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A B S T R A C T

Breast cancer is the most frequent malignancy in women. Multidrug resistance due to overexpression
of ABC drug transporters is a common cause of chemotherapy failure and disease recurrence. Genistein
(GNT) is a phytoestrogen present in soybeans and hormone supplements. We investigated the effect of
GNT on the expression and function of ABC transporters in MCF-7 and MDA-MB-231 breast cancer cell
lines. Results demonstrated an induction at the protein level of ABCC1 and ABCG2 and of ABCC1 in MCF-7
and MDA-MB-231, respectively. MCF-7 cells showed a concomitant increase in doxorubicin and mitoxantrone
efflux and resistance, dependent on ABCG2 activity. ABCC1 induction by GNT in MDA-MB-231 cells modi-
fied neither drug efflux nor chemoresistance due to simultaneous acute inhibition of the transporter activity
by GNT. All inductions took place at the translational level, as no increment in mRNA was observed and
protein increase was prevented by cycloheximide. miR-181a, already demonstrated to inhibit ABCG2 trans-
lation, was down-regulated by GNT, explaining translational induction. Effects were independent of classical
estrogen receptors. Results suggest potential nutrient–drug interactions that could threaten chemother-
apy efficacy, especially in ABCG2-expressing tumors treated with substrates of this transporter.

© 2016 Published by Elsevier Ireland Ltd.

Introduction

Breast cancer is the most frequent malignancy among women,
with 1.38 million new cases worldwide every year [1]. Chemother-
apy represents a cornerstone of breast cancer treatment. Besides
hormonal and immunological therapy, conventional cytostatic drugs
remain a choice as neoadjuvant therapy in estrogen receptor (ER)
positive tumors. Moreover, they represent the first-line option in
triple-negative breast cancer and in metastatic disease. Drugs most
frequently used include doxorubicin (DOX), epirubicin, mitoxantrone
(MXR), cyclophosphamide, methotrexate, 5-fluorouracil and
paclitaxel [2,3]. Chemotherapy schemes vary according to the disease
stage and may be combined with surgery and radiotherapy. However,
in spite of the advances registered in early detection and treat-
ment, 30% of patients exhibit recurrences that contribute to breast
cancer being the second leading cause of death by oncological dis-
eases among women [1].

Multidrug resistance is associated with treatment failure and
disease recurrence. It is characterized by overexpression of drug
transporters belonging to the ATP-binding cassette (ABC) super-

family that limit intracellular accumulation of cytostatic drugs.
Transporters most relevant in breast cancer are the P-glycoprotein
(P-gp/ABCB1), the multidrug resistance-associated protein 1 (MRP1/
ABCC1) and the breast cancer resistance protein (BCRP/ABCG2).
Among drugs used in breast cancer, DOX and epirubicin are sub-
strates of ABCB1, ABCC1 and ABCG2; paclitaxel is transported by
ABCB1 and MXR is mainly an ABCB1 and ABCG2 substrate [4–8].
Clinical studies have demonstrated an association between trans-
porter expression and response to treatment and disease outcome.
For instance, high ABCB1 levels were related with a poor progression-
free survival in advanced breast cancer patients [9]. When response
was analyzed against the cytostatic scheme administered, high
ABCB1 expressing patients exhibited a worse response to FAC (5-
fluorouracil + anthracycline + cyclophosphamide), attributable to
anthracycline transport by ABCB1. Such association was not ob-
served with CMF (cyclophosphamide + methotrexate + fluorouracil),
where the anthracycline is replaced by the poor ABCB1 substrate
methotrexate. In relation, another study demonstrated higher ABCC1
expression in non-responders than responders treated with FAC [10].
Moreover, a negative correlation between ABCG2 expression and
disease-free survival of epirubicin-treated patients was also de-
scribed [11].

ABC overexpression can be intrinsic or acquired through induc-
tion; for example, by exposure to therapeutic drugs, environmental
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toxicants and micronutrients present in the diet [7,12]. If such an
induction occurs during chemotherapy, lower therapeutic re-
sponse and worse disease outcome are expected.

