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We consider a one-dimensional moving-boundary problem for the time-fractional 
diffusion equation, where the time-fractional derivative of order α ∈ (0, 1) is taken 
in the Caputo sense. A generalization of the Hopf lemma is proved and then used 
to prove a monotonicity property for the free-boundary when a fractional free-
boundary Stefan problem is investigated.
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1. Introduction

The development of fractional calculus dates from the XIX century. Mathematicians as Lacroix, Abel, 
Liouville, Riemann and Letnikov proposed several definitions of fractional derivatives. While the definition 
given by Caputo in 1967 [6] motivated the physical applications, the previous definitions enabled a great 
theoretical progress.

The study of fractional differential equations started to develop at the end of 50’s, and in the past decades 
many authors pointed out that derivatives and integrals of non-integer order are very useful to describe the 
properties of various real-world materials such as polymers or some types of non-homogeneous solids. The 
trend indicates that the new fractional order models are more suitable than integer order models previously 
used, since fractional derivatives constitute an excellent tool to describe properties of memory and heritage 
of various materials and processes. Works in this direction are e.g. [1,7,10,15,26].
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The fractional derivative in the Caputo sense of arbitrary order α > 0 is defined by

aD
αf(t) =

⎧⎨
⎩

1
Γ(n−α)

∫ t

a
(t− τ)n−α−1f (n)(τ)dτ, n− 1 < α < n

f (n)(t), α = n,

where n ∈ N and Γ is the Gamma function defined by Γ(x) =
∫∞
0 wx−1e−wdw.

This paper deals with the fractional diffusion equation (hereinafter FDE), obtained from the standard 
diffusion equation by replacing the first order time-derivative by a fractional derivative of order α ∈ (0, 1)
in the Caputo sense:

0D
α
t u(x, t) = λ2 uxx(x, t), −∞ < x < ∞, t > 0, 0 < α < 1.

The FDE has been investigated by a number of authors (see [11,16,19,21,23]) and several applications 
were considered. In particular, Mainardi in [22] studied the application to the theory of linear viscoelastic-
ity.

Eberhard F. Hopf was an Austrian mathematician who made significant contributions in differential 
equations, topology and ergodic theory. One of his most famous works is related to the strong maximum 
principle for partial differential equations of elliptic type. In [13,14] the proof of an important theorem related 
to the sign of the outside directional derivative of a solution to an elliptic partial differential inequality is 
given. This theorem was extended later for partial differential operators of parabolic type by A. Friedman 
[9] and R. Viborni [27] separately. A one-dimensional version of this theorem can be found in [5], under the 
name of Hopf Lemma, and its generalization for the FDE is the aim of this work.

That is to say, under certain assumptions that will be given in detail later, we can prove that 
ux(s2(t0), t0) > 0; provided that u attains its maximum at (s2(t0), t0) and

(i) 0D
α
t u(x, t) = λ2 uxx(x, t), s1(t) < x < s2(t), 0 < t ≤ T, 0 < α < 1,

(ii) u(s1(t), t) = g(t), 0 < t ≤ T,

(iii) u(s2(t), t) = h(t), 0 < t ≤ T,

(iv) u(x, 0) = f(x), a ≤ x ≤ b, s1(0) = a, s2(0) = b, (1)

where s1 and s2 are given functions.

2. Fractional Hopf lemma

Consider the moving-boundary problem for the FDE defined in (1) assuming the hypotheses below:

(H1) s1 is given and it is an upper Lipschitz continuous function in [0, T ].1
(H2) s2 is given and it is a lower Lipschitz continuous function in [0, T ].
(H3) s1(0) = a, s2(0) = b, where a ≤ b, and condition (iv) of problem (1) is not considered if a = b.
(H4) s1(t) < s2(t) for all t ∈ (0, T ).
(H5) f is a non-negative continuous function defined in [a, b].
(H6) g and h are non-negative continuous functions defined in (0, T ].

We consider the following two regions:

1 We say that f is an upper (respectively, lower) Lipschitz continuous function in [0, T ] if there exists a constant c > 0 such that 
f(t2) − f(t1) ≥ −c(t2 − t1), 0 ≤ t1 < t2 ≤ T (respectively, f(t2) − f(t1) ≤ −c(t2 − t1), 0 ≤ t1 < t2 ≤ T ).
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Fig. 1. Region [a0, b0] × [0, T ] where u is defined.

DT = {(x, t)/s1(t) < x < s2(t), 0 < t ≤ T};

∂pDT = {(s1(t), t), 0 < t ≤ T} ∪ {(s2(t), t), 0 < t ≤ T} ∪ {(x, 0), a ≤ x ≤ b},

where the latter is called parabolic boundary.

