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We propose using a deep convolutional neural network (CNN) for the problem of plant identification
from leaf vein patterns. In particular, we consider classifying three different legume species: white bean,
red bean and soybean. The introduction of a CNN avoids the use of handcrafted feature extractors as it is
standard in state of the art pipeline. Furthermore, this deep learning approach significantly improves the
accuracy of the referred pipeline. We also show that the reported accuracy is reached by increasing the
model depth. Finally, by analyzing the resulting models with a simple visualization technique, we are
able to unveil relevant vein patterns.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, in many typical applications of machine vision there
is a tendency to replace classical techniques with deep learning
algorithms (LeCun et al., 2015). In deep learning, handcrafted fea-
ture extractors are unnecessary: typically, classification results are
better than those obtained with classical techniques. Some suc-
cessful examples can be found in Krizhevsky et al. (2012),
Cires�an et al. (2013), and Taigman et al. (2014).

Deep learning refers to training neural network architectures
composed of several nonlinear processing layers. The success of
deep learning is based on new model regularization techniques
(Srivastava et al., 2014), improved nonlinearities design (Dahl
et al., 2013), and current hardware capabilities, among others. In
particular, for Machine Vision tasks, the success of deep learning
is based on convolutional neural networks (CNN, LeCun et al.,
1990) which have become the standard neural network variant
for image processing (LeCun et al., 2015).

There are many agricultural problems currently addressed by
classical machine vision techniques that may benefit from using
a deep learning approach. We consider in this paper a successful
example of this behavior by applying deep learning to automatic
plant identification.

Automatic plant identification constitutes a challenging prob-
lem that has received increasing attention in recent years, in par-
ticular for identification based on leaf image analysis. Much of
this work makes use leaf features that humans can perceive. The
goal of automatization in this case is to avoid the use of human
experts handling huge catalogs of plant species, and to reduce clas-
sification time. Some works are focused on leaf shape (Agarwal
et al., 2006; Camargo Neto et al., 2006; Chaki and Parekh, 2012;
Du et al., 2007; Gwo et al., 2013; Im et al., 1998; Solé-Casals
et al., 2008), some use shape and texture (Husin et al., 2012), while
others consider color and texture (Pydipati et al., 2006).

Recently, however, more attention has been payed to vein mor-
phological patterns as a leaf fingerprint. A clear correlation has
been established between vein characteristics and some properties
of the leaf (such as damage and drought tolerance, among others)
(Sack et al., 2008; Scoffoni et al., 2011). This suggests that vein
morphology carries information suitable for plant classification
when shape, color or texture differences are unobservable, as in
the case of trying to separate different cultivars from the same spe-
cies. This kind of features may not be easily spotted by a human
observer, and automated recognition becomes indispensable.

Following this premise, Larese et al. (2014a) applied computer
vision techniques to extract several vein morphological measures,
and showed that it is possible to separate three different plant spe-
cies by using only the extracted information and supervised
machine learning algorithms. In a later work (Larese et al.,
2014b), they used similar techniques to reach some degree of dis-
crimination between plants belonging to different cultivars of the
same species.

In this work we discuss the use of deep learning models for
interesting agricultural problems. As a working example, we apply
this new paradigm to the problem of plant identification based on
vein morphology. We show that the application of a standard deep
convolutional network yields better results than those obtained
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Fig. 1. Adopted pipeline (as in Larese et al. (2014b)). In this work, the grayed stages were replaced by a deep convolutional network. Stages (i) and (ii) were kept in order to
allow a fair comparison with Larese et al. results. By design, these two stages filter color and leaf shape information. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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with a standard machine vision pipeline. Furthermore, the utiliza-
tion of a simple model visualization technique allows us to identify
meaningful vein patterns. The obtained results on plant classifica-
tion from leaf vein morphology are not only valuable by them-
selves, but as a first step for motivating further research on the
use of deep learning in agriculture.

