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Abstract—This paper describes a novel approach to object de-
tection from sidescan sonar (SSS) acoustical images. The current
techniques of acoustical images processing consume a great deal of
time and computational resources with many parameters to tune
in order to obtain good quality images. This is due to the han-
dling of the large data volume generated by these kinds of devices.
The technique proposed in this work does not make any a priori
assumption about the nature of the SSS image to be processed.
However, it is able to make a segmentation of the image into two
types of regions: acoustical highlight and seafloor reverberation
areas, and based on this, it makes detection. The developed algo-
rithm to achieve this consists of a migration and adaptation of a
technique widely used in radar technology for detecting moving
objects. This radar technique is known as the cell average–con-
stant false alarm rate (CA–CFAR). This paper presents a drastic
improvement of such approach by making an extension into 2-D
analysis of the SSS image, in a way similar to integral image used
in CA–CFAR detection for pulse Doppler radar. In this form, op-
timization of the computational effort is achieved. This new tech-
niquewas called the accumulated cell average–constant false alarm
rate in 2-D (ACA–CFAR 2-D). It was applied to pipeline detection
and tracking with a very interesting degree of success. In addi-
tion, this technique provides similar results to image segmentation
with respect to other frequently used approaches, but with much
less computational resources and parameters to set. Its simplicity
is a strong support of its robustness and accuracy. This feature
makes it particularly attractive for using it in real-time applica-
tions, such as underwater robotics perception systems. This pro-
posal was tested experimentally with acoustical data from SSS and
the results detecting pipelines, and other shapes like sunken ves-
sels or airplanes, are presented in this paper. Likewise, an exper-
imental comparison with the results obtained with inverse undec-
imated discrete wavelet transform (UDWT) and active contours
techniques is also presented.

Index Terms—Cell average–constant false alarm rate
(CA–CFAR), online object detection, sidescan sonar (SSS), sonar
imagery.
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I. INTRODUCTION

S ONAR systems provide near-photographic high-resolution
images of underwater areas, even in water with poor op-

tical transparency [1]. The use of these acoustical images is im-
portant for many practical applications, such as marine geology,
commercial fishing, resources search, extraction and oil drilling,
inspection and maintenance of pipelines, mine detection, and
waste or other targets monitoring [2]–[18].
Sidescan sonar (SSS) is an effective tool for high-resolution

mapping of the seabed due to thematurity of the technology and,
hence, the excellent cost/quality tradeoff [7]. It has been proved
to work well in deep water [6], [8], [9], [12], [13]. Even though
synthetic aperture sonar (SAS) systems provide higher quality
imagery than conventional SSS systems using comparable oper-
ating frequencies, and have been used in numerous applications
[16], [19]–[21], it is not yet clear that they are better for auto-
mated target detection and recognition purposes. Reports about
the use of multibeam echosounders (MBEs) to explore seafloor
in detail are also given in [6], [10], [22], and [23].
SSS uses linear arrays of transducers on the port and star-

board sides, emitting and receiving in phase with one another,
or in a controlled phase relationship. In each data acquisition
cycle, the port and starboard beams extend sideways and down-
ward, constituting a plane which advances in the direction of
the speed vector of the vehicle transporting the SSS, named the
along-track direction. The transducers on both sides of the sonar
send oblique acoustical signals, in the shape of a fan. The direc-
tion that is perpendicular to the vehicle's straight movement is
called the across-track direction. The acoustic frequencies are
normally between 100 kHz and 1 MHz for shallow-water sur-
veys. The port (left) and starboard (right) sides of the images are
scanned separately. The acoustic pulses travel through the water
column, hit the seafloor, and the echo or backscatter is returned
to the reception sensor where its amplitude is quantified. This
amplitude depends on the angle of incidence and the cover of
the seafloor. The echoes coming directly from the seafloor con-
stitute the true returned signal. There are also multiple bounces
off the seafloor or the sea surface that constitute the reverbera-
tion or undesired echoes (multipath). The nadir and zenith cor-
respond to points of low and high reflection off the surface of
the seafloor and the surface of the sea, respectively. The data
acquired are projected on a line traced along the seafloor. This
scanning line is known as a swath. The acoustic data associ-
ated with this exploration line represent an observation of the
reflected intensity depending on the range and the angle. If the

