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A semi-infinite material under a solidification process with the Solomon-Wilson-Alexiades mushy zone model with a heat flux
condition at the fixed boundary is considered. The associated free boundary problem is overspecified through a convective
boundary condition with the aim of the simultaneous determination of the temperature, the two free boundaries of the mushy
zone and one thermal coefficient among the latent heat by unit mass, the thermal conductivity, the mass density, the specific heat,
and the two coefficients that characterize the mushy zone, when the unknown thermal coefficient is supposed to be constant. Bulk
temperature and coefficients which characterize the heat flux and the heat transfer at the boundary are assumed to be determined
experimentally. Explicit formulae for the unknowns are given for the resulting six phase-change problems, besides necessary and
sufficient conditions on data in order to obtain them. In addition, relationship between the phase-change process solved in this
paper and an analogous process overspecified by a temperature boundary condition is presented, and this second problem is solved
by considering a large heat transfer coefficient at the boundary in the problem with the convective boundary condition. Formulae
for the unknown thermal coefficients corresponding to both problems are summarized in two tables.

1. Introduction

Heat transfer problems with a phase-change such as melting
and freezing have been studied in the last century due to their
wide scientific and technological applications. Some books in
the subject are [1–9].

In this paper we consider a phase-change process for a
semi-infinite material, which is characterized by 𝑥 > 0, that
is initially assumed to be liquid at its melting temperature
(which without loss of generality we assume to be equal to
0∘C).We consider this material under a solidification process
with the presence of a zone where solid and liquid coexist,
known as “mushy zone,” with a heat flux boundary condition
imposed at the fixed face 𝑥 = 0. We follow [10, 11] in

considering three different regions in this type of solidifica-
tion process:

(1) Liquid region at temperature 𝑇(𝑥, 𝑡) = 0: 𝐷
𝑙

=

{(𝑥, 𝑡) ∈ R2
/𝑥 > 𝑟(𝑡), 𝑡 > 0}.

(2) Solid region at temperature 𝑇(𝑥, 𝑡) < 0:𝐷
𝑠
= {(𝑥, 𝑡) ∈

R2
/0 < 𝑥 < 𝑠(𝑡), 𝑡 > 0}.

(3) Mushy region at temperature 𝑇(𝑥, 𝑡) = 0: 𝐷
𝑝

=

{(𝑥, 𝑡) ∈ R2
/𝑠(𝑡) < 𝑥 < 𝑟(𝑡), 𝑡 > 0}.

𝑥 = 𝑠(𝑡) and 𝑥 = 𝑟(𝑡) are the functions that characterize
the free boundaries of the mushy zone. We also follow [10]
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in making the following assumptions on the structure of the
mushy zone, which is considered as isothermal:

(1) Thematerial contains a fixed portion of the total latent
heat per unit mass (see condition (3)).

(2) Its width is inversely proportional to the gradient of
temperature (see condition (4)).

Thermal coefficients involved in the solidification process are
assumed to be constant. They are

𝑙 > 0: latent heat by unit mass,
𝑘 > 0: thermal conductivity,
𝜌 > 0: mass density,
𝑐 > 0: specific heat,
0 < 𝜖 < 1: one of the two coefficients which charac-
terize the mushy zone,
𝛾 > 0: one of the two coefficients which characterize
the mushy zone,
𝑞0 > 0: coefficient that characterizes the heat flux at
𝑥 = 0,
ℎ0 > 0: coefficient that characterizes the heat transfer
at 𝑥 = 0,
−𝐷
∞

< 0: bulk temperature at 𝑥 = 0.

We suppose that five of the six thermal coefficients 𝑙, 𝑘, 𝜌,
𝑐, 𝜖, and 𝛾 of the solid phase are known and that, by means of
a change of phase experiment (solidification of thematerial at
itsmelting temperature), we are able tomeasure the quantities
𝑞0, ℎ0, and −𝐷

∞
.