The rest of the paper is organized as follows. In Section 2 we
review the task-specific approach for the problem at hand as
proposed by Larese et al. (2014b). In Section 3 we introduce the
proposed deep learning methodology and explain the performed
experiments in Section 4. Results are presented in Section 5, and
then in Section 6 we show which patterns were deemed relevant
for classification. Finally, we draw some conclusions in Section 8.
In Appendix A, more detailed information about data acquisition
and processing can be found.
Fig. 2. Image samples obtained after processing stages (i) and (ii). The first column
corresponds to preprocessing S1, while setup S2 is formed by all columns. These
images are the input to the CNN.
2. Task-specific approach

Many successful Machine Learning applications make intensive
use of specific knowledge about the task provided by human
experts. In this section we summarize the approach considered
in Larese et al. (2014b) for plant classification based on leaf veins,
which makes use of expert knowledge.

The processing pipeline is divided into four stages as shown in
Fig. 1. The starting point is the set of images of first foliage leaves
acquired with a standard flatbed scanner (see Appendix A for more
details). These images are processed according to the following
stages:

(i) Vein Segmentation: first, an unconstrained version of the Hit
or Miss Transform (UHMT) (Soille, 1999) is applied in order
to extract vein morphological patterns. The output of this
transform is a binary image—it therefore eliminates color
information.

(ii) Central patch extraction: a central patch (100 � 100 pixels)
of the binary image is cropped and the rest of the image is
discarded. The purpose is to eliminate possible influences
of the leaf shape.

(iii) Vein measures: at this stage, a set of features of interest was
extracted with the help of LEAF GUI (Price et al., 2011). This
set includes measures such as the total number of veins,
total number of nodes, and mean vein width, among others.

(iv) Classification. Three different Machine Learning algorithms
were tested: Support Vector Machines (SVM), Penalized
Discriminant Analysis (PDA) and Random Forests (RF)
(Hastie et al., 2009). These models were trained using the
features obtained in the previous step.

There are two main observations about this pipeline. First, in
order to highlight different levels of vein details, Larese et al.
applied the UHMT to resized versions of the leaf image. The scale
factors considered were 100% (no resize), 80%, and 60%. The pro-
cessed images were resized back to the original size. With these
three output images, two alternatives were studied. In the first
one, a single combined image was obtained by adding them. For
the second alternative, the three output images and the combined
one were kept. We will refer to these two setups as S1 and S2
respectively. Fig. 2 shows some example images after stage (ii)
for the S2 setup. The S1 setup correspond to selecting only the first
column for each sample.

The second point to notice is that stage (iii) is the only one that
requires specific domain knowledge. All considered measures can
be automatically extracted but were specifically designed by
experts to characterize vein patterns.

Also, it is important to remark the difference in the number of
features extracted at stage (iii). Larese et al. extracted 52 features
from each patch image. This means 52 features in the S1 setup,
in contrast to 208 features in the S2 setup.



Fig. 3. Diagram of a three layer version of the CNN considered in this work. The first two are convolutional layers and the last one is a softmax layer. We evaluate CNNs up to 6
layers.
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3. Deep Learning proposal

In this work we replace stages (iii) and (iv) of the previous pipe-
line (see Fig. 1) with a CNN (explained in the next subsection). We
expect that the CNN can automatically learn from the training set
the appropriate features to solve the classification problem. This
implies that we can put aside the expert knowledge for feature
design.

It should be noticed that stages (i) and (ii) ensure that color and
leaf shape information is deleted. The reason for this is that the
main objective in Larese et al. (2014b) was to show that it is
possible to classify plant species only from vein morphological pat-
terns. It should be remarked that this setup mimics the case where
it is expected to find only morphological differences, as in the case
of different cultivars from the same species.

In order to fairly compare our results with those from Larese
et al. (2014b), we also include stages (i) and (ii) in our pipeline.
That is, we consider the classification problem using only the vein
morphological patterns, feeding the CNN with images as those
shown in Fig. 2.

3.1. Convolutional neural networks

CNNs were first introduced by LeCun et al., 1990. They have an
architecture specially designed to process images. In this section
we give a brief introduction to CNNs, mainly with the purpose of
defining the hyperparameters considered in this work. For a more
detailed description of this kind of models, we refer the reader to
LeCun et al. (2010) and references therein.