0364-9059 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



ACOSTA AND VILLAR: ACCUMULATED CA–CFAR PROCESS IN 2-D FOR ONLINE OBJECT DETECTION FROM SIDESCAN SONAR DATA 559

vehicle is moving in a straight line at a steady speed, the deploy-
ment of successive swaths will build an acoustical image of the
seafloor in 2-D [24].
Usually, in the high-resolution images, SSS can identify three

types of regions: acoustical highlight, shadow, and seafloor re-
verberation [25]. The highlight area originates from acoustical
wave reflection from an object, whereas the shadow zone is due
to a lack of acoustical reverberation behind the object. The re-
maining areas consist of the seafloor reverberation [4], [26].
As presented in [27], and suggested in [28], to achieve an ob-

ject detection from an image, independently of the device em-
ployed, whether it be a sonar or a webcam, it is necessary to
carry out a previous chain of processing to the image under anal-
ysis. One of these previous processing steps is segmentation,
and it constitutes a bottleneck in the computational effort. When
focusing on acoustical images, segmentation is based on the as-
sumption that objects which are on the seafloor are usually more
reflective than the surrounding sediment. For this reason, one of
the segmentation alternatives is based on finding the maximum
intensities of the backscattering, also called acoustical highlight.
This acoustical highlight considerably varies according to the
relative sonar orientation with regards to the target. In fact, it
can fall below the detection threshold causing the target to ap-
pear invisible to the sonar [29]. In addition, an outstanding fea-
ture of SSS images is that the objects which stand out above
the seafloor generate shadows. The shadow length depends on
the vertical height of the object. Thus, the segmentation of these
shadows can be used to achieve a detection, as proposed in [30].
Because the data acquisition is done from a moving vehicle, the
sonar geometry with regard to the target is variable. Therefore,
a shadow can be present even when the acoustical highlight is
not. Thus, it would be desirable to combine both the acoustical
highlight and the shadow detections. This approach was imple-
mented in this work.
The seafloor reverberation region is more difficult to seg-

ment as it contains a large amount of speckle noise [1], typi-
cally present in all imaging systems with coherent illumination.
The speckle noise renders ineffective the simple segmentation
schemes of the digital image processing theory. For this reason,
the simple implementation of such techniques turns out to be
useless in the sonar imagery domain [28], [31]. To address these
problems, it is important to incorporate contextual information
[4], [26].
Conventional SSSs provide lines of acoustic returns that vary

from 200 to 2000 samples. Note also that a greater quantity
of samples implies more computational effort. The ability to
segment high-resolution acoustic images efficiently is crucial
for any practical application where detections and even pattern
recognition are needed in an efficient time. One of such appli-
cations is the perception system of an autonomous underwater
vehicle (AUV).

II. PREVIOUS WORK

Many segmentation algorithm approaches for processing
acoustical images are currently available. They vary in speed,
efficiency (accuracy and robustness), sophistication degree,
and required computational resources. These algorithms may

be categorized as either supervised or unsupervised. Supervised
seabed segmentation algorithms use a trained classifier with an
assumption that there exists a finite set of segmented regions to
be selected [9], [21], [32]–[34].
The unsupervised methods perform seabed segmentation

by direct analysis of the input image without any a priori
information. Among these approaches are multifractal analysis
[33], Markov random field (MRF) model and hierarchical MRF
(HMRF) [4], [26], local Fourier histograms (LFHs) [35], active
contours [24], [36], Gauss–Markov random field model [25],
and many others. Thus, all the aforementioned unsupervised
seabed segmentation algorithms require either a learning stage
to automate their process or computationally expensive mathe-
matical models to segment into a predefined number of regions.
A recent technique that eliminates these problems is based on

an algorithm that uses undecimated discrete wavelet transform
(UDWT) [37]. It was used for acoustic processing in [1]. UDWT
is exploited instead of the discrete wavelet transform because of
its following characteristics: 1) there is no downsampling and
thus there is no aliasing problem; and 2) it is shift invariant, i.e.,
the decomposition of image between levels of a multiscale de-
composition does not vary if the original image is shifted before
decomposition. The authors proposed a feature vector for each
pixel constructed by sampling the intraresolution and interres-
olution data to create a feature vector field for the overall input
image. The final segmentation is achieved by clustering the fea-
ture vector field into disjoint classes using -means.
This paper proposes an algorithm that requires neither a prior

