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Abstract In this work, the dual-descriptor is studied in
matrix form f (2)(r, r′) and both coordinates condensed to
atoms, resulting in atomic and diatomic (or where applica-
ble, bond) condensed single values. This double partitioning
method of the dual-descriptor matrix is proposed within
the Hirshfeld-I atoms-in-molecule framework although it
is easily extended to other atoms-in-molecules methods.
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Diagonalizing the resulting atomic and bond dual-descriptor
matrices gives eigenvalues and eigenvectors describing the
reactivity of atoms and bonds. The dual-descriptor function
is the diagonal element of the underlying matrix. The extra
information contained in the atom and bond resolution is
highlighted and the effect of choosing either the fragment
of molecular response or response of molecular fragment
approach is quantified.
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Introduction

One of the essential tasks in chemistry is the analysis of
chemical observations and their classification to ultimately
be able to rationalize them in a model that even allows
predicting the outcome of future experiments. This quite
ambitious task has been met to admirable extent by intro-
ducing such classifications as acids and bases, hard and soft
substances, and many more. Over time, a vast toolbox of
concepts and quantities was introduced with many of these
developed either before the advent of quantum mechanics
or without relying on the latter theory. This has resulted in
a sort of gap between much of chemical theory and quan-
tum mechanics although clearly quantum mechanics can
give rise to much more and deeper insight in the underlying
mechanisms of chemical reactivity. Fortunately, some emi-
nent scientists have, over the years, picked up the challenge
of closing this gap. One of the leading persons in this, is
Robert G. Parr who is among the founding fathers of what is
now known as chemical density functional theory (often still
referred to as conceptual density functional theory, cDFT)
[1–3], and who was able to link many existing theories to
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the energy of a chemical system and its derivatives with
respect to its basic variables, including the number of elec-
trons and the external potential. This Taylor expansion of
the energy has already given rise to numerous new reactivity
descriptors or has allowed previously known key quantities
like electronegativity to be identified with some of these
derivatives.

In this work, we are interested in the dual-descriptor
introduced by Morell et al. [4, 5] as the difference between
the Fukui function for the addition of an electron minus that
for the removal of an electron, or alternatively as the func-
tional derivative of the hardness which in itself is the second
derivative of the energy with respect to the number of elec-
trons. As such, the dual-descriptor is a mixed third-order
derivative of the energy [6]:

f (2)(r)=

⎛
⎜⎜⎝

δ

((
∂2E

∂N2

)
v(r)

)

δv(r)

⎞
⎟⎟⎠

N

=
⎛
⎜⎝

∂2
(

δE
δv(r)

)
N

∂N2

⎞
⎟⎠

v(r)

(1)

In Eq. 1, f (2)(r) is the dual-descriptor evaluated at a point
r, E is the energy, N the number of electrons and v(r) the
external potential. Provided that the system has no degen-

erate states,
(

δE
δv(r)

)
N

corresponds to ρ (r), the electron

density function of the molecule. In case of degenerate
states, the density to be used derives from degenerate pertur-
bation theory [7–9]. Provided non-degenerate states, some
trivial manipulations reveal that the dual-descriptor is actu-
ally the N-derivative of the Fukui function f (r) [10–12]:
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The Fukui function indicates regions in a molecule that
exhibit higher reactivity with respect to reactions that
involve a change in the number of electrons in the molecule.
The Fukui function is not only of interest by itself but is also
an important function for generating many other chemical
reactivity concepts in cDFT [1, 2]. Equation 2 shows that
the Fukui function is an r-dependent function that describes
the change in the electron density at the point r upon a
change in the number of electrons in the molecule, under
the constraint that the external potential remains unaltered.
The electron density has slope discontinuities at the inte-
ger number of electrons and consequently, the left-side and
right-side derivatives are different. Hence, one needs to
consider two Fukui functions. The Fukui function for an
increase in the number of electrons will be denoted f +(r)

and for a decrease as f −(r). This way, one can express the
dual-descriptor also as:

f (2)(r) =
(

∂f (r)
∂N

)

v(r)
(3)

The main interest in the dual-descriptor stems from the
fact that it allows one to predict the nature of molecular
reactivity, i.e., electrophilic or nucleophilic with, provided
a graphical representation, also the regioselectivity [4, 5].
In practice, the working equation for the dual-descriptor
corresponds to:

f (2)(r) = f + (r) − f − (r) (4)

This is often approximated in a frozen molecular orbital
approximation as [4]:

f (2)(r) = ρLUMO (r) − ρHOMO (r) (5)

where ρLUMO(r) and ρHOMO(r) are the densities of
the frontier lowest unoccupied molecular orbital (LUMO)
and the highest occupied molecular orbital (HOMO) of
the molecule, respectively. This invokes a Koopmans-type
approximation which may be quite an approximation. A
different approach still relies on finite differences but con-
siders the entire electron density and so includes electronic
relaxation (but not geometric as we require constant external
potential).

f (2)(r) = ρN0+1 (r) − 2ρN0 (r) + ρN0−1 (r) (6)

where ρN0+1(r), ρN0(r), and ρN0−1(r) are the densities
in the molecule with N0 + 1, N0, and N0 − 1 electrons,
respectively.