Encouraged by the recent works [12, 13] and with the
aim of the simultaneous determination of temperature 𝑇 =

𝑇(𝑥, 𝑡), the two free boundaries 𝑥 = 𝑟(𝑡) and 𝑥 = 𝑠(𝑡), and
one unknown thermal coefficient among 𝑙, 𝑘, 𝜌, 𝑐, 𝜖, and 𝛾,
we impose an overspecified boundary condition [2] which
consists of the specification of a convective condition at the
fixed face𝑥 = 0 (see condition (7)) of thematerial undergoing
the phase-change process. This leads us to the following free
boundary problem:

𝜌𝑐𝑇
𝑡
(𝑥, 𝑡) − 𝑘𝑇

𝑥𝑥
(𝑥, 𝑡) = 0 0 < 𝑥 < 𝑠 (𝑡) , 𝑡 > 0, (1)

𝑇 (𝑠 (𝑡) , 𝑡) = 0 𝑡 > 0, (2)

𝑘𝑇
𝑥
(𝑠 (𝑡) , 𝑡) = 𝜌𝑙 [𝜖 ̇𝑠 (𝑡) + (1− 𝜖) ̇𝑟 (𝑡)] 𝑡 > 0, (3)

𝑇
𝑥
(𝑠 (𝑡) , 𝑡) (𝑟 (𝑡) − 𝑠 (𝑡)) = 𝛾 𝑡 > 0, (4)

𝑟 (0) = 𝑠 (0) = 0, (5)

𝑘𝑇
𝑥
(0, 𝑡) =

𝑞0
√𝑡

𝑡 > 0, (6)

𝑘𝑇
𝑥
(0, 𝑡) =

ℎ0
√𝑡

(𝑇 (0, 𝑡) +𝐷
∞
) 𝑡 > 0. (7)

This problem was first studied in [11] with a temperature
boundary condition at 𝑥 = 0 instead of the convective con-
dition (7) considered in this paper. Moreover, the determina-
tion of one unknown thermal coefficient for the one-phase

Lamé-Clapeyron-Stefan problem with an overspecified heat
flux condition at the fixed face 𝑥 = 0 without a mushy zone
was done in [14]. Other papers related to determination of
thermal coefficients are [15–40].

The goal of this paper is to obtain the explicit solution to
the phase-change process (1)–(7) with one unknown thermal
coefficient independent of position and time and the neces-
sary and sufficient conditions on data in order to obtain an
explicit formula for the unknown thermal coefficient. In addi-
tion, we are interested in analysing the relationship between
problem (1)–(7) and the phase-change process given by (1)–
(6) besides the Dirichlet boundary condition overspecified at
𝑥 = 0 given by (31) (see below). In particular, we are interested
in solving the problem with Dirichlet boundary condition
through problem with convective boundary condition when
large values of the coefficient ℎ0 that characterizes the heat
transfer at 𝑥 = 0 are considered.

The organization of the paper is as follows. In Section 2
we prove a preliminary result where necessary and sufficient
conditions on data for the phase-change process (1)–(7) are
given in order to obtain the temperature 𝑇 = 𝑇(𝑥, 𝑡) and
the two free boundaries 𝑥 = 𝑟(𝑡) and 𝑥 = 𝑠(𝑡). Based on
this preliminary result, in Section 3, we present and solve six
different cases for the phase-change process (1)–(7) according
to the choice of the unknown thermal coefficient among 𝑙, 𝑘,
𝜌, 𝑐, 𝜖, and 𝛾. In Section 4 we discuss the relationship between
the phase-change process (1)–(6)with theDirichlet boundary
condition (31) and the same process with the convective
boundary condition (7). We show that temperature 𝑇

𝐷
=

𝑇
𝐷
(𝑥, 𝑡), free boundaries 𝑥 = 𝑟

𝐷
(𝑡) and 𝑥 = 𝑠

𝐷
(𝑡), and the

explicit formula for the unknown thermal coefficient 𝑙, 𝑘,
𝜌, 𝑐, 𝜖, or 𝛾 for the phase-change process (1)–(6) with the
Dirichlet condition (31) can be obtained through the phase-
change process with convective condition given by (1)–(7)
when ℎ0 tends to +∞. Explicit formulae for the unknown
thermal coefficient for problems (1)–(7) and (1)–(6) and (31),
besides restrictions on data that guarantees their validity, are
summarized in Tables 1 and 2, respectively.

2. Explicit Solution to
the Phase-Change Process

The following lemma represents the base on which the work
in this section will be structured.