Genistein (GNT) is a phytoestrogen present in soybeans and red
clover. In addition, it is one of the main active principles of hor-
monal replacement supplements for menopausal women. During
the last decades, beneficial effects of GNT on the cardiovascular
system, the bone and in the prevention of menopause-associated
complaints were described. Also, a role of phytoestrogens in the pre-
vention of hormone dependent tumors was suggested. However,
epidemiological studies failed to provide consistent results in this
regard [13]. On the contrary, recent evidence suggested an in-
crease in cell proliferation and proto-oncogene expression by
phytoestrogens in breast cancer cells [14,15]. GNT exerts some of
its effects through the classical estrogen receptors ERα and ERβ [16].
Additionally, GNT activates the pregnane-X-receptor (PXR) [17],
which together with ERs are key regulators of ABC transporter ex-
pression [12,18]. Thus, modulation of efflux proteins by GNT is
possible and was previously demonstrated in colon and liver cancer
cell lines, where GNT up-regulated ABCB1 and ABBC2 and subse-
quently increased chemoresistance [19,20]. Whether a similar effect
occurs in breast cancer has not been investigated yet.

GNT is ingested with diet or with over-the-counter formula-
tions. Thus, its intake and the arising interactions may remain
unconsidered in the design of chemotherapeutical strategies. This
gains particular importance, taking into account that post-menopausal
women, the target group of GNT containing supplements, are also
those at higher risk of developing breast cancer. If GNT induced ABC
transporters in breast cancer, it could lead to diminished efficacy
of chemotherapy and thus to a worse disease outcome. The aim of
this work was to assess the effect of GNT on the expression and ac-
tivity of the most relevant ABC transporters in two human breast
cancer cell lines and to evaluate the underlying molecular
mechanisms.

Materials and methods

Chemicals

Culture media, charcoal-dextran fetal calf serum (FCS), buffers, all other supple-
ments, the Gene Elute mammalian total RNA kit, cycloheximide (CHX), GNT and
mitoxantrone were from Sigma-Aldrich (Taufkirchen, Germany). Dimethyl sulfox-
ide (DMSO), crystal violet and doxorubicin were from AppliChem (Darmstadt,
Germany). Fumitremorgin C (FTC) was kindly provided by the National Cancer In-
stitute (Rockville, USA). MK571 was purchased from Enzo Life Sciences (Lörrach,
Germany). FCS was from Biochrom (Darmstadt, Germany). The RevertAid H Minus
first-strand kit was from Fermentas (St-Leon-Rot, Germany). The miRNeasy kit was
from Qiagen (Hilden, Germany) and the NCode™ miRNA first-strand kit was from
Life Technologies (Darmstadt, Germany). ICI 182,780 was obtained from Tocris (Bristol,
UK). The anti-ABCB1 antibody C219 was purchased from Calbiochem (Darmstadt,
Germany), the anti-ABCC1 antibody MC-898 from Kamiya Biomedical Company
(Tukwila, USA) and the anti-ABCG2 antibody BXP-21 from Enzo Life Sciences. All
other chemicals were of analytical grade purity.

Cell culture and treatments

MCF-7 and MDA-MB-231 cell lines, models of ERα positive breast cancer and
triple-negative breast cancer (ERα−/human epidermal growth factor receptor
2−/progesterone receptor−), respectively, were acquired from the European Collec-
tion of Authenticated Cell Cultures (Salisbury, UK) [21]. Both cell lines are positive
for ERβ [22]. As breast tumors in vivo, the cell lines used express different ABC pro-
teins. MCF-7 cells express ABCC1 and ABCG2, while MDA-MB-231 cells express ABCB1
and ABCC1 [4,23]. Cell lines were cultured as described [24]. For treatments, cells
were seeded in 6-well plates (3.5 × 105 cells/well). After 24 h, cells were exposed
to GNT concentrations associated with plasma levels after the ingestion of a soy rich
diet or hormonal supplements (0.1, 1 and 10 μM) for 48 h [25,26]. Control cells were
exposed to the vehicle (DMSO, 0.1% v/v). Treatments were performed in phenol-
red free medium with charcoal-dextran treated FCS as described [20].