Definition 1. A function u = u(x, t) is a solution of problem (1) if

1. u is defined in [a0, b0] × [0, T ], where a0 := min{s1(t), t ∈ [0, T ]} and b0 := max{s2(t), t ∈ [0, T ]}.
2. u ∈ CWDT

:= C(DT ) ∩ W 1
t ((0, T )) ∩ C2

x(DT ), where W 1
t ((0, T )) := {f(x, ·) ∈ C1((0, T )) ∩ L1(0, T )

for every fixed x ∈ [a0, b0]}.
3. u is continuous in DT ∪ ∂pDT except perhaps at (a, 0) and (b, 0) where

0 ≤ lim inf
(x,t)→(a,0)

u(x, t) ≤ lim sup
(x,t)→(a,0)

u(x, t) < +∞

and

0 ≤ lim inf
(x,t)→(b,0)

u(x, t) ≤ lim sup
(x,t)→(b,0)

u(x, t) < +∞.

4. u satisfies the conditions in (1).

Remark 1. We request u to be defined in [a0, b0] × [0, T ] since the fractional derivative 0Dα
t u(x, t) involves 

values ut(x, τ) for all τ in [0, t]. See Fig. 1.

Remark 2. This kind of problem has not yet been deeply studied. Nevertheless, taking into account the 
results obtained in [24] and [25], we can assert that the following problem:

0D
α
t u(x, t) = uxx(x, t), 0 < x < tα/2, 0 < t ≤ T, 0 < α < 1,

u(0, t) = B, 0 < t ≤ T,

u(tα/2, t) = C, 0 < t ≤ T,

where B and C are constants, admits the solution given by

u(x, t) = B + C −B(
α

) [1 −W
(
− x

tα/2
,−α

2 , 1
)]
1 −W −1,− 2 , 1
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where W
(
· ,−α

2 , 1
)

is the Wright function with the parameters ρ = −α
2 and β = 1,

W (z, ρ, β) =
∞∑
k=0

zk

k!Γ(ρk + β) , z ∈ C, ρ > −1, β ∈ R.

The function 1 −W (− · , −α
2 , 1) is the “fractional error function”, which satisfies

lim
α↗1

1 −W (−x,−α

2 , 1) = erf
(x

2

)

(see [24, Theorem 4.1]).

Hereinafter we take λ = 1, and denote by Dα the fractional derivative in the Caputo sense with starting 
point a = 0, 0Dα

t , and by Lα the operator associated with the FDE, Lα := ∂2

∂x2 −Dα.

Proposition 1. If u is a function with Lα[u] > 0 in DT , then u does not attain its maximum at DT .

Proof. Suppose that there exists (x0, t0) ∈ DT (that is, s1(t0) < x0 < s2(t0), 0 < t0 ≤ T ), such that u
attains its maximum at (x0, t0). Due to the extremum principle for the Caputo derivative (see [20]), we have 
Dα

t u(x0, t0) ≥ 0. Moreover, since u ∈ C2
x(DT ), we have ∂

2u
∂x2 (x0, t0) ≤ 0. Then, Lα[u](x0, t0) ≤ 0 which is a 

contradiction. �
The following corollary is an immediate consequence of previous proposition.

Corollary 1. If u is a function with Lα[u] < 0 in DT , then u does not attain its minimum in DT .

The results obtained in [18] can be adapted to the moving-boundary problem (1). For this reason we 
omit the proof of the following assertion.

Theorem 1. Let u ∈ CWDT
be a solution of (1). Then either

u(x, t) ≥ 0 for all (x, t) ∈ DT or u attains its negative minimum on ∂pDT .

Let us state the main result of this paper.

Theorem 2. Let u ∈ CWDT
be a solution of problem (1) satisfying the hypotheses (H1)–(H6).

1. If there exist t0 > 0 and δ > 0 such that

u(s2(t0), t0) = M = sup
∂pDT

u, (2)

|s1(t0) − s2(t0)| ≥ δ and u(x, t0) < M for every x ∈ (s2(t0) − δ, s2(t0)), (3)

then

lim inf
x↗s2(t0)

u(x, t0) − u(s2(t0), t0)
x− s2(t0)

> 0. (4)

If ux exists at (s2(t0), t0), then

ux(s2(t0), t0) > 0. (5)
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2. If there exist t0 > 0 and δ > 0 such that

u(s2(t0), t0) = m = inf
∂pDT

u,

|s1(t0) − s2(t0)| ≥ δ and u(x, t0) > m for every x ∈ (s2(t0) − δ, s2(t0)),

then

lim sup
x↗s2(t0)

u(x, t0) − u(s2(t0), t0)
x− s2(t0)

< 0.

