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Abstract
We propose systems that allow a tuning of the phonon transmission function T(ω) in graphene
nanoribbons by using C13 isotope barriers, antidot structures, and distinct boundary conditions.
Phonon modes are obtained by an interatomic fifth-nearest neighbor force-constant model
(5NNFCM) and T(ω) is calculated using the non-equilibrium Green’s function formalism. We
show that by imposing partial fixed boundary conditions it is possible to restrict contributions of
the in-plane phonon modes to T(ω) at low energy. On the contrary, the transmission functions of
out-of-plane phonon modes can be diminished by proper antidot or isotope arrangements. In
particular, we show that a periodic array of them leads to sharp dips in the transmission function
at certain frequencies ων which can be pre-defined as desired by controlling their relative
distance and size. With this, we demonstrated that by adequate engineering it is possible to
govern the magnitude of the ballistic transmission functions T ( )ω in graphene nanoribbons. We
discuss the implications of these results in the design of controlled thermal transport at the
nanoscale as well as in the enhancement of thermo-electric features of graphene-based materials.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Immediately after the first measurements of graphene’s
extraordinary large thermal conductivity [1–3], its vibrational
properties have become an object of intense research [4–7].
The low density of states at the Fermi energy makes the
contributions of free electrons (Dirac fermions) negligible [8]
and the intrinsic mechanisms behind the outstanding thermal
transport properties are then almost completely attributed to
the phonon characteristics. These investigations, together with
the improvements in fabrication techniques [9, 10], have
demonstrated the high potential for using graphene in
obtaining rapid thermal dissipation, a topic highly important
for present and future nano-electronic devices [11]. Mea-
surements of thermal transport in the ballistic limit, where the
phonon mean-freepath is larger than the dimensions of the
sample, have not been reached yet experimentally. Recent
very promising works, however, have shown new insights of

this limit [12–14]. Beyond the sample-size dependency [15],
different arrangements of atomic vacancies, carbon isotopes,
and distinct boundary conditions have also a strong impact on
the phonon transport [16–21]. Some results of these effects
were already known from studies on carbon nanotubes [22–
24] and have been extended to graphene nanoribbons (GNRs)
[18, 25]. In general, all these studies were focused mainly on
the reduction of the total thermal conductivity leaving the
microscopical details somehow unattended.

In this work, we demonstrate that it is possible to use
adequate configurations of boundary conditions, antidot
arrangements and isotopic barriers to tune the polarized bal-
listic phonon transmission in GNRs. We show that particular
local atomic displacements can be controlled with the purpose
of filtering incoming in-plane or out-of-plane phonon modes
at specific energies. In adittion to the tuning of the phonon
transmission function T ( )ω , our findings also have important
consequences for related problems of high interest, including
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the search for enhanced thermoelectric behaviors [26] and the
improvement of mechanical properties by controlled defect
creation [27].

2. Method and model

Interactions between carbon atoms inside GNRs were mod-
eled with a harmonic fifth-nearest neighbor force-constant
model (5NNFCM). Parameters of the 5NNFCM account for
the radial bond-stretching, in-plane and out-of-plane tangen-
tial bond-bending interactions [28]. This model has been
proven to describe phonon dispersions and elastic constants
of single and multi-layer graphene with excellent accuracy
[29]. It was also used recently by us to investigate the role of
single atomic vacancies and boundary conditions in the
thermal transport properties of GNRs [30]. Here, we expand
the study with special emphasis on the management of the
polarized transmission functions.

Zigzag graphene nanoribbons (ZGNRs) were defined in
the usual way respecting the hexagonal lattice and the edge-
shapes at the boundaries. Definitions of free- and supported-
edge boundary conditions and calculations of the contribu-
tions to T ( )ω were performed using the formalism presented
in [30]. The following systems are investigated in detail: (i)
C13 isotopes were modeled by changing the atomic mass of
carbon atoms keeping unaltered the magnitude of the forces;
(ii) atomic vacancies were introduced by switching off the
interatomic interactions with the missing atoms and (iii)
partially supported-edges were defined by fixing certain car-
bon atoms outside the ribbon. Although not shown here,
similar results were obtained for armchair GNRs.