learning process nor computationally expensive mathematical
models to make object detection, and implicitly, image segmen-
tation. A group of target detection techniques widely used in
the radar [38] technology is known as constant false alarm rate
(CFAR), thoroughly described in [39]. This group of techniques
maintains a CFAR computed from the last samples of the dig-
italized echo power. The echo power is also known as interfer-
ence power. In this way, an adaptive detection threshold is ad-
justed to maintain a probability of expected false alarm by
estimating the average of the interference power values of the
adjacent cells. As a result of this processing technique, de-
tections are enriched with contextual information. This approx-
imation is called the cell averaging–constant false alarm rate
(CA–CFAR) [39].
CA–CFAR is then an adaptive technique which estimates the

detection threshold based on the interference power in the sur-
roundings of the test cell. Note also that, considering this con-
textual information, both the acoustic highlight and the shadow
that the targets generate are taken into account to make a de-
tection. The technique assigns strong return values proportional
to the area of the present target, and weak values proportional
to the shadow area behind it. These abrupt variations facilitate
the detection task. These concepts were successfully used in the
implementation of the CA–CFAR algorithm for pulsed-Doppler
radar [44]. The work of Venter et al. inspired the shift of the
ideas from radar to sonar, interpreting the interference power in
radar as the acoustic reverberation power in sonar. Even further,
the integral image approach [45] used there to speed up compu-
tations was also adapted and improved for sonar images, as will
be shown in Sections IV and V.
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The objectives explored in this paper are focused on seg-
menting two types of regions: acoustic highlight and seabed re-
verberation areas. In addition, the purpose of this work is to op-
timize computing resources without losing robustness. Hence,
the proposed algorithm represents a 2-D extension of accumu-
lated cell averaging–constant false alarm rate (ACA–CFAR)
[27]. The ACA–CFAR 2-D is then another variant for standard
CA–CFAR in 2-D. From this segmentation, pipeline detection
is achieved successfully and efficiently in terms of computa-
tional effort and robustness, as presented in next paragraphs.
In addition, it will be demonstrated that ACA–CFAR 2-D can
be used as a segmentation algorithm with similar performances
to UDWT [1] and active contour [24] techniques for the same
acoustic images, but giving better results in central processing
unit (CPU) resources and executing times.
This paper is organized as follows. Section II shows the

basic concepts of the detection theory with CA–CFAR.
Section III presents the method of ACA–CFAR 2-D. In
Section IV, the experimental results, analyses, and comparisons
are given. Finally, Section V discusses the conclusions and new
perspectives obtained from this work.

III. OBJECT DETECTION USING CA–CFAR
The problem of detection consists of analyzing the acous-

tical intensity in each sample with the purpose of detecting the
presence or absence of a target. Detection techniques are gen-
erally implemented by analyzing the information of adjacent
samples. In [39], there are two hypotheses defined for this anal-
ysis: 1) the sample is the background ; and 2) the sample
is a combination of a background and a target . Conse-
quently, the detection consists in examining each sample and
selecting one of these hypotheses as the best. If hypothesis
is more appropriate, the detection system declares that the target
is not present. If hypothesis is more appropriate, the detec-
tion system declares that the target is present. Because the sig-
nals are described statistically, the decision between these two
hypotheses represents an exercise of statistical decision theory
[40].
Fig. 1 shows a generic architecture of the CA–CFAR process

[41] applied on a row vector of samples. Each sample
of acoustic intensity is associated with a test cell . Each
cell represents one pixel, referring to a spatial coordinate
of the image. A detection threshold is estimated based on
the surroundings of this test cell and a multiplier . This
multiplier is a constant that is determined based on the false
alarm probability to attenuate or amplify the detection
threshold. Hence, the CA–CFAR technique maintains constant
false alarm rate but a varying detection threshold. This
means that contextual information is taken into account in the
determination of the detection threshold. This turns CA–CFAR
into an adaptive technique to make detections based on contex-
tual information. Then, the current test cell is compared
to the detection threshold . If the test cell value exceeds
the threshold, the process declares that the target is present.
The process is applied to the next cell in a recursive way. The
technique assigns strong return values when the acoustical
highlight is proportional to the area of the target frontal part,
and weak values when it is proportional to the length of the

Fig. 1. Generic architecture of the CA–CFAR process [41].