If ux exists at (s2(t0), t0), then

ux(s2(t0), t0) < 0.

Proof. We prove only point 1. The proof of point 2 is analogous.
Consider

wα(x, t) = ε

[
1 − exp{−μ(x− s2(t0))}

Eα(μAtα)
Eα(μAtα0 )

]
+ M

where A, μ and ε will be determined, M is defined in (2) and Eα is the Mittag–Leffler function defined by

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1) , z ∈ C, α > 0.

Note that wα = M for every point in the curve

exp{−μ(x− s2(t0))}
Eα(μAtα)
Eα(μAtα0 ) = 1 (6)

and that curve (6) is the graph of the function

f(t) = 1
μ

ln
(
Eα(μAtα)
Eα(μAtα0 )

)
+ s2(t0), t ∈ (0, t0].

Clearly,

f(t0) = s2(t0) and f is an increasing function if μ > 0. (7)

Furthermore, there exists t1 < t0 such that f(t) < s2(t), t ∈ (t1, t0). In fact, we know from assumption 
(H2) that s2 is a lower Lipschitz continuous function. Then there exists a constant L > 0 such that 
s2(t) ≥ L(t − t0) + s2(t0), for every 0 ≤ t ≤ t0.

Besides, taking into account that Eα(μAtα) =
∑∞

k=0
(μAtα)k
Γ(αk+1) is a uniform convergent series over compact 

sets, and zΓ(z) = Γ(z + 1) for all z ∈ Ω = C − {z = −n, n ∈ N0}, we have

[Eα(μAtα)]′ =
∞∑
k=1

(μA)kαktαk−1

Γ(αk + 1) =
∞∑
k=0

(μA)k+1tαk+α−1

Γ(αk + α) = μAtα−1Eα,α(μAtα),

where the function Eα,α is the generalized Mittag–Leffler function with the parameters ρ = β = α,

Eρ,β(z) =
∞∑ zk

Γ(ρk + β) , z ∈ C, ρ > 0, β ∈ C.

k=0
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Fig. 2. Region R.

Then

f ′(t) = 1
μ

1
Eα(μAtα)

μA

t1−α
Eα,α(μAtα) = A

t1−α

Eα,α(μAtα)
Eα(μAtα) . (8)

Define the function H : R+
0 → R such that H(t) = Eα,α(μAtα)

Eα(μAtα) .
H is positive and continuous in [0, ∞). H(0) = 1

Γ(α) > 0 since 0 < α < 1. H(+∞) = C > 0 because it is 
a quotient of continuous functions with equal order in ∞ (see [12]). Then, there exists m0 > 0 such that

H(t) ≥ m0 for all t ≥ 0, for every A,μ > 0. (9)

From (8) and (9), f ′(t0) ≥ A
t1−α
0

m0. Selecting A > 0 such that A
t1−α
0

m0 > L we can assure that f ′(t0) > L.
Finally, let ρ be a positive number such that f ′(t0) − ρ > L. Due to the differentiability of f at t0 there 

exists t1 < t0 such that for every t ∈ (t1, t0),

L < f ′(t0) − ρ <
f(t) − f(t0)

t− t0
⇒ f(t) < L(t− t0) + f(t0) = L(t− t0) + s2(t0) ≤ s2(t).

Note that assumption (3) and condition (7) imply that we can select t1 so that s1(t) < f(t) < s2(t) for all 
t ∈ (t1, t0).

Now, consider the points A(x1, t0) (where x1 = f(t1)), B(s2(t0), t0) and C(x1, t1). Hypothesis (3) allows 
to set t1 again such that x1 ∈ (s2(t0) − δ, s2(t0)) and u < M in AC.

Let R be the region limited by AB, AC and the portion of the graph of f from B to C, which we call 
ĈB (see Fig. 2). The region Rt0 = R◦ ∪ (AB − {A,B}) and its parabolic boundary ∂pR = AC ∪ ĈB will 
be considered.

Next, we analyze the behavior of u and wα in the parabolic boundary ∂pR. Let M0 = max
t1≤t≤t0

u(x1, t). 

Because of the continuity of u, assumption (3) and the possibility to reset t1 if it is necessary, we have 
M0 < M . Calling η = M −M0, it yields

u ≤ M − η in AC and u ≤ M in ĈB. (10)

Moreover,

wα ≥ −η + M in AC and wα = M in ĈB. (11)
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In fact, Eα(μAtα) is an increasing function in AC, then

wα(x1, t) = ε

[
1 − exp {−μ(x1 − s2(t0))}

Eα(μAtα)
Eα(μAtα0 )

]
+ M ≥

≥ ε [1 − exp {−μ(x1 − s2(t0))}] + M ≥ −η + M,

if ε = η

exp {−μ(x1 − s2(t0))} − 1 .