To assess whether GNT acts at the translational or post-translational level, treat-
ments were repeated in the presence of CHX (translation inhibitor, 100 μM) [20].
ER participation was evaluated using the antagonist ICI 182,780 (1 μM) [19].

Western blot

Western blot studies were performed as described [27]. β-actin was used as a
loading control. Detections were performed through chemiluminescence with a
FluorChem device (Protein simple, San Jose, USA). The expression of multiple pro-
teins was assessed by stripping the membranes with sodium hydroxide (0.20 M,
10 min) and further reincubation with alternative antibodies.

Drug efflux assays

To determine the functional impact of transporter induction by GNT, we evalu-
ated the efflux of DOX and MXR as model drugs employed in breast cancer treatment
[2–4]. The contribution of the respective transporters was confirmed using MK571
(10 μM, ABCC1 inhibitor) and FTC (10 μM, ABCG2 inhibitor) [28].

DOX was quantified as published [29]. Briefly, cells were treated with GNT as
described in the section “Cell culture and treatments”. Subsequently, medium was
removed and fresh medium containing DOX (50 μM) was added for 2 h. Thereaf-
ter, cells were rinsed and further incubated with Hank’s balanced salt solution for
1 h to allow DOX efflux. Finally, supernatant aliquots were taken and DOX was quan-
tified through spectrofluorometry using a Fluoroskan Ascent device (Thermo
Scientific), λexcitation = 485 nm, λemission = 538 nm.

MXR was quantified as described [30]. Briefly, after GNT treatment, cells
were trypsinized and incubated in medium containing MXR (10 μM, 30 min).
Subsequently, a set of cells was rinsed and immediately used for MXR quantifica-
tion (MXR uptake). Another set of cells was resuspended in RPMI1640 medium
supplemented with 2% FCS and incubated for 2 h to allow MXR efflux. MXR was
quantified using a BD LSR II flow cytometer with a red laser and APC detection filter.
Efflux was calculated as the difference between MXR uptake and remnant
intracellular MXR after 2 h efflux period. Cell viability under treatment conditions
similar to those used in efflux studies was verified by crystal violet staining (data
not shown) [27].

The acute inhibition of DOX and MXR efflux by GNT was evaluated quantifying
the extrusion of each drug as above described in the presence of increasing GNT
concentrations (0–1000 μM), added only during the efflux phase.

Growth inhibition assays

To evaluate cell viability after exposure to DOX and MXR, cells were seeded in
96-well plates (2500 and 5000 cells/well for MCF-7 and MDA-MB-231 cells, respec-
tively) and treated with GNT concentrations that modified transporter expression.
Then, fresh medium with increasing concentrations (0–150 μM) of DOX or MXR was
added and cells were further incubated for 16 h. Cell viability was quantified through
crystal violet staining [27].

Real time RT-PCR

Real time RT-PCR studies were performed for GNT treatments causing
changes in the protein expression. Total RNA was isolated using the Gene Elute mam-
malian total RNA kit and cDNA was synthesized using the RevertAid H Minus
first-strand kit. The most suitable housekeeping gene for normalization of ABC trans-
porter expression was identified as described [27]. Among a panel of 6 genes tested,
the ribosomal protein L13 (RPL13) proved to be the most stable under the assay
conditions.

To gain a deeper insight into transporter translational regulation by GNT, the
expression of miR-7 and miR-181a, shown to modulate ABCC1 and ABCG2, respec-
tively [31,32], was assessed. Total RNA was isolated using the miRNeasy kit. cDNA
was synthesized using the NCode™ miRNA first-strand kit. Expression of miRNAs
was normalized simultaneously to SNORD61 and SNORD68, detected using the miScript
system (Qiagen).

