Eq. (37), and δ , g(1 − p) − a > 0.
Notice that

bi
µ[Σ̃x]i,i

≥
bi

µmax[Σ̃x]i,i

≥ a + δ

which implies that the first term on the left hand side of the last
inequality is in Im(g) = [a, ∞). Define

p̌i(µ) , g−1

 bi
µ[Σ̃x]i,i

 , i = 1, . . . , n. (39)

Notice that each function p̌i(µ) monotonically grows with µ,
taking values in the interval (0, p̌i(µmax)]. Moreover, there exists
at least one function p̌i∗(µ) where

i∗ = arg min
1≤i≤n

b2i
(a + δ)2[Σ̃x]i,i

that takes values in the interval (0, 1 − p]. Define then

s(µ) ,

n
i=1

p̌i(µ) (40)

and notice that the continuous function s(µ) monotonically grows
withµ and can take any value from 0 to smax ≥ 1−p. Thus, a value
µ̄ exists such that s(µ̄) = 1 − p.
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Then, taking Σc = µ̄Σ̃ c , it results that Σc is an assignable
covariance matrix of system (38) under the control law u(t) =

Kcxc(t) with

Kc = −BĎc (AcΣc + ΣcAT
c + BcΣBT

c )(I − BcBĎc/2)Σ
−1
c . (41)

Then, the covariance matrix of system (36) under the control law
u(t) = Kx(t) with K = KcU−1 results

Σx = UΣcUT
= Uµ̄Σ̃ cUT

= µ̄Σ̃x.

Taking p̃i = p̌i(µ̄) for i = 1, . . . , n, from Eq. (39) it results that

bi = g(p̃i)


µ̄[Σ̃x]i,i = g(p̃i)


[Σx]i,i

with
n

i=1 p̃i = 1 − p. Then, according to Theorem 6, the set
S = {x : |xi| ≤ bi + ε; i = 1, . . . , n} is a PUB with probability
p for the closed-loop system (17). �

From Theorem 12 and Lemmas 10 and 11 the following algorithm
can be devised to find an assignable covariance matrix Σx and the
corresponding control law u(t) = Kx(t) such that system (36) has
a PUB of size b with probability p. We consider that the system
has m inputs and that the corresponding controllability indexes
are dj with j = 1, . . . ,m. We also define the cumulative indexes
σi ,

i
j=1 dj, for i = 1, . . . ,m as in the proof of Lemma 10.

Algorithm 1 (PUB Design — Controller Canonical Form).

(1) Choosem constants qj such that7
m

j=1 qj = 1.
(2) For each j in 1, . . . ,m,

(a) Compute p̂j = 1 − qj(1 − p).
(b) Take bj = [bσj−dj+1, . . . , bσj ].

(c) Take k = 1 and p̃(1)
i = (1 − p̂j)/dj for i = 1, . . . , dj.

(d) Using bj instead of b, form Σk from Eq. (30). If k = dj go to
step (2i).

(e) Using bj instead of b form Σ̃k+1 from Eq. (32).
(f) If Σ̃k+1 > 0, take p̃(k+1)

i = p̃(k)
i and go to step (2h).

(g) Otherwise, choose α > 1 and compute p̃(k+1)
i from Eqs.

(33)–(35).
(h) Let k := k + 1 and go back to step (2d).
(i) Take Σ

j
x = Σk > 0

(3) Compute the block diagonal Xiao matrix Σx from Eq. (20).
(4) Calculate Σ = GΣvGT and compute K from Eq. (21).

When the pair (A, B) is not in its controller canonical form, the
following algorithm can be devised to find a control law such that
the closed-loop system has a PUB of size bwith probability p.

Algorithm 2 (PUB Design — General Form).

(1) Compute the matrix U that brings the system (36) into its
controller canonical form (see, e.g., Luenberger, 1967).

(2) Choose a positive vector b̃c andusingAlgorithm1up to step (3),
compute an assignable covariance matrix Σ̃ c for the system in
controller canonical form.