Fig. 3 depicts a diagram of the considered CNN model. Each
layer is composed of three transforms. First, there is a convolution
operation between the input image and a filter bank of size
n_maps. Each filter has a bounded size associated to a small recep-
tive field in the input image (blue squares in Fig. 3). We use square
filters of width filter_size. For each filter in the bank, the con-
volution produces a feature map.

The second transform is an element-wise nonlinear function
applied to all feature maps. Typically this function is a ReLU.1

Finally, there is a subsampling transform. At this pooling stage,
each map is divided into a set of non-overlapping square neighbor-
hoods of width pool_size (red squares). From each neighbor-
hood, this transform only retains the maximum value.

The last layer in the network is a softmax function. It returns the
estimated probability of each class, given a concrete sample. This
layer is fully connected to all output feature maps of the last con-
volutional layer.

The described topology produces a huge reduction in the num-
ber of free trainable parameters in comparison to a standard (fully
connected) artificial neural network. This is due to its sparse neural
1 ReLUðxÞ ¼ maxð0; xÞ.
connectivity (restricted to small receptive fields) and to the sharing
of filter values along image locations exploiting translational
invariance.

A last relevant comment on CNNs is about visualization tech-
niques. Recently published procedures (Zeiler and Fergus, 2014)
allow the visualization of which patterns are detected at each layer
of the deep network, partially removing the CNNs from the cate-
gory of black-box models. In this paper we use a simple procedure
considered in Zeiler and Fergus (2014) for highlighting the most
relevant input image regions for the network output probabilities
(see Section 6).

4. Experiments

We evaluated the proposed pipeline with a CNN stage by per-
forming a set of numerical experiments in which several models
were trained in order to estimate the test error. Below we give
details of the performed experiments.

4.1. Datasets

We consider the leaf images already processed with stages (i)
and (ii) of the original pipeline (Fig. 1) with the two setup varia-
tions S1 and S2 (as explained in Section 2) as input of our CNN
without any further processing. For the S2 setup, in which we have
four images per sample, they are considered as four different input
channels for the CNN (as it is standard with the three channels in a
RGB image). We have therefore two series of experiments associ-
ated with these two setups S1 and S2, as in Larese et al. (2014b).
In summary, the input of the CNN is a 100 � 100 � 1 binary image
in the S1 setup and a 100 � 100 � 4 one in S2.

4.2. Models

We trained CNN models of increasing depth: from 2 layers (1
conv. layer + 1 softmax) to 6 layers (5 conv. layers + 1 softmax).
The architecture is the same for all convolutional layers in each
model. This means fixed filter_size and n_maps for the convo-
lution transform followed by a 2 � 2 pooling and a ReLU element-
wise nonlinearity.2

4.3. Training algorithm

The parameters were optimized using stochastic gradient des-
cent (SGD) over a training set using mini-batches of 20 samples.
We used a 50% dropout rate (Srivastava et al., 2014) in the training
stage for regularization. After some preliminary training experi-
ments we set the learning rate at 0.01 and momentum to zero.
2 The best model configuration obtained by cross validation for a 5-layer CNN has
filter_size = 12 and n_maps = 10. See Section 5.



Table 1
Per class and total accuracy (mean � stdev). Values correspond to our CNN model and
best accuracies reached in Larese et al. (2014b) for the S1 and S2 setups.

Model White
bean (%)

Red bean
(%)

Soybean
(%)

Total (%)

Combined veins only (S1 setup)
PDA, best of Larese et al.

(2014b)
82:7� 0:9 85:8� 0:6 96:5� 0:3 90:4� 0:3

CNN 5 layers 77:6� 1:1 93:8� 0:5 98:8� 0:2 93:0� 0:3
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4.4. Error estimation

For each model depth, the final test errors were estimated, as in
Larese et al. (2014b), by averaging over 100 runs (10 independent
runs of 10-fold cross-validation). The hyperparameters
filter_size and n_maps were chosen such as to minimize the
classification error over a validation set. We performed early stop-
ping on the number of SGD iterations by monitoring the validation
error.
Combined veins with 3 scales (S2 setup)
PDA, best of Larese et al.

