Analytical Biochemistry 495 (2016) 1-2

Contents lists available at ScienceDirect

Analytical Biochemistry

journal homepage: www.elsevier.com/locate/yabio

Lipid-based transfection reagents can interfere with cholesterol biosynthesis

Mauro Danielli, Raúl A. Marinelli*

Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina

ARTICLE INFO

Article history: Received 5 October 2015 Received in revised form 6 November 2015 Accepted 9 November 2015 Available online 30 November 2015

Keywords: Transfection reagents Cholesterol Huh-7 cells

ABSTRACT

Lipid-based transfection reagents are widely used for delivery of small interfering RNA into cells. We examined whether the commonly used commercial transfection reagents DharmaFECT-4 and Lipofectamine 2000 can interfere with lipid metabolism by studying cholesterogenesis. Cholesterol de novo synthesis from [¹⁴C]acetate was assessed in human hepatocyte-derived Huh-7 cells. The results revealed that DharmaFECT, but not Lipofectamine, markedly inhibited cholesterol biosynthesis by approximately 70%. Cell viability was not significantly altered. These findings suggest that caution is required in the choice of certain lipid-based transfection reagents for gene silencing experiments, particularly when assessing cholesterol metabolism.

© 2015 Elsevier Inc. All rights reserved.

Studies in culture cells make use of lipid-based transfection reagents to transfect small interfering RNA (siRNA).¹ In this study, we examined whether the commonly used commercial transfection reagents Lipofectamine and DharmaFECT can affect the cellular synthesis of cholesterol.

The human hepatocyte-derived cell line Huh-7 (American Type Culture Collection) was maintained at 37 °C under a 5% CO₂ atmosphere in Dulbecco's modified Eagle's medium (DMEM, Gibco) supplemented with 100 U/ml penicillin and 100 mg/ml streptomycin and 10% fetal bovine serum (FBS). The medium was changed every other day, and cells were trypsinized after reaching confluency [1]. For the experiments, the cells were seeded in 6-well tissue culture plates and grown for 24 h until they reached approximately 70% confluence (i.e., ~300,000 cells/well). Cells were treated with 8 μ l of Lipofectamine 2000 (Thermo Fisher Scientific) or 5 μ l of DharmaFECT-4 (Dharmacon) alone following the corresponding manufacturer's protocol for siRNA transfection. Controls received no treatment. After 48 h, cells were incubated with 1 μ Ci [¹⁴C]acetate for 4 h to assess cholesterol de novo synthesis [2]. After lipid extraction [3], the resulting [¹⁴C]cholesterol was separated by silica thin-layer

chromatography with hexane, diethyl ether, and acetic acid (70:30:1) as solvent system. After visualization with iodine vapor and disappearance of the color, the spots were scraped from the plates and ¹⁴C quantitated by liquid scintillation counting [2].

Before assessing cholesterol synthesis, some treated and untreated cells were incubated for 6 h with DMEM containing 5% fetal calf lipoprotein-deficient serum (LPDS, Sigma) to stimulate cholesterol synthesis. Lactate dehydrogenase (LDH) activity was used as a measure of cell viability by measuring the enzyme leakage with an LDH assay kit (Wiener Lab, Rosario, Argentina) [1]. Proteins were determined according to Lowry and coworkers using bovine serum albumin as a standard [4].

As shown in Fig. 1, cholesterol de novo synthesis in Huh-7 cells incubated with 10% FBS or 5% LPDS was slightly reduced by Lipofectamine 2000 (~15%), whereas DharmaFECT-4 induced a major inhibition of approximately 70%. According to the LDH leakage, delivery reagents caused very low toxicity in Huh-7 cells (Fig. 1).

Differences in the lipid formulation between Lipofectamine 2000 and DharmaFECT-4 are expected to explain the dissimilar effects of these two reagents on cholesterol synthesis. Most of the lipid-based transfection reagents contain cationic and neutral lipids. Nevertheless, to our knowledge, formulations for Lipofect-amine 2000 and DharmaFECT-4 have not yet been disclosed. Interestingly, our findings are in line with recently published data indicating that other commercial lipid-based transfection reagents can directly affect hepatocyte lipid metabolism by altering gene expression [5].

Notes & tips

Analytical Biochemistry

^{*} Corresponding author. E-mail addresses: danielli@ifise-conicet.gov.ar (M. Danielli), marinelli@ifiseconicet.gov.ar (R.A. Marinelli).

¹ Abbreviations used: siRNA, small interfering RNA; DMEM, Dulbecco's modified Eagle's medium; FBS, fetal bovine serum; LPDS, lipoprotein-deficient serum; LDH, lactate dehydrogenase.

Fig. 1. Human hepatocyte-derived Huh-7 cells were treated with Lipofectamine 2000 (Lipof) or DharmaFECT-4 (DharmaF) reagents following the corresponding manufacturer's protocol for siRNA transfection. Controls were untreated. After 48 h, cells in DMEM containing 10% FBS (A) or 5% LPDS (B) were incubated with [¹⁴C]acetate for 4 h to assess cholesterol de novo synthesis. After 48 h of treatment with transfection reagents, cell viability was assessed by LDH leakage assay.

In conclusion, our data indicate that the commonly used commercial transfection reagent DharmaFECT-4, but not Lipofectamine 2000, markedly inhibited cholesterol synthesis in human hepatocyte-derived cells. These findings suggest that caution is required in the choice of certain lipid-based transfection reagents for gene silencing experiments, particularly when studying cholesterol metabolism.

Acknowledgment

This work was supported by grant PICT 1217 (to R. A. Marinelli) from Agencia Nacional de Promoción Científica y Tecnológica, Argentina.

References

- M.J. Marchissio, D.E. Francés, C.E. Carnovale, R.A. Marinelli, Evidence for necrosis, but not apoptosis, in human hepatoma cells with knockdown of mitochondrial aquaporin-8, Apoptosis 19 (2014) 851–859.
- [2] L. Izem, R.E. Morton, Possible role for intracellular cholesteryl ester transfer protein in adipocyte lipid metabolism and storage, J. Biol. Chem. 282 (2007) 21856–21865.
- [3] M. Sporstøl, G. Tapia, L. Malerød, S.A. Mousavi, T. Berg, Pregnane X receptor-agonists down-regulate hepatic ATP-binding cassette transporter A1 and scavenger receptor class B type I, Biochem. Biophys. Res. Commun. 331 (2005) 1533–1541.
- [4] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.L. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193 (1951) 265–275.
- [5] J. Böttger, K. Arnold, C. Thiel, C. Rennert, S. Aleithe, U. Hofmann, S. Vlaic, S. Sales, A. Shevchenko, M. Matz-Soja, RNAi in murine hepatocytes: the agony of choice—a study of the influence of lipid-based transfection reagents on hepatocyte metabolism, Arch. Toxicol. 89 (2015) 1579–1588.