shadow behind the object. These abrupt variations between
a highlight range and acoustic shadow generate the target
detection possibility.
In Fig. 1, a row vector of cells is depicted. Both dark

gray as well as light gray cells represent the neighboring data
that will be averaged to estimate the detection threshold. The
dark gray cells are called reference cells . The lighter gray
cells, immediately next to the test cell , are called guard cells

. These cells are excluded from the average because if the
target is present, then the neighbor cells will contain similar high
values of backscattering. The increase in acoustic highlight due
to the presence of the target should tend to increase the proba-
bility of exceeding the threshold and thus generate detection.
The total number of neighbor cells around the test cell

is calculated utilizing1

(1)

In the same way, the number of guard cells is computed
utilizing

(2)

with (see Fig. 1).
The procedure to determine the detection threshold is de-

scribed below. Let us consider the case of a Gaussian reverber-
ation, as is done in radar technology, with a square law detector.
The probability density function (pdf) for any cell has
only one free parameter, which is the mean of the acoustic re-
verberation power . For the purpose of this work, and as is
validated in the experiments, the concept of interference power
introduced in [39] and used in [44] is considered here as the
acoustic reverberation power. Likewise, the process estimates
the mean of the reverberation power in the test cell using
the adjacent cells data, with

with (3)

The distribution in (3) is assumed from the proposal for
radar detection in [39], from where the CFAR methodology
was borrowed. Note that this is a strong working hypothesis
that should be validated with experimental results. As will be

1The presence “ 1” in (1) and (2) is only, due to computational reasons, to
take into consideration also the test cell.
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shown in Section IV, this hypothesis worked well in the cases
study. However, many other probability distributions should be
tested in the future.
It is supposed that the content of cells, which are neigh-

bors to the cell under test , will be used to estimate the
acoustic reverberation power . Another supposition is that
reverberations are independent and identically distributed (i.i.
d.). Then, the joint pdf for a vector
of neighboring cells is

Using (3)

(4)

Equation (4) is the likelihood function for the vector of
observed data . The maximum estimated likelihood (m.e.l.) of
the acoustic reverberation power is obtained by maximizing (4)
with respect to [40]. Mathematically, it is equivalent, and
generally easier to maximize, the log-likelihood function [39]

(5)

Differentiating (5) with respect to and equating it to 0
yields

(6)

The detection threshold required is estimated as a scalar
multiple of reverberation power

(7)

This adaptive threshold allows considering a constant false
alarm probability, even when the reverberation levels vary. The
threshold computed by (7) is a random variable. The de-
tector is considered as a CFAR one, if the value of the proba-
bility of false alarm does not depend on the current value
of . Combining (6) and (7) yields the expression for the es-
timated threshold

(8)

Defining , such that , and using
the standard result of the probability theory with (3) yields the
pdf of

with (9)

This pdf of given by (9) is known as the Erlang density [42]
with parameters and

(10)

The observed was computed [40] from the estimated
threshold as , which is also a random variable.
Then, its expected value was computed as

(11)

Completing this standard integral and carrying out some alge-
braic manipulation, the final result was obtained

(12)

For an expected , the required value of the multiplier
is acquired from solving (12)

(13)

Note that does not depend on the acoustic reverbera-
tion power , but on the number of neighboring cells.
Thus, the technique of cell average exhibits the CFAR behavior.
Only , , and must be determined beforehand. As will
be demonstrated experimentally in Sections IV and V, a drastic
reduction of computation times and high robustness due to the
selection of few parameters can be obtained with this approach.

IV. ACA–CFAR 2-D
As reported in [43], it was possible to achieve pipeline

detection from acoustic images of an SSS with the standard
CA–CFAR methodology. In addition, a variation of this ap-
proach, partial sums CA–CFAR, was introduced and tested
experimentally. In turn, in [27], we also showed a variation in
implementation called ACA–CFAR 1-D that provided similar
results but with improved computational time and resources
over CA–CFAR. The ACA–CFAR 2-D presented in this paper
represents a further improvement to the implementation of the
standard CA–CFAR described in Section III, extended to 2-D.
Fig. 2 shows graphically generic windows for 1-D and 2-D. In
this new situation, the detection threshold computation,
with (6) and (7), is carried out using a sliding window with
reference and guard cells in 2-D, as depicted in Fig. 2, in a
similar way as the integral image presented in [44] and [45].
Estimating the threshold for each cell requires

memory accesses to calculate the sum of the
reference cells, and new memory accesses for
the guard cell computations.
This estimate requires excessive computational resources and

time to analyze an entire acoustic image, typically in the range
of 200–2000 samples. For this reason, the main contributions
of this work are: 1) to improve the computational effort by pre-
vious calculation of the summations of the reference cells and
guard; and 2) to simplify the required parameters to be set in a
normal detection.
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Fig. 2. Generic CFAR windows for 1-D and 2-D [39]. Both window options
1-D and 2-D contain and . The total numbers of reference and
guard cells are and , respectively, for 1-D and and

, respectively, for 2-D.