(2014b)
90:9� 0:6 91:7� 0:5 99:0� 0:1 95:1� 0:2

CNN 5 layers 90:2� 1:0 98:3� 0:3 98:8� 0:2 96:9� 0:2

4.5. Implementation

All experiments were carried out using Pylearn2 (Goodfellow
et al., 2013).
5. Results

Figs. 4 and 5 show that the final accuracy consistently improves
with the depth of the model, irrespective of the selected setup (S1
or S2).

For the S1 setup (Fig. 4) the best performance is reached at a
depth of 5 layers, attaining a mean accuracy of ð92:6� 0:2Þ%. This
value surpasses the best mean accuracy reported in Larese et al.
(2014b), which corresponds to a PDA classifier (90:4� 0:3,
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Fig. 5. Classification accuracy as a function of CNN depth for setup S2. See Fig. 4
caption for details.
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Fig. 4. Classification accuracy as a function of CNN depth for setup S1. Each box
resumes the results from 100 runs (10 runs of 10-fold cross validation) for the
corresponding depth. The box size covers the two central quartiles, while
the whiskers span the central 95% of the runs. The horizontal dashed line indicates
the best mean value obtained by a task-specific approach (Larese et al., 2014b) for
this setup.
horizontal dashed line in Fig. 4). The reached accuracy does not
improve upon addition of extra layers: there is no clear difference
between 5- and 6-layer results.

For the S2 setup (Fig. 5) we find similar results. The best perfor-
mance is also reached with the 5-layer model, with no clear differ-
ence with respect to the 6-layer results. As in Larese et al. (2014b)
the accuracy levels with setup S2 are consistently higher than with
setup S1. In this case the 5-layer model accuracy reaches a mean
value of ð96:9� 0:2Þ%, surpassing the ð95:1� 0:2Þ% best accuracy
in Larese et al. (2014b).

Table 1 shows the mean accuracy for each class attained by the
best models. The improved performance of the 5-layer model
under both setups, S1 and S2, mainly originates from a better clas-
sification of red bean leaves.

For the S1 setup the accuracy of the 5-layer model over white
bean leaves drops significantly with respect to the best model in
Larese et al. (2014b). However, as white bean is the least numerous
class, this drop is insufficient to change the overall result. This
behavior vanishes for the S2 setup, where the accuracy of the
5-layer model is similar or better for all classes.

Finally, for completeness, we show Receiver Operating Charac-
teristic (ROC) curves for the S2 setup in order to further evaluate
classifier output quality. Fig. 6 shows one-vs-all ROC curves for
each class, for the different models (from 2 to 6 layers).
Consistently, white beans are harder to classify for all depths.
However, we found that all curves improve with depth up to the
5-layer model. The bottom left panel shows average curves for
different depth models where the 6-layer model falls below the
5-layer model curve. It is worth to mention that CNNs typically
respond with nearly saturated probabilities, and ROC curves are
less useful in these cases.
6. Visualizing relevant patterns