Primers and PCR conditions for ABC transporters were described previously [33].
Forward primers for miRNA quantification were: miR-7: 5′-CGTGGAAGACTAGTGA
TTTTGTTGT-3′; miR-181a: 5′-GCTGGCAACATTCAACGCTGTC-3′. The universal qPCR
reverse primer was provided in the cDNA synthesis kit.

Quantifications were performed in a LightCycler®480 (Roche Applied Science,
Mannheim, Germany). Data were evaluated by calibrator-normalized relative quan-
tification with efficiency correction as described [33].

Statistical analysis

Data are presented as means ± SD. Comparisons were performed using the St-
udent’s t-test or one-way ANOVA followed by the Tukey’s test, for two or more than
two experimental groups, respectively. Experiments were performed at least in
triplicate.

IC50-values for drug efflux inhibition and cell proliferation assays were calcu-
lated using a sigmoidal model using GraphPad Prism 5.0 (GraphPad Software, La Jolla,
USA).
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Results

ABC transporter expression in GNT treated breast cancer cell lines

MCF-7 cells showed an increase both in ABCC1 (+121%) and
ABCG2 (+281%) expression after treatment with 10 μM of GNT
(Fig. 1A and B, respectively). No changes were observed at lower GNT
concentrations. MDA-MB-231 cells showed no significant changes
in ABCB1 expression by GNT (Fig. 1D), while ABCC1 was induced
at 0.1 and 1 μM GNT (+70% and +74%, respectively) (Fig. 1E).

Effect of GNT on DOX and MXR efflux

In MCF-7 cells, GNT (10 μM, 48 h) increased DOX efflux (+55%,
Fig. 2A) consistent with transporter induction by GNT. Although re-
ducing the net efflux of DOX, MK571 did not abolish the increased
efflux capacity in GNT pretreated cells, probably due to the con-
currently augmented expression of ABCG2 (being a DOX transporter
also), not inhibited by MK571. FTC completely abolished the in-
crease in DOX efflux in GNT pretreated cells, suggesting a major role
of ABCG2 in the enhanced efflux of DOX (Fig. 2A). GNT (10 μM, 48 h)
caused a significant increase of MXR efflux (+136%, Fig. 2B) that was
not inhibited by MK571. No GNT-mediated changes in MXR efflux
were observed under ABCG2 inhibition with FTC.

DOX efflux in MDA-MB-231 cells was not increased by GNT. On
the contrary, cells treated with 1 μM GNT exhibited a decrease in
DOX efflux (−38%). MK571 exposed cells did not show differences
between groups. However, DOX efflux was generally inhibited by
MK571, confirming the ABCC1 inhibitory potency of MK571 (Fig. 3A).
MXR efflux remained unchanged in GNT treated cells without in-
hibitor, whereas under coincubation with MK571, GNT 1 μM
inhibited MXR efflux (−43%) with respect to control cells (Fig. 3B).

To test whether an acute inhibition of ABCC1 activity by GNT
could account for the unincreased DOX efflux in cells lacking func-
tional BCRP, we quantified the DOX efflux in both cells lines with
addition of GNT only during the efflux phase. Results confirmed an
acute inhibition of DOX efflux by GNT in both cells lines. A similar
effect was also observed for MXR efflux (Table 1).

Effect of GNT on chemoresistance toward DOX and MXR

GNT-treated MCF-7 cells showed a clear increase in resistance
to DOX and MXR (Table 2), agreeing well with the increased efflux
of both agents. MK571 did not block the increased resistance, prob-
ably due to GNT-mediated induction of ABCG2, whose activity is
not affected by MK571. FTC completely abolished the enhanced re-
sistance to DOX, attributing ABCG2 the most relevant role in
chemoresistance against DOX. A residual increase in the IC50 of MXR
by GNT in the presence of FTC was still observed. Nevertheless, this
observation appears to be independent of MXR accumulation
(Fig. 2B) and thus of ABC transporter activity.