Lemma 1. The solution to problem (1)–(7) is given by

𝑇 (𝑥, 𝑡) =

𝑞0√𝜋𝛼

𝑘

[erf ( 𝑥

2√𝛼𝑡

)− erf (𝜉)]

0 < 𝑥 < 𝑠 (𝑡) , 𝑡 > 0,

𝑠 (𝑡) = 2𝜉√𝛼𝑡 𝑡 > 0,

𝑟 (𝑡) = 2 [𝜉 +

𝛾𝑘

2𝑞0√𝛼

exp (𝜉
2
)]√𝛼𝑡 𝑡 > 0

(8)
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Table 1: Formulae for problem (1)–(7). Explicit formulae for the unknown thermal coefficient 𝑙, 𝛾, 𝜖, 𝑘, 𝜌, or 𝑐 and coefficient 𝜉 (or the equation
that it must satisfy) and the corresponding restrictions on data that guarantee their validity.

Case Thermal coefficient Coefficient 𝜉 that characterizes the free boundary
𝑥 = 𝑠(𝑡)

Restrictions on data

1 𝑙 = √

𝑐

𝜌𝑘

𝑞0exp (−𝜉
2
)

[𝜉 + (𝛾 (1 − 𝜖)√𝑘𝜌𝑐/2𝑞0) exp (𝜉
2
)]

𝜉 = erf−1 (
𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

(1 −

𝑞0

ℎ0𝐷∞
)) (R1), (R2)

2 𝛾 =

2𝑞0
(1 − 𝜖)√𝑘𝜌𝑐

(

𝑞0

𝑙

√

𝑐

𝜌𝑘

− 𝜉exp (𝜉
2
)) exp (−2𝜉2) 𝜉 = erf−1 (

𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

(1 −

𝑞0

ℎ0𝐷∞
)) (R1), (R2), (R3)

3 𝜖 = 1 −

2𝑞0
𝛾√𝑘𝜌𝑐

(

𝑞0

𝑙

√

𝑐

𝜌𝑘

− 𝜉exp (𝜉
2
)) exp (−2𝜉2) 𝜉 = erf−1 (

𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

(1 −

𝑞0

ℎ0𝐷∞
)) (R1), (R2), (R3), (R4)

4 𝑘 =

𝜋

𝜌𝑐

[

𝑞0 erf(𝜉)
𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
]

2 Unique positive solution of

𝑓4 (𝑥) =

𝑐𝐷
∞

𝑙√𝜋

(1 −

𝑞0

ℎ0𝐷∞
), with 𝑓4 defined by (23) (R1)

5 𝜌 =

𝜋

𝑘𝑐

[

𝑞0 erf(𝜉)
𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
]

2 Unique positive solution of

𝑓4 (𝑥) =

𝑐𝐷
∞

𝑙√𝜋

(1 −

𝑞0

ℎ0𝐷∞
), with 𝑓4 defined by (23) (R1)

6 𝑐 =

𝜋

𝜌𝑘

[

𝑞0 erf(𝜉)
𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
]

2 Unique positive solution of

𝑓6 (𝑥) =

𝑞
2
0√𝜋

𝜌𝑙𝑘𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
, with 𝑓6 defined by (28)

(R1), (R5)

Table 2: Formulae for problem (1)–(6) and (31). Explicit formulae for the unknown thermal coefficient 𝑙, 𝛾, 𝜖, 𝑘, 𝜌, or 𝑐 and coefficient 𝜉 (or
the equation that it must satisfy) and the corresponding restrictions on data that guarantee their validity.

Case Thermal coefficient Coefficient 𝜉 that characterizes the free boundary
𝑥 = 𝑠
𝐷

(𝑡)

Restrictions on data

1 𝑙 = √

𝑐

𝜌𝑘

𝑞0exp (−𝜉
2
)

[𝜉 + (𝛾 (1 − 𝜖)√𝑘𝜌𝑐/2𝑞0) exp (𝜉
2
)]

𝜉 = erf−1 (
𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

) (R6)

2 𝛾 =

2𝑞0
(1 − 𝜖)√𝑘𝜌𝑐

(

𝑞0

𝑙

√

𝑐

𝜌𝑘

− 𝜉exp (𝜉
2
)) exp (−2𝜉2) 𝜉 = erf−1 (

𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

) (R7)