In order to gain an insight into which input patterns an already
trained CNN is sensitive to for class labeling we perform an exper-
iment along the lines of Zeiler and Fergus (2014). We occlude dif-
ferent parts of an input image with a 10 � 10 black patch and
observe the variation in the output probability for the correct
class.3 The result is a heatmap indicating the locations of the image
the output is more sensitive to. Fig. 7 shows some example images
for the three classes. Red colored regions correspond to a decrease
in the output probability while green indicates an increase. As all
shown examples were correctly classified, this occlusion procedure
typically lowers the probability of the correct class, biasing the heat-
map results to red as observed. We can see that different parts of the
vein patterns are taken into account for each class. For example, in
the case of the soybean samples, the most informative regions are
3 We used a trained 5-layer CNN with filter_size = 12 and n_maps = 10 in the
S2 setup.
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Fig. 6. Receiver Operating Characteristic (ROC) curves for the S2 setup. The first 5
panels show one-vs-all ROC curves for each class for the different models (from 2 to
6 layers). The bottom left panel shows average curves for different depths (black, 2
layers; red, 3 layers; blue, 4 layers; orange, 5 layers; and green, 6 layers). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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located in the central vein and, in particular, in the places where the
secondary veins join to it. However, for white and red bean classes,
the results suggest that the outer and smaller veins are also relevant
for the network output. In these highlighted regions we expect to
find the patterns relevant for the task at hand.
Fig. 7. Heatmaps indicating the input image region to which the correct-class output pr
correspond to a decrease of the output probability while green indicates an increase. Ea
color in this figure legend, the reader is referred to the web version of this article.)
Some selected samples shown in Fig. 8 help us understand the
tradeoff between the output probabilities for the three classes.
Rows (a) and (b) show two sample images from white bean leaves,
while rows (c) and (d) correspond to a single sample image from
red bean and soybean, respectively. Each column shows the varia-
tion of the output probabilities of the model associated to each
class when performing the same procedure as in Fig. 7. Given that
these probabilities sum up to 1, a decrease in one class (red
regions) is associated to an increase in the others (green regions).

The first observation we can derive from rows (a) and (b) is that
by occluding the higher order veins in the left side of the image the
correct class output probability drops (first column) in favor of soy-
bean probability (third column). This is because the higher order
veins in soybean leaves are sparser than in the case of red and
white beans (see samples in Fig. 7). Another observation we can
make concerns the central vein in row (b). For this particular white
bean, lower order veins look similar to those of a soybean with
respect to its ramification angle. This is the reason why when we
occlude parts of the central vein the probability of the correct class
increases at the expense of the soybean probability.

Concerning row (c), the selected red bean sample shows a pat-
tern typically found in this class. The cell-like pattern of the higher
order veins seems to constitute a subtle difference with respect to
the white bean class. Therefore, when occluding these patterns the
probability of red bean decreases (second column) in favor of the
white beans.

Rows (c) and (d) also show a typical behavior of the red bean
and soybean classes. Both classes interact with the white bean
class in the probability exchange but they do not interact with each
other. This suggests that these two classes do not have a frontier in
common in the representation computed by the deep network at
the input to the softmax layer.
7. Overall efficiency

When comparing two approaches for solving a specific task it is
advisable to consider the overall efficiency, i.e., the ratio between
the quality measure of the results and the cost of the resources
employed to achieve them. In Section 5 we present a comparative
summary in terms of classification accuracy. The counterpart of
resources spent is harder to compare given that it requires to mea-
sure the time and effort spent in the design and training of neural
models vs. the manual design and selection of feature extractors,
and issuing a classification. However, there are a few points we
can make in order to ease the comparison.
obability of the network is more sensitive to partial occlusion. Red colored regions
ch panel shows 9 examples from each class. (For interpretation of the references to



Fig. 9. The four pairs of flat composite structuring elements used in the UHMT
computation to detect veins in four directions, from left to right: vertical,
horizontal, +45�, and �45�. Foreground pixel configurations are depicted in red
while background pixel configurations in green. The center of the composite
structuring element is marked with a black dot. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 8. Heatmaps indicating the locations within the input images to which each
class output probability is more sensitive to partial occlusion. The columns
correspond to each of the three outputs (white bean, red bean, and soybean). Red
colored regions indicate a decrease in the corresponding output probability, while
green denotes an increase. Rows (a) and (b) correspond to white bean images, (c) to
red bean, and (d) to soybean. For these examples, the variation of the probability
assigned to the correct class is also shown in Fig. 7. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Designing feature extractors is labor-intensive and requires
expert skills. We lack data about the resources employed in Ref.
Price et al. (2011) to design leaf vein features. Nevertheless, for
most vision applications, suitable feature extractors are publicly
available as in this case. The effort is transferred however to the
search and selection of proper feature extractors for the task,
within a very large corpus of machine vision literature. This learn-
ing process is the most time consuming task and can demand from
weeks to months, depending on the problem at hand. This selec-
tion process includes the evaluation of classification models, which
can be done with a predefined application agnostic pipeline. The
comparison of different classification algorithms (SVM, PDA, RF)
and selection of hyperparameters by cross validation can be auto-
mated and requires just a few hours of computation on a standard
CPU.