Fig. 3. Example of the distribution of acoustical data samples and accumulated
sample matrix using (16) for ACA–CFAR 2-D.

Fig. 3 shows an example of the samples distribution (with
and where and represent the size of

rows and columns of the image, respectively). Suppose there is
a selection of reference cells and a guard cell . It is
convenient to define a distance from the test cell to the farthest
cell in the guard window, called guard distance . In the
same way, reference distance is defined as the
one between the test cell and the farthest cell in the reference

window. Thus, the total number of reference cells to estimate
the power of acoustical reverberation can be calculated with

(14)

and the total number of guard cells can be calculated with

(15)

For this example

The ACA–CFAR 2-D technique computes an accumulated
absolute samples vector beforehand, for each cell, using

(16)

Refer to Fig. 3.
Thus, the double summation in rows and columns is now

used to calculate the threshold, as an extended 2-D version of
(8). In this way, this double summation is calculated using only
the algebraic sum of four terms of thematrix elements computed
beforehand by means of (16) yielding

(17)

In other words, we want to make a fast computation of the
sum with pixels in a square from pixel by
using beforehand accumulated absolute sample vectors ,
because it requires only four memory accesses.
The four terms in (17) represent the vertices of the

window sliding on the accumulated matrix. The first term
is the lower right corner, which represents the

accumulated total. The second term is the
lower left corner, which refers to the accumulated column in
position to be subtracted from the accumulated total. The
third term corresponds to the upper right
corner and refers to the cumulative row at position also
to be subtracted from the accumulated total. Finally, the fourth
term is the upper left corner that must be
added to the accumulated total because both second and third
terms were subtracted two times and must be subtracted only
once.
For the guard cell computations, the procedure is similar, just

changing by in (17) and obtaining

(18)

Note that this is valid for the general case in which samples
are away from the edges of the image, in other words, the dis-
tance for left, right, above, or below on the test cell.
Otherwise, there are the following special cases. In these spe-
cial cases, decreases as the test cell approaches the edges of
the image.
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Case 1) If and , there is only
one valid term in the general equation because the
other terms are outside the boundaries of the image

(19)

Case 2) If , there are only two valid terms in the
general equation because the other terms are outside
the boundaries of the image. The second term of

(20)

represents the subtraction of an accumulated
column, which is outside the boundaries of the
reference window.

Case 3) If , there are only two valid terms in the
general equation because the other terms are outside
the boundaries of the image. The second term of

(21)

represents the subtraction of an accumulated row,
which is outside the boundaries of the reference
window.

Analyzing this ACA–CFAR 2-D technique, it appears that
once the accumulated samples matrix is computed, with only
four memory accesses as an upper bound, the average of the
acoustic interference surrounding the cell can be calculated.
Similarly, with four additional memory accesses, the guard cell
averaging can be obtained. Note that the standard technique
in 2-D would have required and memory accesses
for the same calculation for any test cell. As will be shown
quantitatively in Section V, we obtained a much more efficient
algorithm in this way. With this approach, even in the case that

and are increased, the upper bound of four memory
accesses will be maintained as constant, improving the compu-
tational effort in calculating the threshold.
When computing and depicting the threshold's surface for an

image, some questions arise. Is it necessary to look for a de-
tection in regions of the image where there is only noise? How
can one exclude these noisy regions beforehand to reduce the
computing effort? Can we take advantage of some of the cal-
culations done when applying the ACA–CFAR 2-D technique?
Fortunately, it seems that there are some possible ways to im-
prove the detection process applying the answers to these ques-
tions. In the present approach, one can resort to the accumulated
samples matrix, in the last position , where there is
computed accumulated summation of the acoustic intensity of
all of the image's pixels. Then, dividing it by the total number
of cells (nxm), an average lower boundary can be computed.
Only if the sample is greater than the threshold and
is greater than , then a detection is confirmed. This slight
variation in the algorithm causes a drastic enhancement of the
ACA–CFAR 2-D technique. Effectively, it allows focusing its
application only in those regions of the image where there are
targets of interest to be detected, without applying it to regions
with only noise.