3 𝜖 = 1 −

2𝑞0
𝛾√𝑘𝜌𝑐

(

𝑞0

𝑙

√

𝑐

𝜌𝑘

− 𝜉exp (𝜉
2
)) exp (−2𝜉2) 𝜉 = erf−1 (

𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

) (R7), (R8)

4 𝑘 =

𝜋

𝜌𝑐

[

𝑞0 erf(𝜉)
𝐷
∞

]

2 Unique positive solution of

𝐹4(𝑥) =

𝑐𝐷
∞

𝑙√𝜋

, with 𝐹4 defined by (36)

5 𝜌 =

𝜋

𝑘𝑐

[

𝑞0 erf(𝜉)
𝐷
∞

]

2 Unique positive solution of
𝐹4(𝑥) =

𝑐𝐷
∞

𝑙√𝜋

, with 𝐹4 defined by (36)

6 𝑐 =

𝜋

𝜌𝑘

[

𝑞0 erf(𝜉)
𝐷
∞

]

2 Unique positive solution of

𝐹6(𝑥) =

𝑞
2
0√𝜋

𝜌𝑙𝑘𝐷
∞

, with 𝐹6 defined by (37)
(R9)

if and only if the parameters involved in problem (1)–(7) satisfy
the following two equations:

[𝜉 +

𝛾𝑘 (1 − 𝜖)

2𝑞0√𝛼

exp (𝜉
2
)] exp (𝜉

2
) =

𝑞0
𝜌𝑙√𝛼

, (9)

erf (𝜉) =

𝑘D
∞

𝑞0√𝜋𝛼

(1−

𝑞0
ℎ0𝐷∞

) , (10)

where 𝛼 = 𝑘/𝜌𝑐 represents the thermal diffusivity.

Proof. The kind of phase-change processes considered in this
paper has the following general solution [10–12]:

𝑇 (𝑥, 𝑡) = 𝐴+𝐵 erf ( 𝑥

2√𝛼𝑡

) 0 < 𝑥 < 𝑠 (𝑡) , 𝑡 > 0,

𝑠 (𝑡) = 2𝜉√𝛼𝑡 𝑡 > 0,

𝑟 (𝑡) = 2𝜇√𝛼𝑡 𝑡 > 0,

(11)
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where coefficients 𝐴, 𝐵, 𝜉, and 𝜇 depend on the particular
specifications of the phase-change process.

In order to have the solution to problem (1)–(7), we
impose conditions (2)–(4), (6) and (7) on (11) and obtain that
coefficients 𝐴, 𝐵, and 𝜇must be given by

𝐴 = −

𝑞0√𝜋𝛼

𝑘

erf (𝜉) ,

𝐵 =

𝑞0√𝜋𝛼

𝑘

,

𝜇 = 𝜉 +

𝛾𝑘 exp (𝜉
2
)

2𝑞0√𝛼

,

(12)

which corresponds to solution (8), and the parameters invo-
lved in the problem must satisfy (9) and (10).

As a consequence of Lemma 1, we know that we can solve
the phase-change process (1)–(7) with one unknown thermal
coefficient through the determination of parameter 𝜉 that
characterizes one of the two free boundaries of the mushy
zone and the unknown thermal coefficient among 𝑙, 𝑘, 𝜌, 𝑐,
𝜖, and 𝛾. In addition, we also know from Lemma 1 that we
can do that by solving the system of (9)-(10).

3. Explicit Formula for
the Unknown Thermal Coefficient

In this section we present and solve six different cases for the
phase-change process (1)–(7) according to the choice of the
unknown thermal coefficient among 𝑙, 𝑘, 𝜌, 𝑐, 𝜖, and 𝛾.

With the aimof organizing ourwork, we classify each case
by making reference to the coefficients which is necessary to
know in order to solve it (see Lemma 1):

Case 1: determination of 𝑙 and 𝜉.
Case 2: determination of 𝛾 and 𝜉.
Case 3: determination of 𝜖 and 𝜉.
Case 4: determination of 𝑘 and 𝜉.
Case 5: determination of 𝜌 and 𝜉.
Case 6: determination of 𝑐 and 𝜉.

In addition, with the goal of making our presentation more
readable, in the following statements and proofs we introduce
several functions. We name these functions with a subscript
according the case where they arise.