In the absence of inhomogeneities, the phonon spectrum
can be obtained by numerical diagonalization of the dyna-
mical matrix [29]. The phonon spectrum of an homogeneous
free-edge ZGNR contains four acoustical phonon modes, i.e.
one extra acoustical mode as compared to bulk graphene. In
the long wavelength regime the in-plane longitudinal (LA)
and transversal (TA) modes exhibit linear energy dispersion,

the out-of-plane (ZA) mode has quadratic dispersion and the
so-called fourth acoustic (4ZA) mode possesses a linear
energy dispersion [30]. Similar to what occurs in CNTs, as
shown in figure 1 (left panel), this last mode has a small size-
dependent energy gap when it is obtained using a force
constant model [31–35]. At higher energies, out-of-plane
(ZO-nth) and in-plane optic modes are present. For supported-
edge ZGNRs, all phonon modes develop an energy gap due to
the breakdown of the translational symmetry [30].

The calculation of the energy-dependent transmission
function T(ω) was performed by using the non-equilibrium
Green’s function formalism within the conventional Landauer
method [36, 37]. Anharmonic terms and electron-phonon
interactions were neglected. As described elsewhere, the
central region containing antidots, isotopes or supported-edge
zones, was connected to two homogeneous semi-infinite
contacts at different temperatures. Surface Green’s functions
(SGF) were calculated iteratively by using the decimation
technique [38, 39]. The polarized incident components of
T ( )ω were identified by proper rotation of the SGF to the
basis of normal phonon modes [40].

3. Results and discussion

3.1. Out-of-plane phonon modes

The quadratic phonon dispersion displayed by the out-of-
plane ZA phonon mode at low energy entails important
consequences in the temperature-dependent properties of the
graphene lattice. For instance, the ZA mode is responsible for
the subtle lattice thermal contraction which takes place at
intermediate temperatures [41]. The smaller group velocity

q( )nν ω ω= ∂ ∂ of the out-of-plane mode (n = ZA) in the long
wavelength regime as compared to the in-plane modes also
have important effects on the phonon transport. Given a fixed
wave-vector, in-plane and out-of-plane incident waves will
propagate at different speeds. Consequently, they interact
differently with any obstacle (atomic vacancies, carbon

Figure 1. Isotopic barriers. Left: phonon relation dispersions of a free-edge homogeneous ZGNR and polarized transmission fucntions T ( )ω
for N = 10 isotopic barriers separated by d = 4. Center: (a) variation of T ( )ZA ω against the barrier distance d = 2, 4, 6 for N = 8. Dependence
with N = 2, 4, …, 16 for the first dip of (b) T ( )ZA ω and (c) T ( )4ZA ω for d = 4. Right: LDOS profile at ω = 9.6 (first dip) and 15 cm 1− for N = 8
and d = 4.
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isotopes, any kind of impurity, etc) encountered on their way.
If the obstacle is localized (extent limited to a small region in
space) fast-moving waves will transit almost without being
affected, but slow-moving waves will suffer partial reflection.

This effect can be more clearly seen in the analytical
expression for the amplitude mode transmission t ( )n

RL ω
obtained by using a mode-matching technique [42] in which
t E G E( ) i2 {( ) [( ) ] } ( )n

RL
R N L

T
n n

L1
1,0

1ω ω ν ω= + −
+

− − , where n
Lν

is the group velocity of the incident wave of mode n,GN 1,0+ is
the corner element of the retarded Green’s function for the
junction part and ER

+ and EL
− are the matrices formed by the

column eigenvectors for the reflected normal modes of the left
and right leads, respectively. In the following we will show
that by using specific configurations of isotope and antidot
structures this phenomenon can be exploited in order to filter
slow moving out-of-plane phonons at low energy.