Considering the fact that Dα(Eα(μAtα)) = μAEα(μAtα) (see [16]) and applying the operator Lα to the 
function wα,

Lα[wα](x, t) = ε exp {−μ(x− s2(t0))}
Eα(μAtα)
Eα(μAtα0 ) (μA− μ2) < 0 if μ = A + 1. (12)

Finally, we define z = wα − u in R and analyze the behavior of z in the parabolic boundary ∂pR. From 
(10) and (11) we obtain

z ≥ 0 in AC and z ≥ 0 in ĈB.

Also, from (12), we have Lα[z] = Lα[wα] − Lα[u] < 0 in Rt0 .
Applying Corollary 1, we can state that z does not attain its minimum at Rt0 . Then z ≥ 0 in R. In 

particular,

z(x, t0) = wα(x, t0) − u(x, t0) ≥ 0, for all x1 ≤ x ≤ s2(t0). (13)

Recall that u(s2(t0), t0) = wα(s2(t0, t0)) = M , so the next inequality is equivalent to (13):

u(x, t0) − u(s2(t0), t0)
x− s2(t0)

≥ wα(x, t0) − wα(s2(t0, t0))
x− s2(t0)

. (14)

Then

lim inf
x↗s2(t0)

u(x, t0) − u(s2(t0), t0)
x− s2(t0)

≥ lim inf
x↗s2(t0)

wα(x, t0) − wα(s2(t0, t0))
x− s2(t0)

.

But wα is a differentiable function at (s(t0), t0), therefore

lim inf
x↗s2(t0)

wα(x, t0) − wα(s2(t0, t0))
x− s2(t0)

= (wα)x(s2(t0), t0) = εμ = ε(A + 1) > 0

and condition (4) holds.
Finally, if the derivative ux exists at (s2(t0), t0), the inequality (14) implies that ux(s2(t0), t0) ≥

(wα)x(s2(t0), t0) > 0 and hence the condition (5) holds. �
Analogous results hold if we consider s1 instead of s2.

Theorem 3. Let u ∈ CWDT
be a solution of problem (1) satisfying the hypotheses (H1)–(H6).

1. If there exist t0 > 0 and δ > 0 such that

u(s1(t0), t0) = M = sup
∂pDT

u,

|s1(t0) − s2(t0)| ≥ δ and u(x, t0) < M for every x ∈ (s1(t0), s1(t0) + δ),
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then

lim sup
x↗s1(t0)

u(x, t0) − u(s1(t0), t0)
x− s1(t0)

< 0.

If ux exists at (s1(t0), t0), then

ux(s1(t0), t0) < 0.

2. If there exist t0 > 0 and δ > 0 such that

u(s1(t0), t0) = m = inf
∂pDT

u,

|s1(t0) − s2(t0)| ≥ δ and u(x, t0) > m for every x ∈ (s1(t0), s1(t0) + δ),

then

lim inf
x↗s1(t0)

u(x, t0) − u(s1(t0), t0)
x− s1(t0)

> 0.

If ux exists at (s1(t0), t0), then

ux(s1(t0), t0) > 0.

Remark 3. As we said before, this result can be found in [5] for the case α = 1, where the author works 
only with exponential functions. It is well known that the Caputo derivative of the exponential function is 
not an exponential function. Therefore, we use the Mittag–Leffler function.

3. An application to fractional free-boundary Stefan problems

In this section we consider the following fractional free-boundary Stefan problem for the FDE

(i) Dαu(x, t) = uxx(x, t), 0 < x < s(t), 0 < t < T, 0 < α < 1, λ > 0

(ii) u(x, 0) = f(x), 0 ≤ x ≤ b = s(0),

(iii) u(0, t) = g(t), 0 < t ≤ T,

(iv) u(s(t), t) = 0, 0 < t ≤ T,

(v) Dαs(t) = −kux(s(t), t), 0 < t ≤ T, k > 0 constant, (15)

where we have replaced the Stefan condition 
ds(t)
dt

= kux(s(t), t), t > 0, by the fractional Stefan condition

Dαs(t) = −kux(s(t), t), t > 0, 0 < α < 1.