Theorem 2 (Case 1: determination of 𝑙 and 𝜉). If in problem
(1)–(7) one considers the thermal parameter 𝑙 as an unknown,
then its solution is given by (8) with 𝑙 and 𝜉 given by

𝑙 = √

𝑐

𝜌𝑘

𝑞0 exp (−𝜉
2
)

[𝜉 + (𝛾 (1 − 𝜖)√𝑘𝜌𝑐/2𝑞0) exp (𝜉
2
)]

, (13)

𝜉 = erf−1 (
𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

(1−

𝑞0
ℎ0𝐷∞

)) (14)

if and only if the parameters 𝑞0, ℎ0, 𝐷∞, 𝑘, 𝜌, and 𝑐 satisfy the
following two inequalities:

1−

𝑞0
ℎ0𝐷∞

> 0 (R1)

𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

(1−

𝑞0
ℎ0𝐷∞

) < 1. (R2)

Proof. Due to properties of the error function, it follows that
a necessary and sufficient condition for the existence and uni-
queness of a positive solution to (10) is

0 <

𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

(1−

𝑞0
ℎ0𝐷∞

) < 1, (15)

which is equivalent to inequalities (R1) and (R2). In that case,
the positive solution to (10) is given by (14). Finally, it follows
from (9) that 𝑙 is the positive thermal coefficient given by (13).

Theorem 3 (Case 2: determination of 𝛾 and 𝜉). If in problem
(1)–(7) one considers the thermal parameter 𝛾 as an unknown,
then its solution is given by (8) with 𝛾 given by

𝛾 =

2𝑞0
(1 − 𝜖)√𝑘𝜌𝑐

(

𝑞0
𝑙

√

𝑐

𝜌𝑘

−𝑓2 (𝜉)) exp (−2𝜉2) (16)

and 𝜉 given by (14), if and only if the parameters 𝑞0, ℎ0,𝐷∞, 𝑘,
𝜌, 𝑐, and 𝑙 satisfy inequalities (R1) and (R2) and

𝑓2 (erf−1(
𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

(1−

𝑞0
ℎ0𝐷∞

))) <

𝑞0
𝑙

√

𝑐

𝜌𝑘

, (R3)

where the real function 𝑓2 is defined by

𝑓2 (𝑥) = 𝑥 exp (𝑥
2
) , 𝑥 > 0. (17)

Proof. As we see in the proof of Theorem 2, a necessary and
sufficient condition that guarantees the existence and unique-
ness of solution to (10) is that inequalities (R1) and (R2) hold,
and, in that case, the coefficient 𝜉 is given by (14).

On the other hand, it follows from (9) that 𝛾 is given by
(16). This coefficient is positive if and only if

𝑓2 (𝜉) <

𝑞0
𝑙

√

𝑐

𝜌𝑘

, (18)

where 𝑓2 is the real function defined in (17). Taking into
account the expression of 𝜉 given in (14), we have that inequal-
ity (18) is equivalent to inequality (R3).

Theorem 4 (Case 3: determination of 𝜖 and 𝜉). If in problem
(1)–(7) one considers the thermal parameter 𝜖 as an unknown,
then its solution is given by (8) with 𝜖 given by

𝜖 = 1−

2𝑞0
𝛾√𝑘𝜌𝑐

(

𝑞0
𝑙

√

𝑐

𝜌𝑘

−𝑓2 (𝜉)) exp (−2𝜉2) (19)
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and 𝜉 given by (14), if and only if the parameters 𝑞0, ℎ0,𝐷∞, 𝑘,
𝜌, 𝑐, and 𝛾 satisfy inequalities (R1), (R2), and (R3) and

𝛾√𝑘𝜌𝑐

2𝑞0

⋅ exp(2[

[

erf−1 (
𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

(1 −

𝑞0
ℎ0𝐷∞

))
]

]

2

)

+𝑓2 (erf−1(
𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

(1−

𝑞0
ℎ0𝐷∞

))) >

𝑞0
𝑙

⋅ √

𝑐

𝜌𝑘

,

(R4)

where 𝑓2 is the real function defined in (17).