We start by analyzing the effect of N finite periodic
isotopic barriers positioned along the ZGNR. Each barrier
consists of four consecutive columns of C13 isotopes, which
are separated from each other by d columns of C12 atoms. The
small mass variation (∼8.34%) between C12 and C13 has a
negligible impact on the thermal transmission when there are
only a few random distributed isotopes (diluted limit). Only in
case of large concentration of isotopes the thermal transmis-
sion becomes significantly distorted. In figure 1 (left panel)
we show the low-energy behavior of T ( )ω for N = 10 and
d = 4. As observed, each single-phonon mode transmission
presents a few visible dips. The energies at which these dips
are present for each phonon mode n can be estimated as

q m L( )m
nω π= where m accounts for the mth dip,

L d a(4 ) 3= + is the distance between isotopic barriers
and a = 1.42 Å the bond length between carbon atoms. For a
better comprehension we added arrows in order to identify the
m = 1, 3 and 5 dips for the ZA mode on the plot. This
situation resembles those for the transmission coefficients of
weighted strings [43, 44]. Accordingly, the intensity of the
dips is afffected by an extra modulation which depends on the
barrier width [45]. In this particular case, the modulation
produce a large attenuation of the m = 2 and 4 dips.

The shift of the first dip (m = 1) of T ( )ZA ω against the
inter-barrier distance d is displayed in figure 1(a) (center). The
estimated energies 16.71

ZAω = , 9.6 and 6.6 cm−1 for d = 2, 4,
6, respectively, are consistent with the values observed. In
figures 1(b) and (c), we show the increasing intensity of the
first dip of T ( )ZA ω and T ( )4ZA ω for increasing N, with fixed
d = 4. Notice on the contrary that in-plane mode transmissions
T ( )TA ω and T ( )LA ω , remain unity (perfect transmission) up to
large energies (109.1 and 158.6 cm−1, respectively).

A better microscopic understanding of T ( )ω is obtained
by analyzing the local density of states (LDOS) of the atomic
displacements, as shown in figure 1 (right panel). At 9.6ω =
cm−1, where the first dip of TZA appears, carbon atoms are
confined to move between the first two closest barriers and
the propagation of the incident wave is strongly inhibited.
Observe that in the center of the periodic arrangement, LDOS
is < 0.3. At a larger energy, 15ω = cm−1, the incident wave
exhibits almost perfect transmission through the set of bar-
riers. Now, the active contribution of the edge-localized 4ZA
mode produces larger displacements at both edges of the
ribbon where the LDOS is approximately equal to one.

We now proceed with the analysis of T ( )ω for a finite
array of N periodic antidots. This kind of systems are cur-
rently of high interest due to their expected large thermo-
electric characteristics [46–49]. Here, each antidot has been
defined by eliminating a group of six carbon atoms and the
distance between them is kept as in the case of isotopic bar-
riers in order to obtain comparable behaviors.

In figure 2 (left panel) we show therefore the low-energy
behavior of T ( )ω for d = 4 and N = 10. Similarly as above, an
overall analogous behavior with the gradual apparition of dips
is found. Here, however, the antidot structure produces
stronger perturbations in the atomic displacements and hence
its effect on T ( )ω is considerably larger. In figure 2 (center
panel) it can be observed that by increasing N also here the
intensity of dips becomes larger and already for N = 8 one
gets T ( )ZA ω and T ( )4ZA ω 0≈ at the first dip. The LDOS
corresponding to the first dip of the ZA mode at 13.5 cm−1

shown in figure 2 (right) shows again localized vibrations

Figure 2. Antidot lattice. Left: phonon relation dispersions of a free-edge homogeneous ZGNR and T ( )ω for N = 10 periodic antidots and
d = 4. Center: Dependence with N = 2, 4,…, 10 for the first dip of (a) T ( )ZA ω and (b) T ( )4ZA ω for d = 4. Right: LDOS profile at ω = 13.5 (first
dip) and 35.0 cm 1− for N = 8 and d = 4.
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restricted to the area enclosed by the first set of antidots.
Then, for 35 cm 1ω = − where T 1ZA ≈ , the vibrational pattern
is similar to the case analyzed previously where the 4ZA
mode becomes active but there exists now an additional
modulation of the displacements in the short direction of the
ribbon due to the presence of the antidots.