(3) Find µ̄ such that s(µ̄) = 1 − p, with s(·) defined in
Eqs. (39)–(40).

(4) Compute Σc = µ̄Σ̃ c and Kc from Eq. (41).
(5) Calculate the controller gain K = KcU−1

7 A reasonable choice would be qj = dj/n, which assigns an exit probability
proportional to the dimension of each controllability subspace.
5. Example

We consider a system described by Eq. (36) with

A =


2 2 −1 −1 −3
1 0 −1 0 −1
0 1 0 −1 −1
1 0 −1 0 0
2 1 −1 −1 −3

 ; B =


0 1
0 0

−1 −2
0 0
0 1

 ; (42)

G = [1 1]T , and v(t) is a Wiener process with incremental
covariance Σvdt = 0.01dt . We want this system to have a
PUB S = {x : |xi| ≤ bi + ε; i = 1, . . . , n}, with b =
0.1 0.1 0.1 0.1 0.1

T , for all ε > 0 with probability p =

0.9. We next follow Algorithm 2:

(1) The matrix that brings the system into its controller canonical
form is

U =


1 1 0 0 1
0 1 0 0 0
1 0 −1 0 0
1 1 0 1 0
0 1 0 0 1

 ;

(2) The positive vector b̃c is chosen here as b̃c = b. Then,
following Algorithm 1 with q1 = 3/5, q2 = 2/5, we obtain
the following assignable covariance matrix for the system in
controller canonical form:

Σ̃ c = 10−3


0.9239 0 −0.9239 0 0

0 0.9239 0 0 0
−0.9239 0 2.783 0 0

0 0 0 1.848 0
0 0 0 0 1.848

 .

(3) Computing Σ̃x = UΣ̃ cUT and p̌i(µ) from Eq. (39), the value µ̄
such that s(µ̄) = 1 − p in Eq. (40) is µ̄ = 0.4911. Then, the
exit probabilities p̃i = p̌i(µ̄) result p̃1 = p̃4 = 0.0189, p̃2 =

0.000003, p̃3 = 0.055597, and p̃5 = 0.0067.
(4) We compute Σc = µ̄Σ̃ c and

Kc =


−16.4396 −7.0118 −15.4396 −1 −8.0102
−16.9308 1 −16.9308 0 −4.5102


.

(5) We calculate the controller gain for the system in the original
coordinates:

K =


−30.8792 1.9984 15.4396 −1 22.8689
−33.8616 5.5102 16.9308 0 29.3513


.

This gain ensures that system (17) has the desired PUB with
probability p = 0.9. This fact can be checked by applying
Theorem 6 to the closed loop system of equation (17) with the
values of p̃i computed in the step 3 above.

In order to verify the results, we performed 5,000 simulations
of the system from the initial state x(t0) = 10 · b (outside S) and
for each instant of time tk = 0.01k, with k = 0, . . . , 120, 000, we
evaluated the exit ratio e as the number of times x(tk) lies outside
the PUB divided by 5,000. We found that for any tk ≥ 1, 050,
between7.14% and10%of the simulations lie outside the calculated
PUB, which agrees with the maximum theoretical probability (1−

p) of 10%. The computed exit ratio as a function of the time is
depicted in Fig. 1.

6. Conclusions

Wehave extended the notions of PUB and PIS to the continuous-
time domain, deriving their main properties and providing
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Fig. 1. Exit ratio vs. t for the PUB.

formulas for their calculation. In the case of PIS, a redefinition was
required to take into account the fundamental limitations imposed
by the infinite-bandwidth nature of continuous-time white noise.
Then, a controller design technique was presented to assign a
predetermined PUB having a given probability p. The results were
illustrated with a numerical example.

Future work will include the use of the results in control
applications such as fault tolerant control and model predictive
control, where the notions of invariance and ultimate boundedness
play a fundamental role and the concepts and tools developed here
can allow to deal with unbounded disturbances in a probabilistic
framework.
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