Proof. Conditions (R1) and (R2) and the expression of 𝜉 given
in (14) arise in the same way as that in the precedent proofs.
On the other hand, it follows from (9) that 𝜖 is given by (19),
𝑓2 being the real function defined in (17). This coefficient is
positive if and only if

2𝑞0
𝛾√𝑘𝜌𝑐

(

𝑞0
𝑙

√

𝑐

𝜌𝑘

−𝑓2 (𝜉)) exp (−2𝜉2) < 1. (20)

Taking into account the expression of 𝜉 given in (14), we have
that inequality (20) is equivalent to inequality (R4). Finally,
we have that 𝜖 given in (19) is less than 1 if and only if
𝑓2(𝜉) < 𝑞0/𝜌𝑙√𝛼, which, as we see in the proof ofTheorem 3,
is equivalent to condition (R3).

Theorem 5 (Case 4: determination of 𝑘 and 𝜉). If in problem
(1)–(7) one considers the thermal parameter 𝑘 as an unknown,
then its solution is given by (8) with 𝑘 given by

𝑘 =

𝜋

𝜌𝑐

[

𝑞0 erf (𝜉)
𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
]

2
(21)

and 𝜉 is the unique solution to the equation

𝑓4 (𝑥) =

𝑐𝐷
∞

𝑙√𝜋

(1−

𝑞0
ℎ0𝐷∞

) , 𝑥 > 0, (22)

where 𝑓4 is the real function defined by

𝑓4 (𝑥) = [𝑥+

𝛾√𝜋 (1 − 𝜖)

2𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
erf (𝑥) exp (𝑥

2
)]

⋅ erf (𝑥) exp (𝑥
2
) , 𝑥 > 0,

(23)

if and only if the parameters 𝑞0, ℎ0, and 𝐷
∞

satisfy inequality
(R1).

Proof. The system of (9)-(10) is equivalent to

√𝑘 = √

𝜋

𝜌𝑐

𝑞0 erf (𝜉)
𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
,

𝑓4 (𝜉) =

𝑐𝐷
∞

𝑙√𝜋

(1−

𝑞0
ℎ0𝐷∞

) ,

(24)

where𝑓4 is the real function defined in (23). A necessary con-
dition for existence of solution to this system is that inequality
(R1) holds. Then, if we assume that (R1) holds, we imme-
diately obtain that 𝑘 is given by (21). To complete the proof
it only remains to demonstrate that (22) admits a unique
positive solution. This follows from the fact that 𝑓4 is an inc-
reasing function such that 𝑓(0+) = 0 and 𝑓(+∞) = +∞.

Theorem 6 (Case 5: determination of 𝜌 and 𝜉). If in problem
(1)–(7) one considers the thermal parameter 𝜌 as an unknown,
then its solution is given by (8) with 𝜌 given by

𝜌 =

𝜋

𝑘𝑐

[

𝑞0 erf (𝜉)
𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
]

2
(25)

and 𝜉 is the unique solution to (22), if and only if the parameters
𝑞0, ℎ0, and 𝐷

∞
satisfy inequality (R1).

Proof. It is similar to the proof of Theorem 5.

Theorem 7 (Case 6: determination of 𝑐 and 𝜉). If in problem
(1)–(7) one considers the thermal parameter 𝑐 as an unknown,
then its solution is given by (8) with 𝑐 given by

𝑐 =

𝜋

𝜌𝑘

[

𝑞0 erf (𝜉)
𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
]

2
(26)

and 𝜉 is the unique solution to the equation

𝑓6 (𝑥) =

𝑞
2
0√𝜋

𝜌𝑙𝑘𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
, 𝑥 > 0, (27)

where 𝑓6 is the real function defined by

𝑓6 (𝑥) = [

𝑥

erf (𝑥)
+

𝛾√𝜋 (1 − 𝜖)

2𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
exp (𝑥

2
)]

⋅ exp (𝑥
2
) , 𝑥 > 0,

(28)

if and only if the parameters 𝑞0, ℎ0, and 𝐷
∞

satisfy inequality
(R1) and

1−

𝑞0
ℎ0𝐷∞

<

1
𝐷
∞

[

2𝑞20
𝜌𝑙𝑘

− 𝛾 (1− 𝜖)] . (R5)