On the other hand, for our proposal, we use a general purpose
standard CNN configuration (convolutional layer + ReLU activa-
tion + dropout, LeCun et al., 2015). An implementation of such net-
work can be found as a toy example in any deep learning library
(Chollet, 2015; Jia et al., 2014; Goodfellow et al., 2013). We added
no special features to adapt this standard model to our particular
application. As a consequence, training our model on the leaf vein
dataset to reach competitive validation accuracies took us a few
hours. The rest of the time (around one week4) was spent designing
4 The error estimation protocol (Section 4) required us around 1000 single training
runs of 30 min. each on one of four available low-cost GPUs.
and running cross validation experiments (as in any classification
task) for parameter optimization and error estimation, which is only
hardware intensive.

In summary, we cannot precisely state which pipeline is less
time consuming. However, the deep learning approach eliminates
the manual search for good feature extractors by automatically
learning relevant features. This conveniently transfers human
expert time to computational burden and, for this specific applica-
tion, also yields improved accuracies.
8. Conclusions

In this work we report a successful application of deep learning
to the area of agriculture, specifically to plant identification from
leaf vein patterns. We replaced a task-specific module in a state
of the art processing pipeline with a deep convolutional network.
The main result is that we obtained an improved accuracy using
a standard deep learning model. This implies that it is not neces-
sary to handcraft a specific feature extraction method for this task.
We also show that accuracy monotonically improves with model
depth, which implies that depth is a key ingredient of the
outperformance.

It is commonly argued that neural networks do not provide any
new insight about the problem under study, as they fall into the
category of black box models. However, thanks to a simple visual-
ization technique, we were able to obtain and understand the rel-
evant vein patterns used by the deep model for the classification
task performed.

We are currently exploring other potential applications of deep
learning in agriculture, in particular weeds detection and identifi-
cation, and seeds viability tests.
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Appendix A. Dataset

In this work we use the dataset introduced by Larese et al.
(2014a). It is formed by 866 leaf images provided by INTA
(Instituto Nacional de Tecnología Agropecuaria, Oliveros,
Argentina). It is divided into three classes: 422 images correspond
to soybean leaves, 272 to red bean leaves and 172 to white bean
leaves. These are first foliage leaves after 12 days of seedling growth.
The imageswere acquiredusing a standardflatbed scanner (Hewlett
Packard Scanjet-G 3110) at a resolution of 200 pixels per inch. The
images correspond to the abaxial surface of the leaves.
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Appendix B. Processing pipeline details

In this appendix we describe in more detail the first two stages
of the processing pipeline, i.e., the stages that we kept from the
method proposed in Larese et al. (2014a).

(i) The color information was removed by converting the RGB
images to grayscale.

(ii) A binary mask was obtained for each leaf, using the auto-
matic iterative threshold selection algorithm (Sonka et al.,
2014). Its holes were filled using morphological reconstruc-
tion (Soille, 1999) and finally all connected components
except the largest one were removed.

(iii) An unconstrained version of the Hit or Miss Transform
(UHMT) (Soille, 1999) on five differently sized (100%, 90%,
80%, 70% and 60%) versions of the images were computed.
For this purpose, four composite structuring elements were
used aimed at detecting leaf veins in four directions: verti-
cal, horizontal, +45� and �45� (shown in Fig. 9).

(iv) The resulting UHMTs were resized back to their original
sizes and added to obtain the combined UHMT. The resized
UHMTs at 100%, 80% and 60% were also preserved.

(v) An adaptive histogram equalization and adaptive threshold-
ing was performed, and all connected components with less
than 20 pixels were removed.

(vi) The UHMTs were masked using the result of step (ii).
(vii) Finally, a central patch (100 � 100 pixels) of the binary

image is cropped and the rest of the image is discarded.
Since the images are taken with a resolution of 200 dpi, this
corresponds to a square of 0.5 � 0.5 in. approximately
located at the center of the leaf.
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