Definition 2. A pair {u, s} is a solution of problem (15) if

1. u is defined in [0, b0] × [0, T ] where b0 := max{s(t), 0 ≤ t ≤ T}.
2. u ∈ CWDT

.
3. u is continuous in DT ∪ ∂pDT except perhaps at (0, 0) and (b, 0) where

0 ≤ lim inf
(x,t)→(0,0)

u(x, t) ≤ lim sup u(x, t) < +∞

(x,t)→(0,0)
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and

0 ≤ lim inf
(x,t)→(b,0)

u(x, t) ≤ lim sup
(x,t)→(b,0)

u(x, t) < +∞.

4. s is a continuous function in [0, T ] such that s ∈ W 1(0, T ).
5. There exists ux(s(t), t) for all t ∈ (0, T ].
6. u and s satisfy (15).

This kind of problem has recently been treated in [3,8,17,24], and numerical solutions can be found in [4]. 
Our next goal is to prove the following assertion involving the monotonicity of the free boundary.

Theorem 4. Let {u1, s1} and {u2, s2} be solutions of the fractional free-boundary Stefan problems (15)
corresponding to the data {b1, f1, g1} and {b2, f2, g2}, respectively. Suppose that b1 < b2, 0 ≤ f1 ≤ f2 and 
0 ≤ g1 ≤ g2. Then s1(t) < s2(t) for all t ∈ [0, T ).

Proof. We know that s1 and s2 are continuous functions, and s1(0) = b1 < b2 = s2(0). Suppose that the 
set A = {t ∈ [0, T ] | (s1 − s2)(t) = 0} 
= ∅, and let be t0 = minA. Due to the continuity of s1 and s2, 
s1(t0) = s2(t0), and t0 is the first t for which s1(t0) = s2(t0).

Let h(t) = (s1 − s2)(t), t ∈ [0, t0]. This function has the following properties:

(h-1) h ∈ C1(0, t0] ∩ C[0, t0] (due to Definition 2).
(h-2) h(0) = b1 − b2 < 0.
(h-3) h is a non-positive function and h(t0) = 0.

From (h-1)–(h-3), h attains its maximum value at t0.

Using the estimate [2, Eq. (12)], we obtain Dαh(t0) ≥
h(t0) − h(0)
tα0 Γ(1 − α) .

Then,

Dαh(t0) ≥
b2 − b1

tα0 Γ(1 − α) > 0. (16)

Taking into account the linearity of the Caputo fractional derivative and the fact that s1 and s2 satisfy 
the Stefan condition (15)-(v), from the inequality (16) we derive

u2x(s2(t0), t0) − u1x(s1(t0), t0) > 0. (17)

Observe that w(x, t) = u2(x, t) − u1(x, t) is a solution of the moving-boundary problem

Dαw(x, t) = wxx(x, t), 0 < x < s1(t), 0 < t ≤ t0, 0 < α < 1,

w(0, t) = (g2 − g1)(t) ≥ 0, 0 < t ≤ t0,

w(s1(t), t) = u2(s1(t), t), 0 < t ≤ t0,

w(x, 0) = (f2 − f1)(x) ≥ 0, 0 ≤ x ≤ b1 = s1(0). (18)

Applying Theorem 1 to u2 in the region D2
t0 , where D2

t0 = {(x, t) | 0 < t ≤ t0, 0 < x < s2(t)}, we have 
u2(s1(t), t) ≥ 0.

For w satisfying the problem (18), Theorem 1 gives the condition w ≥ 0 in D1
t0 , where D1

t0 = {(x, t) |
0 < t ≤ t0, 0 < x < s1(t)}. Then w attains a minimum at (s1(t0), t0).
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If there exists ε > 0 such that w(x, t0) > 0 for all x ∈ (s1(t0) − ε, s1(t0)), applying Theorem 2-2 we 
can conclude that wx(s1(t0), 0) < 0. And then u2x(s2(t0), t0) − u1x(s1(t0), t0) < 0, which contradicts the 
inequality (17).

If, by contrast, we have a sequence {εn} such that εn → 0 and, for every n ∈ N there exists xn ∈
(s1(t0) − εn, s1(t0)) such that w(xn, t0) = 0, then

lim
n→∞

w(xn, t0) − w(s1(t0), t0)
εn

= 0.

But the derivative wx(s1(t0), t0) exists by Definition 2-6. Then wx(s1(t0), t0) = 0. Therefore u2x(s2(t0), t0) −
u1x(s1(t0), t0) = 0, which contradicts the inequality (17) again.

This contradiction comes from assuming that there exists t0 > 0 such that t0 is the first t for which 
s1(t0) = s2(t0). Therefore s1(t) < s2(t) for all t ∈ [0, T ). �
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