In MDA-MB-231 cells, GNT did not modify chemoresistance
towards DOX or MXR (Table 3).

Fig. 1. Modulation of ABC transporter protein expression in MCF-7 and MDA-MB-231 cells by GNT. Protein expression after exposure to GNT (0.1, 1 and 10 μM, 48 h) or
vehicle (control: C) was assessed through Western blot for ABCC1 (A) and ABCG2 (B) in MCF-7 cells, and for ABCB1 (D) and ABCC1 (E) in MDA-MB-231 cells. β-actin was
used as a loading control. Representative blots are shown for each transporter (C and F). *Different from control, p < 0.05, n = 3–4.

Table 1
Acute inhibition of drug efflux by GNT.

Doxorubicin Mitoxantrone

MCF-7 9.0 ± 4.7 μM 32.2 ± 12.1 μM
MDA-MB-231 42.4 ± 7.3 μM 3.3 ± 2.1 μM

Results are expressed as IC50-values obtained through non-linear fitting of the
concentration-response curves. n = 3.
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Effect of GNT on mRNA expression of ABC transporters and evidence
for translational regulation

MCF-7 cells showed no changes in ABCC1 (Fig. 4A) but down-
regulation of ABCG2 mRNA (−39%, Fig. 4B) by 10 μM GNT. In
MDA-MB-231 cells, GNT (0.1 μM) decreased ABCC1 mRNA (−34%)
without changes at 1 μM (Fig. 4C). Dissociation between protein and
mRNA expression following GNT treatment suggests either a trans-
lational or a post-translational regulation.

CHX was used to discern between the two above mentioned
mechanisms. Indeed, coincubation with CHX resulted in no signif-
icant changes in ABCC1 (Fig. 5A) or ABCG2 (Fig. 5B) protein expression
between control and GNT-treated MCF-7 cells. Similarly, no signif-
icant difference was observed between control and GNT-treated
MDA-MB-231 cells (Fig. 5C), indicating a translational regulation.

Molecular mediators of ABC transporter translational regulation
by GNT

ER participation was evaluated repeating induction experi-
ments in the presence of the inhibitor ICI 182,780. Under these

Fig. 2. Modulation of cytostatic drug efflux in MCF-7 cells by GNT. DOX (A) and MXR
(B) efflux was evaluated through fluorescence measurement in MCF-7 cells. Experi-
ments were performed without transporter inhibitor, with MK571 (10 μM, ABCC1
inhibitor) or with FTC (10 μM, ABCG2 inhibitor). a: different from control without
inhibitor, b: different from control + MK571, c: different from control + FTC, p < 0.05,
n = 3.

Fig. 3. Modulation of cytostatic drug efflux in MDA-MB-231cells by GNT. DOX (A)
and MXR (B) efflux was evaluated through fluorescence measurement in MDA-MB-
231 cells. Experiments were performed without transporter inhibitor and with MK571
(10 μM, ABCC1 inhibitor). a: different from control without inhibitor, b: different from
control + MK571, p < 0.05, n = 3.

Table 2
Cytotoxicity assays with DOX and MXR in GNT pretreated MCF-7 cells.

Without inhibitor +MK571 +FTC

A. Doxorubicin
Control 0.35 ± 0.07 0.07 ± 0.04 0.52 ± 0.09
GNT 10 μM, 48 h 1.27 ± 0.15* 1.34 ± 0.41* 0.36 ± 0.03

B. Mitoxantrone
Control 2.04 ± 0.70 1.39 ± 0.22 0.54 ± 0.26
GNT 10 μM, 48 h 3.52 ± 0.80* 3.85 ± 1.60* 1.13 ± 0.15*

Results are expressed as IC50 values (μM) obtained through non-linear fitting of vi-
ability curves.

* Different from the respective control, p < 0.05, n = 3–4.

Table 3
Cytotoxicity assays with DOX and MXR in GNT pretreated MDA-MB-231 cells.