Proof. The system of (9)-(10) is equivalent to

√𝑐 = √

𝜋

𝜌𝑘

𝑞0 erf (𝜉)
𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
,

𝑓6 (𝜉) =

𝑞
2
0√𝜋

𝜌𝑙𝑘𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
,

(29)

where𝑓6 is the real function defined in (28). A necessary con-
dition for existence of solution to this system is that inequality
(R1) holds. Then, if we assume that (R1) holds, we immedi-
ately obtain that 𝑐 is given by (26). To complete the proof it
only remains to demonstrate that (27) admits a unique posi-
tive solution. Since 𝑓6 is an increasing function such that
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𝑓(0+) = 𝜋/2+𝛾(1− 𝜖)√𝜋/2𝐷
∞
(1−𝑞0/ℎ0𝐷∞) and 𝑓(+∞) =

+∞, it follows that a necessary and sufficient condition for
existence (and uniqueness) of solution to (27) is that

𝜋

2
+

𝛾 (1 − 𝜖)√𝜋

2𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
<

𝑞
2
0√𝜋

𝜌𝑙𝑘𝐷
∞

(1 − 𝑞0/ℎ0𝐷∞)
, (30)

which is equivalent to inequality (R5).

Table 1 summarizes the results of this section, corre-
sponding to 6 cases.

4. The Phase-Change Process with Large Heat
Transfer Coefficient

A similar phase-change process to (1)–(7) with one unknown
thermal coefficient has been studied in [11]. In that paper, the
author considers a fusion process with amushy zone given by
(1)–(6) overspecified with a temperature boundary condition
and obtains the explicit solution to some cases. Encouraged
by [11], we consider the solidification process (1)–(6) with one
unknown thermal coefficient overspecified with the Dirichlet
boundary condition:

𝑇 (0, 𝑡) = −𝐷
∞
, 𝑡 > 0. (31)

We can see this condition as the limit case of the convective
boundary condition (7) when the heat transfer coefficient ℎ0
tends to +∞. From a physical point of view, overspecifying
the phase-change process (1)–(6) by imposing the convective
boundary condition (7) seems to be more appropriate than
imposing the Dirichlet condition (31).This section is devoted
to showing that the temperature 𝑇

𝐷
= 𝑇
𝐷
(𝑥, 𝑡), the free

boundaries 𝑥 = 𝑟
𝐷
(𝑡) and 𝑥 = 𝑠

𝐷
(𝑡), and the explicit formula

for the unknown thermal coefficient 𝑙, 𝑘, 𝜌, 𝑐, 𝜖, or 𝛾 for
the phase-change process with Dirichlet boundary condition
given by (1)–(6) and (31) can be obtained through the phase-
change process with convective boundary condition given by
(1)–(7) when ℎ0 tends to +∞.

We beginwith a result related to the solution to the phase-
change process (1)–(6) and (31). This result may be shown in
much the same manner as Lemma 1; thus we do not give its
proof here.

Lemma 8. The solution to problem (1)–(6) and (31) is given by
(8); that is,

𝑇
𝐷
(𝑥, 𝑡) =

𝑞0√𝜋𝛼

𝑘

[erf ( 𝑥

2√𝛼𝑡

)− erf (𝜉)]

0 < 𝑥 < 𝑠
𝐷
(𝑡) , 𝑡 > 0,

𝑠
𝐷
(𝑡) = 2𝜉√𝛼𝑡 𝑡 > 0,

𝑟
𝐷
(𝑡) = 2 [𝜉 +

𝛾𝑘

2𝑞0√𝛼

exp (𝜉
2
)]√𝛼𝑡 𝑡 > 0,

(32)

where 𝛼 = 𝑘/𝜌𝑐 represents the thermal diffusivity, if and only if
the parameters involved in problem (1)–(6) and (31) satisfy the
following two equations:

[𝜉 +

𝛾 (1 − 𝜖)√𝜋

2𝐷
∞

erf (𝜉) exp (𝜉
2
)] erf (𝜉) exp (𝜉

2
)

=

𝑐𝐷
∞

𝑙√𝜋

,

erf (𝜉) =

𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

.