3.2. In-plane phonon modes

In-plane LA and TA modes are characterized by their con-
ventional acoustic linear dispersions at low energy. Their
group velocities, estimated by using the 5NNFCM potential,
are 14.3 10 cm sTA

5 1ν = × − and 23.1 10 cm sLA
5 1ν = × −

for 2D graphene [29]. These values are relatively large when
compared to other materials [50]. We show here that a more
effective way of filtering these modes is, instead of using
localized perturbations which only affect modes with low
group velocity [42], by adopting partially supported edges.
Within this setup, energy gaps at q = 0 are opened for all the
phonon modes in the spectra. There are, however, differences
in the magnitude of the gaps being significantly larger for the
in-plane phonon modes as compared to the out-of-plane
ones [30].

In what follows, we explore the effect of partially sup-
ported-edge ZGNRs on T ( )ω . The configuration considered
consists of N periodic stripes, each of which consists of four
columns of atoms where only those atoms lying at the edges
are kept fixed. In this case a combined reduction effect for in-
plane and out-of-plane transmissions is expected at low
energy.

To facilitate the understanding of the results in figure 3
(left panel), we show also the phonon dispersion relations for
an homogeneously supported-edge (dashed lines) ribbon,
which displays the energy gaps [30] mentioned above, toge-
ther with T ( )ω for the case N = 10 and d = 4. The main
difference is that now the transmission functions of the
acoustical modes TZA, TLA, TTA and T ( )4ZA ω are zero until the
energy of the incident waves reaches the values observed in
figure 3 (left panel). These values are very close to the cor-
responding gaps of the first two out-of-plane modes and the

first in-plane transversal mode of the supported-edge ZGNR.
In this sense, note that while out-of-plane modes become
active at relative small energies, T ( )TA ω and T ( )LA ω remain
zero up to 92ω ∼ and 133 cm−1, respectively. The identifi-
cation of dips produced by the periodic arrangement of stripes
is now no longer simple as it was in the case of isotopic
barriers. However, still now the first visible dips become more
pronounced by increasing N for T ( )ZA ω and T ( )4ZA ω as can be
observed in figure 3 (center panel).

Finally, in figure 3 (rightpanel) we show the LDOS at
ω = 43 and 82 cm−1 for N = 8 and d = 4. In the first case, the
atomic displacements become gradually suppressed towards
the center of the ribbon. Note also the nearby zero LDOS for
edgeatoms at the supported parts of the ribbon. Then, for

82ω = cm−1 the situation is clearly more complex and the
atomic displacements show traces of localization. Inside the
supported-edge stripes, the LDOS displays the pattern of the
second out-of-plane mode of supported-edge ZGNRs [30],
while inside the free-edge stripes the LDOS shows a partial
contribution of the 4ZA mode.

4. Conclusions

We have investigated the tuning of polarized ballistic thermal
transmission functions in graphene nanoribbons by using
different boundary conditions and proper arrangements of
antidot structures and C13 isotopic barriers. We demonstrated
that by adopting adequate configurations it is possible to tune
the ballistic phonon transport by controlling the frequency
and the magnitude of the transmission functions T ( )ω . When
the width (W) of the GNR becomes larger, the energy gaps of
the phonon modes at q ⃗ = 0 are expected to scale as ∼1/W and
1/W2, for in-plane and out-of-plane modes, respectively [30].
Therefore, the overall trends are expected to remain valid.

In addition to the systems proposed here, similar effects
could be achieved by other means such as by using proper
configurations of adatoms like hydrogen [51], fluorine [52],
etc. In the experimental setup, supported boundaries can be
obtained in several ways. The ribbon could be deposited by

Figure 3. Partially supported edges. Left: phonon relation dispersions of a free- (continuous) and supported-edge (dashed lines) homogeneous
ZGNR and T ( )ω for N = 10 stripes and d = 4. Center: dependence with N = 2, 4, …,10 for the first dip of (a) T ( )ZA ω and (b) T ( )4ZA ω for
d = 4. Right: LDOS profile at 43.0ω = (first dip) and 82.0 cm 1− for N = 8 and d = 4.
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its edges over a substrate. In this case one expects van der
Waals type interactions acting between distinct atoms and
restricting the movement of edge-lying atoms. A good can-
didate with a very low lattice mismatch is h-BN [53, 54]. A
stronger constriction can be obtained by adding a metallic
material on top of the edges where covalent bonds are
expected to form. Here, however, one may have extra con-
tributions to the thermal transport from the free electrons in
the metallic contacts.
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