Without inhibitor +MK571

A. Doxorubicin
Control 2.59 ± 0.75 1.09 ± 0.30*
GNT 0.10 μM, 48 h 2.32 ± 0.80 1.82 ± 0.94
GNT 1 μM, 48 h 1.67 ± 0.27 2.17 ± 0.47

B. Mitoxantrone
Control 4.00 ± 0.47 2.89 ± 0.77
GNT 0.10 μM, 48 h 3.26 ± 1.42 4.07 ± 1.13
GNT 1 μM, 48 h 3.09 ± 1.08 3.38 ± 0.98

Results are expressed as IC50-values (μM) obtained through non-linear fitting of vi-
ability curves.

* Different from control without inhibitor, p < 0.05, n = 3–4.
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conditions, GNT still up-regulated ABCC1 and ABCG2 in MCF-7 cells
(Fig. 6A and B) and ABCC1 in MDA-MB-231 cells (Fig. 6C), arguing
against a major role of classical ERs for the transporter induction
by GNT.

In addition, the effect of GNT on the expression of miR-7 and miR-
181a was tested as possible modulators of ABCC1 and ABCG2
translation, respectively. In MCF-7 cells, miR-7 expression was slightly
increased by GNT 10 μM (133 ± 19% vs. control: 100 ± 12%, p < 0.05,

Fig. 4. Modulation of ABC transporter mRNA expression in MCF-7 and MDA-MB-231 cells by GNT. mRNA levels of ABCC1 (A), ABCG2 (B) in MCF-7 cells and ABCC1 (C) in
MDA-MB-231 cells were assessed through real time RT-PCR after treatment with GNT concentrations previously shown to modify transporter expression at the protein
level. Target gene expression was normalized to RPL13 expression. *Different from all other groups, p < 0.05, n = 4.

Fig. 5. Effect of CHX on ABC transporter protein induction in MCF-7 and MDA-MB-231 cells by GNT. Cells were exposed to GNT concentrations previously shown to modify
transporter expression at the protein level (10 μM for MCF-7 cells and 0.1 and 1 μM for MDA-MB-231 cells, 48 h) in the presence of CHX (100 μM). Protein expression was
assessed through Western blot for ABCC1 (A) and ABCG2 (B) in MCF-7 cells, and for ABCC1 in MDA-MB-231 cells (C). β-actin was used as a loading control. Representative
blots are shown for each transporter (D). n = 3.

Fig. 6. Effect of ICI 182,780 on ABC transporter induction in MCF-7 and MDA-MB-231 cells by GNT. Cells were exposed to GNT concentrations previously shown to modify
transporter expression at the protein level (10 μM for MCF-7 cells and 0.1 and 1 μM for MDA-MB-231 cells, 48 h) in the presence of ICI 182,780 (1 μM). Protein expression
was assessed through Western blot for ABCC1 (A) and ABCG2 (B) in MCF-7 cells, and for ABCC1 in MDA-MB-231 cells (C). β-actin was used as a loading control. Represen-
tative blots are shown for each transporter (D). *Different from control, p < 0.05, n = 3.
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n = 3) (Fig. 7A). On the contrary, miR-181a was significantly down-
regulated by GNT 10 μM in MCF-7 cells (49 ± 1% vs. control:
100 ± 17%, p < 0.05, n = 3) (Fig. 7B). No changes were observed in
miR-7 in MDA-MB-231 cells at GNT 0.1 μM or 1 μM (101 ± 10% and
117 ± 12%, respectively) vs. control cells (100 ± 8%) (Fig. 7C).