(33)

From Lemma 8 we know that, in order to have tempera-
ture 𝑇

𝐷
= 𝑇
𝐷
(𝑥, 𝑡), the free boundaries 𝑥 = 𝑟

𝐷
(𝑡) and 𝑥 =

𝑠
𝐷
(𝑡), and the unknown thermal coefficient 𝑙, 𝑘, 𝜌, 𝑐, 𝜖, or 𝛾

for problem (1)–(6) and (31), it is enough to find the unknown
thermal coefficient and the parameter that characterizes the
free boundary 𝑠

𝐷
(𝑡). Proceeding analogously to the work

done in [11] or in Section 3, we can obtain the thermal coeffi-
cient 𝑙, 𝑘, 𝜌, 𝑐, 𝜖, or 𝛾 and the parameter 𝜉 for problem (1)–(6)
and (31). Formulae for those quantities, besides restrictions
on data that guarantee their validity, are summarized in
Table 2 (restrictions on data and definitions on functions
mentioned in Table 2 are listed as follows).

List of restrictions on data for problem (1)–(6) and (31)
mentioned in Table 2 is

𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

< 1, (R6)

𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

< erf (𝜂) , (R7)

where 𝜂 is the unique positive solution to the equation

𝑓2 (𝑥) =

𝑞0
𝑙

√

𝑐

𝜌𝑘

, 𝑥 > 0, (34)

𝑓2 being the real function defined in (17);

𝐷
∞

𝑞0
√

𝑘𝜌𝑐

𝜋

> erf (𝜂) , 𝑥 > 0, (R8)

where 𝜂 is the unique positive solution to the equation

𝑓2 (𝑥) +
𝛾√𝑘𝜌𝑐

2𝑞0
exp (2𝑥2

) =

𝑞0
𝑙

√

𝑐

𝑘𝜌

, 𝑥 > 0, (35)

𝑓2 being the real function defined in (17);

𝑙𝑘𝜌𝐷
∞

2𝑞0
(1+

𝛾 (1 − 𝜖)

𝐷0
) < 1. (R9)

List of definitions of functions related to problem (1)–(6)
and (31) mentioned in Table 2 is

𝐹4 (𝑥) = erf (𝑥) 𝑓2 (𝑥)

+

(1 − 𝜖) 𝛾√𝜋

2𝐷
∞

[erf (𝑥)]2 exp (2𝑥2
) , 𝑥 > 0,

(36)
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𝑓2 being the real function defined in (17);

𝐹6 (𝑥) = (

𝑥

erf (𝑥)
+

𝛾 (1 − 𝜖)√𝜋

2𝐷
∞

exp (𝑥
2
)) exp (𝑥

2
) ,

𝑥 > 0.
(37)

On the other hand, it is not difficult to verify that formulae
and restrictions on data given in Table 2 correspond to
formulae and restrictions on data given in Table 1 for ℎ0
tending to +∞. This fact, besides Lemmas 1 and 8, allows
us to conclude that we can solve the phase-change process
(1)–(6) with one unknown thermal coefficient overspecified
by the Dirichlet condition (31) through the phase-change
process (1)–(7), which is overspecified by the more physically
appropriate convective boundary condition (7), when the
heat transfer coefficient ℎ0 tends to +∞.

5. Conclusions

In this paper, we consider a semi-infinite material under a
solidification process with a mushy zone caused by an initial
heat flux boundary condition, when the thermophysical
parameters involved in the phase-change process are assumed
to be constant. We solve the associated free boundary prob-
lem overspecified with a convective boundary condition and
obtain the temperature, the two free boundaries of themushy
zone and one thermal coefficient among the latent heat by
unit mass, the thermal conductivity, the mass density, the
specific heat, and the two coefficients that characterize the
mushy zone, when the bulk temperature and the coefficients
that characterize the heat flux and the heat transfer at the
boundary are assumed to be known. As a consequence, we
give formulae for the temperature, the two free boundaries,
and the unknown thermal coefficient, besides necessary and
sufficient conditions on data, in order to obtain them. In addi-
tion, we present the relationship between the phase-change
process studied in this paper and another similar phase-
change process which is overspecified by a Dirichelt bound-
ary condition. From this relationship, we solve the problem
with the Dirichlet condition by considering a large heat
transfer coefficient in the problem with the convective con-
dition. In this way, we solve the phase-change process over-
specified with a temperature boundary condition through
the more physically appropriate phase-change problem over-
specified with a convective boundary condition. We summa-
rize explicit formulae for the unknown thermal coefficient for
both problems in Tables 1 and 2.
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