Fig. 4. Pseudocode of the ACA–CFAR 2-D technique.

Fig. 4 shows in detail the pseudocode of the ACA–CFAR 2-D
technique. As can be seen, there are twowell-defined portions of
the code. The first group of statements calculates the accumu-
lated samples by rows and columns (acc) used for estimating
the summations of reference and guard cells with (16). The
second group of statements is separated into acoustical high-
lights (labelHighlight) and seafloor reverberation (labelBack-
ground) areas.

For each sample of the acoustical image (image) the detection
threshold (threshold) is estimated with the 2-D version of (7).
To do this, one must calculate the number of samples in each
estimate (nc), the multiplier alpha establishing a constant
probability of false alarm with (13), the sum of reference
(SumN), and guard (SumG) cells. The number of samples (nc)
uses a function called calculateSamples, which depends on the
current position in the image (row and col) and the reference
distance . To calculate the sum of the reference
(SumN) and guard (SumG) cells, a function called calculateSum-
Cells is used, which depends on the accumulated samples matrix
(acc), the current position in the image (row and col), and the
reference and guard distances. As a
final result, the segmentation into two regions is computed and
stored in the same variable called image.
For the particular case of pipeline tracking, from the pixels la-

beled as detection, an additional computation regarding the turn
radius among them is necessary to be done to ensure topological
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Fig. 5. Sonar image (Sonar Starfish 450F using a frequency of 450 kHz with a range of 50 m) of an oil pipeline located approximately 18 m deep: (a) input sonar
image of curved pipe; (b) detected pipeline of (a) using ACA–CFAR 2-D; (c) input sonar image of a pipeline partially buried; (d) detected pipeline of (c) using
ACA–CFAR 2-D.

Fig. 6. Sonar image of a sunken ship: (a) input sonar image; (b) segmented image using ACA–CFAR 2-D; (c) input sonar image plotted in 3-D (across-track,
along-track, and backscattering strength); and (d) detection threshold surface plotted in 3-D (across-track, along-track, and threshold).

continuity. This calculation involves very little computational
effort [6].

V. EXPERIMENTAL RESULTS AND COMPARISONS

The algorithms were developed originally with MATLAB
and then were ported to code written in C++, taking advantage

of the data structure within OpenCV 2.3 [46]. The programming
environment (IDE) was Nokia Qt Creator for GNU/Linux im-
plementation code C ++. The algorithms were executed on a PC
with a CPU 2-GHz Intel Core 2 Duo, and 2-GB RAM memory,
with Linux OS. The experimental data employed in this work
were acoustic images of an SSS of the seafloor.
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Fig. 7. Sonar image (600 kHz with a range of 50 m) of a sunken airplane (Consolidated PB4Y2 Privateer) in Lake Washington: (a) input sonar image; (b) seg-
mented image using ACA–CFAR 2-D; (c) original image plotted in 3-D (across-track, along-track, and backscattering strength); and (d) detection threshold surface

plotted in 3-D (across-track, along-track, and threshold).

TABLE I
RUNNING PARAMETERS OF ACA–CFAR 2-D AND SETTINGS

FOR PIPELINE TRIALS

: The number of reference cells. : The number of guard cells. : The
total number of neighbor cells. : The total number of guard cells. :
False alarm probability. : Runtime in seconds. : The total number
of instructions computed with (23).

The experiments consisted of the first approach to the
problem domain, that is, the online pipeline detection. The effi-
cient time detection was necessary as a previous step to include
the ACA–CFAR 2-D algorithm into the perception system of
an AUV. In addition, a second set of tests were done to contrast
the segmentation power of ACA–CFAR 2-D against other
commonly used segmentation techniques. To make the com-
parisons, a quantitative measure of image segmentation was
needed, as explained in Section V-A. Even though the concept
of segmentation is subjective and application dependent due to
there being no single standard method of image segmentation
[31], we decided to use the segmentation as described in [1] to
facilitate the comparison.