Discussion

ABCB1, ABCC1 and ABCG2 are drug transporters playing a key
role in the efflux of cytostatic agents used in breast cancer chemo-
therapy. Clinical evidence points to an association between
transporter expression and disease prognosis [9–11]. To date, several
cases of transporter modulation by natural compounds and ther-
apeutic drugs have been described, representing one of the molecular
bases underlying diet–drug and drug–drug interactions, respec-
tively [7,12,34]. GNT is a phytoestrogen present in soy and red clover
shown to induce the expression of drug transporters and to cause
chemoresistance in cancer models [19,20]. A similar transporter in-
duction was observed in vivo in liver and intestine of soybean fed
rats [35]. Although experimental evidence in this field is highly con-
tradictory, GNT supplements are frequently consumed by women
due to their assumed effects alleviating menopausal disorders and,
even, preventing breast cancer [13]. In the present work, we de-
scribed the effects of GNT on drug transporter expression, function
and their molecular regulation. A clear GNT-mediated protein in-
duction of ABCC1 and ABCG2 in MCF-7 cells and of ABCC1 in MDA-
MB-231 cells was observed. On the contrary, GNT did not modify
ABCB1 expression, agreeing well with a previous report by Limtrakul
et al. [36], showing no changes in ABCB1 expression in cervical cancer
cell lines incubated with GNT 10 μM. Since mRNA expression ex-
hibited a clear discrepancy with protein levels, transcriptional or
post-transcriptional mechanisms can vastly be ruled out. In con-
trast, regulation of drug transporter expression appears to take place
at the translational level. Protein inductions described are clearly
dependent on GNT concentrations. Only the highest GNT concen-
tration elicited an effect in MCF-7 cells. On the other hand, MDA-
MB-231 showed ABCC1 induction only at the lower concentrations.
Such an effect had been observed in Caco-2 cells treated with GNT
and with ethynylestradiol [19]. Results can be attributed to simul-
taneous activation of opposite regulatory mechanisms with a
differential dependence of estrogen concentration. In fact, estro-
gens modulate ABC transporters through interaction with diverse
signaling pathways comprising classical ERs, the G protein-coupled
estrogen receptor GPR30, PXR and several tyrosine kinases (TKs) in-
cluding their downstream transcriptions factors [16–18,37,38]. Thus,
the occurrence of opposite effects resulting from concomitant reg-
ulatory events seems feasible. Noteworthy, GNT plasma levels

achieved with a soy rich diet differ from those after hormonal sup-
plement intake. For instance, Verkasalo et al. [39] reported GNT
plasma Cmax values of 0.52 μM in subjects drinking 284 mL or more
of soy milk daily and consuming solid soy food between 2 and 4
times per week, whereas after the intake of a soy-based supple-
ment (100 mg soy isoflavone) GNT Cmax reached 6.08 μM [40]. In this
regard, the recommended daily intake of soy-based supplements
represents up to 200 mg of soy isoflavone, thus even higher Cmax

values may be expected. If a similar dose-dependence was ob-
served in vivo, it could imply a differential effect of GNT according
to the source of the phytoestrogen.

Higher ABC transporter expression usually leads to enhanced
efflux of respective substrates. Our results in MCF-7 cells indeed
demonstrate that increased ABCG2 expression results in higher ex-
trusion and enhanced chemoresistance to DOX and MXR.
Additionally, our observations point out a malfunction of ABCC1
under GNT treatment. This can be clearly noted for DOX efflux under
ABCG2 inhibition by FTC. A similar effect was observed in MDA-
MB-231 cells, not expressing ABCG2. Although DOX is also an ABCC1
substrate [7], GNT did not increase its efflux as expected from trans-
porter induction. Instead, reduced DOX transport was observed.
Competitive inhibition of ABCC subfamily members by GNT was
already reported [41,42]. In line with this observation, we here report
an inhibition of ABCC1 activity by intracellular GNT remnant in
MCF-7 and MDA-MB-231 cells, ruling out a major role of induc-
tion of this particular transporter by GNT in cancer chemoresistance.
Conversely, a major role of ABCG2 in enhanced resistance to DOX
and MXR is suggested, agreeing well with a recent clinical study
showing poor prognosis of anthracycline treated breast cancer pa-
tients exhibiting high activity of ABCG2 [43]. If GNT exerted a similar
increase of ABCG2 activity in vivo, a detrimental effect on both the
efficacy of chemotherapeutic drugs and on disease prognosis could
be expected. Furthermore, adjuvant endocrine therapy with
tamoxifen could also be affected since ABCG2 transports and thus
influences tamoxifen efficacy [44]. Thus, our results suggest also a
detrimental effect of soy (and other GNT containing products) on
the efficacy of breast cancer endocrine therapy. This might addi-
tionally result in a higher risk of disease recurrence given the side
population of ABCG2 overexpressing breast cancer stem cells [45].
Together, these data reinforce the necessity of avoiding soy con-
sumption during treatment.