A. Quantitative Measure of Image Segmentation
Two figures of merit were computed for comparisons with

the technique described in [1]: 1) the proportion of seg-
mented images; and 2) runtime in seconds. The measure is
employed for comparing the segmentation map (SM) with the
ground-truth segmentation map (SM ) using

SM SM
(22)

where and represent the number of swaths and the
number of samples, respectively. Here, when

, and when . When SM and SM are
the same, then is 1, and approaches 0, when the dissimilarity
between SM and SM increases.
The other figure of merit in [1] was the executing time, which

is very dependent on hardware. For these experiments, the same
hardware was used for all the testing. However, to set the basis
for a more accurate and objective comparison, the number of
instructions required to execute the algorithms is proposed. For
ACA–CFAR 2-D, this figure of merit was computed with

(23)

Note that the performance index of (23) is constant for the
same image, depending only on the number of samples .



566 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 40, NO. 3, JULY 2015

Fig. 8. Sonar image of rocks on seafloor: (a) input sonar image; (b) segmented
image using ACA–CFAR 2-D.

Fig. 9. Sonar image of pipeline on seafloor: (a) input sonar image; (b) seg-
mented image using ACA–CFAR 2-D.

Further, (23) gives the possibility to measure the algorithmic
complexity, which is . When the image is square, its
complexity is of quadratic order where is the number
of cells to be analyzed.

B. Pipeline Detection
Fig. 5 shows an image of the seafloor of Salvador de Bahia,

Brazil, where there is an exposed pipeline. For SSS detection, it
is necessary that the pipeline be exposed fully or partially.When
buried, the sensing system should have a magnetic tracker or a
sub-bottom profiler, which was not the case in these sea trials.
The pipeline tracking had two stages. The first one was initi-
ated at latitude 12 51 19.5 S, and longitude 38 32 23.03
W and concluded at latitude 12 52 23.28 S and longitude
38 33 48.48 W. The system collected 50 500 lines of valid
acoustical data, yielding 101 images of 1000 500 pixels for
testing the algorithms. The second stage started at latitude 12
53 33.04 S and longitude 38 33 48.14 W and concluded at
latitude 12 52 16.1 S and longitude 38 31 37.14 W, col-
lecting 47 000 lines of acoustical data and totaling 94 images of
the same size as the ones obtained for the first test stage. The SSS
was a StarFish 450F, utilizing advanced digital CHIRP acous-
tical technology, and set at a frequency of 450 kHz with a range
of 50 m.
Table I shows the parameter settings and performance re-

sults of ACA–CFAR 2-D to yield detections of Fig. 5. The
was set constant for the whole image shown in each

figure. The adaptation for detection was done through the
threshold, as is mandatory in the CFAR techniques. Note that
the algorithm has a window distortion effect [i.e., compare

TABLE II
RUNNING PARAMETERS OF ACA–CFAR 2-D AND SETTINGS

FOR SUNKEN SHIP AND AIRPLANE

: The number of reference cells. : The number of guard cells. : The
total number of neighbor cells. : The total number of guard cells. :
False alarm probability. : Runtime in seconds. : The total number
of instructions computed with (23).

TABLE III
RUNNING PARAMETERS OF ACA–CFAR 2-D AND SETTINGS

FOR DIFFICULT CASES

: The number of reference cells. : The number of guard cells. : The
total number of neighbor cells. : The total number of guard cells. :
False alarm probability. : Runtime in seconds. : The otal number of
instructions computed with (23).

TABLE IV
PERFORMANCE AND RUNTIME RESULTS OF DIFFERENT APPROACHES

Active contours [24]. UDWT [1]. : Percentage of segmented images. :
Runtime in seconds.

TABLE V
RUNNING PARAMETERS OF ACA–CFAR 2-D AND SETTINGS FOR

DIFFERENT SEGMENTATION APPROACHES COMPARISON

: The number of reference cells. : The number of guard cells. : The
total number of neighbor cells. : The total number of guard cells. :
False alarm probability. : The total number of instructions computed
with (23).

Fig. 5(a) and (c) with Fig. 5(b) and (d)]. This can be corrected
with posterior image processing. However, for the aim of
automated pipeline tracking, this was not necessary.