ABC transporters expression is regulated at different levels. We
here reported a translational regulation of ABCC1 and ABCG2 by GNT.
Although most cases of induction by xenobiotics take place at the
transcriptional level [7,12], translational effects are common among
estrogenic compounds in vitro and in vivo [19,20,46,47]. miRNAs
mediate several effects of estrogens in breast cancer, exhibiting a

Fig. 7. Modulation of miR-7 and miR-181a expression in MCF-7 and MDA-MB-231 cells by GNT. Expression levels of miR-7 (A), miR-181a (B) in MCF-7 cells, and miR-7 (C)
in MDA-MB-231 cells were assessed through real time RT-PCR after treatment with GNT concentrations previously shown to modify transporter expression at the protein
level. miRNA expression was simultaneously normalized to SNORD61 and SNORD68 expression. *Different from control, p < 0.05, n = 3.
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prognostic role in some cases [48,49]. miR-7 and miR-181a are vali-
dated as negative modulators of ABCC1 and ABCG2, respectively
[31,32]. Consequently, down-regulation of these miRNAs leads to
increased transporter expression. Using an online available algo-
rithm [50], promoter analysis of these two miRNAs revealed cis
elements that bind transcription factors like c-jun, c-fos, junB and
junD (unpublished results), which are regulated by tyrosine kinases
(TK) [51,52]. Thus, general inhibition of TK activity by GNT can result
in the inhibition of transcription factor activity (e.g. due to reduced
nuclear translocation or increased proteasomal degradation) and
thus in a diminished miRNA expression [53]. In this regard, c-jun
down-regulation by GNT was already reported in Caco-2 cells [19].
Unexpectedly, no decrease in miR-7 was observed, suggesting a
minor role of this miRNA in ABCC1 up-regulation. On the con-
trary, miR-181a was indeed down-regulated by GNT in MCF-7 cells,
probably due to TK inhibition and transcription factor down-
regulation by GNT. Noteworthy, ABC transporters exhibit single-
nucleotide polymorphisms (SNPs) modifying their susceptibility to
miRNAs [54]. Further analysis of ABCG2 SNPs could help to predict
the risk of miR-181a associated translational regulation, and thus
of GNT triggered transporter induction.

Regulation of ABC transporters by estrogens can occur either
through ER-dependent or ER-independent mechanisms [55]. Our
results show a similar transporter induction in MCF-7 and MDA-
MB-231, even though both cell lines differ in their ER expression
pattern, suggesting a minor role of ER. This hypothesis was con-
firmed by using the ER antagonist ICI 182,780, which failed to prevent
transporter induction. A previous work also demonstrated an ER in-
dependent effect as GNT potently induced ABCB1 and ABCC2 even
in ER− HepG2 cells [20]. These observations suggest that GNT-
chemotherapy interactions may take place even under treatment
with ER antagonists like tamoxifen.

In conclusion, we describe an induction of ABC transporters by
GNT in breast cancer cell lines, with ABCG2 induction exhibiting the
highest pharmacological relevance in terms of increased in vitro che-
moresistance. Induction is at least in part mediated by suppression
of miR-181a, a negative regulator of drug transporter expression.
Our results here suggest a higher risk of adverse GNT-chemotherapy
interactions in patients under treatment with substrates of ABCG2
such as anthracyclines, MXR or tamoxifen.
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