C. Use of ACA–CFAR 2-D in Segmentation of Other Objects
A set of images was selected from available websites [47],

[48] for this second phase of experiments. These images
are shown in Figs. 6–10. Fig. 6 shows a sunken ship and
Fig. 7 shows a sunken airplane in LakeWashington. These kinds
of images have a special interest, for instance, in automated
rescues searches and archeological studies. Fig. 6(b) presents
the segmentation provided by ACA–CFAR 2-D, set with the
parameters of Table II. Also, in this table, there are remaining
settings of the whole experiment. Fig. 6(c) shows a virtual-
ization of the input image from sonar, and Fig. 6(d) shows a
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Fig. 10. Seabed segmentation using different algorithms: (a) input sonar images; (b) ground-truth segmentation maps; and segmentation results using: (c) active
contours [24], (d) UDWT [1] and (e) the proposed algorithm (ACA–CFAR 2-D).

3-D representation of the threshold surface computed by the
ACA–CFAR 2-D running. Similarly, Fig. 7(b) presents the seg-
mentation of the image in Fig. 7(a) provided by ACA–CFAR
2-D, set with the parameters of Table II. Fig. 7(c) shows a vir-
tualization of the input image from sonar, and Fig. 7(d) shows
a 3-D representation of the threshold surface computed by the
ACA–CFAR 2-D technique.
A couple of difficult cases are now analyzed. Fig. 8 shows

a very low contrast between a noisy seafloor and a different

texture region. As may be seen, the segmentation approach with
ACA–CFAR 2-D performs well, as in Fig. 9, where a noisy
image of a pipeline is presented. The experiment settings are
given in Table III.
Fig. 10 shows the comparison with the techniques presented

in [1]. Results of this set of experiments are summed up in
Table IV, while the experiment settings are given in Table V.
The algorithm proposed in this paper drastically improves

computation times for close similar segmentation results, which
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was one of the original objectives of this work. Only with the
setting of three parameters (the probability of false alarm, and
the numbers of reference and guard cells), and without resorting
to any complex model, a very good and useful segmentation can
be obtained. This feature gives robustness to the approach. As
discussed in [28], segmentation is very much application de-
pendant and constitutes only the first step toward pattern recog-
nition in a robotic perception system. Hence, the comparison to
ground-truth segmentation approach is just a subjective compar-
ison. For this reason, even when the results for ACA–CFAR 2-D
represented by the performance index in Table IV seem worse
than the UDWT results, there are applications such as the deter-
mination of free-span or rock-dump grounds in pipeline inspec-
tions, for which a segmentation such as the one in Fig. 10(e) will
be preferable. ACA–CFAR 2-D generates an appropriate level
of useful detail for the computation of descriptors in pattern
classification.

VI. CONCLUSION

This paper presented an algorithm capable of efficiently
performing segmentation into two types of regions: acoustical
highlight and seafloor reverberation areas from seafloor images
obtained by an SSS. Its efficiency was not only measured by
computational time but also supported by an algorithmic com-
plexity measure. In addition, from this segmentation, a robust
detection was achieved in the automated pipeline detection and
tracking domain. The simplicity of the use of ACA–CFAR 2-D
can be summarized as follows: 1) only three parameters need
to be set before inspection; and 2) the algorithmic complexity
is upper bounded to . These three mentioned parameters
must be selected considering the device providing the acoustic
data and the application to be faced.
The proposed ACA–CFAR 2-D algorithm represents a

variation of a technique widely used in radar technology for
detecting moving objects in real time. In this way, this paper
provides a twofold demonstration. First, it demonstrates that
adopting ideas from radar to sonar to make detections in real
time is fruitful and inspiring. Second, as a segmentation tech-
nique, ACA–CFAR 2-D was compared to other commonly
used techniques. It exhibited almost the same successful results
with respect to active contours and UDWT, with much less
computational resources and, thus, with faster responses. The
comparative results with the UDWT segmentation technique,
for instance, showed a decrease of approximately 85% in
computational complexity, with a robust behavior against
noise. However, this fact does not mean that one can replace
one segmentation approach by the other in a general way. The
final selection is highly domain dependent. For online tracking,
ACA–CFAR 2-D exhibits a wonderful behavior. Besides, for
offline cartography construction, UDWT based on a contextual
model rather than on a pixel-by-pixel detection, is a better
option. Further, ACA–CFAR 2-D may be used as a good
preprocessing tool for UDWT in such case.
All of these features are of great interest to incorporate

the ACA–CFAR 2-D algorithm in the perception system of
an aquatic robot such as an AUV or an autonomous surface
vehicle (ASV), which must make decisions in real time to

provide feedback efficiently to a dynamic mission replanner or
an adaptive control of the robot based on data acquired from
sonar.
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