In the present work, we examine in more detail the dual-
descriptor by considering three main issues from a matrix
formulation of this descriptor.

First, we consider the expression of the dual-descriptor
in matrix form:

f (2)(r, r′)=f +(r, r′)−f −(r, r′)
= ρN0+1(r, r′)−2ρN0(r, r

′)+ρN0−1(r, r′) (7)

where ρN0+1(r, r′), ρN0(r, r
′), and ρN0−1(r, r′) are the first

order reduced density matrices in the molecule with N0 +1,
N0, and N0−1 electrons, respectively. We then express these
in terms of an orthonormal basis, here the molecular orbitals
of the system with N0 electrons. Bultinck et al. [13, 14] and
later on Alcoba et al. [15–17] extended the Fukui function
to a Fukui matrix in the following way:

f (r, r′) =
(

∂ρ
(
r, r′)

∂N

)

v(r)

(8)

This Fukui matrix f (r, r′) has previously been shown to
lead to rich new insights into the properties of the Fukui
function and allows rationalizing the quality of a frozen
molecular orbital or Koopmans approximation to it [13, 14].



J Mol Model  (2017) 23:185 Page 3 of 10 185 

The Fukui function corresponds to the diagonal of the Fukui
matrix in the same way as the density function corresponds
to the diagonal of the first-order reduced density matrix. As
in what follows, we will often refer to idempotent density
matrices, we will mostly use spin-specific density matrices
and Fukui matrices, defined as

f σ (r, r′) =
(

∂ρσ
(
r, r′)

∂N

)

v(r)

(9)

where σ denotes the spin function σ ∈ {α, β}. The matrix
extension can straightforwardly also be introduced for the
dual-descriptor as has been previously done by Alcoba
et al. in both spin-free as well as spin-polarized versions
[15–17]. However, the analysis presented here goes more
into detail by application to a larger molecular set and anal-
ysis of the diagonal form of the dual-descriptor matrix.
This will reveal in a way beyond graphical comparison
whether the Koopmans approximation is a good approxi-
mation. Moreover, this analysis is performed over the entire
molecule whereas the work of Zielinski et al. [18] concludes
the lack of correlation between the Koopmans and finite dif-
ference based dual-descriptors on atom-condensed values.
Although their work is clearly interesting, our work pro-
vides more insight by being able to perform the analysis
prior to condensation. We also examine the spectrum of the
matrix eigenvalues to see whether some interesting features
may be found. In case of the Fukui matrix, we found that for
idempotent density matrices (as is the case for spin-specific
density matrices from single Slater determinant methods
and Kohn–Sham DFT with the approximate density matri-
ces) the Fukui matrix spectrum was especially interesting as
it showed why the frontier molecular orbital theory (FMOT)
works well at these levels but also why regions with nega-
tive Fukui functions are always possible and -indeed- likely
[13, 14]. When idempotency is lost, these special matrix
properties are lost to some extent. So, as the Fukui matrix
is also not idempotent, we also expect the dual-descriptor
matrix to have less special properties but it is of interest to
see to what extent they still hold approximately.

The second goal is to atom condense the dual-descriptor
matrix in both single-atom and diatomic (or where chemi-
cally applicable, bond) terms. This is reminiscent of recent
work by the present authors for the Fukui matrix where an
atom and bond condensation is carried out over both the r
and r′ coordinate [19]. Doing this for the dual-descriptor
matrix makes it different from the work of Zielinski et al.
[18] or e.g., Glossman-Mitnik [20] or Cao et al. [21] who
all atom condense the dual-descriptor function and therefore
cannot distinguish bond terms.

Third, we examine the effect of the actual position of the
atom condensing operator ŵA(r). As has been described in
detail by Bultinck et al. [22], for atoms in molecules (AIM)

methods that yield such operators with an N dependence,
the order of differentiation and condensation is important
as for such methods one cannot assume ∂ŵA(r)

∂N
= 0. When

introducing AIM-condensed Fukui functions for the first
time, Yang and Mortier [23] used the commutability of
parameter differentiation (finite-difference here) and inte-
gration over the AIM inherent in Mulliken’s use of Hilbert
space, making the condensation operators N-independent.
The present authors have examined the effect of using first
differentiation and then condensation (the so-called frag-
ment of the molecular response or FMR method) versus that
of first condensation and then differentiation (the response
of the molecular fragment or RMF method) for the Fukui
matrix to find that the effect is significant. Zielinski et al.
[18] mentioned the possible effect on dual-descriptor values
but restricted themselves to one single-method RMF (note
that they mention FMR but from the text one can derive
this is an error), among others because of the lack of soft-
ware required for the FMR method. The essential issue is
therefore whether one uses:

f
(2)
RMF,AB(r, r′) = f +

RMF,AB(r, r′) − f −
RMF,AB(r, r′) (10)

or

f
(2)
FMR,AB(r, r′) = f +

FMR,AB(r, r′) − f −
FMR,AB(r, r′) (11)

However, mathematically, one could even derive more alter-
natives if one starts from the second derivative expression
of the density and inserts the partitioning of the unity∑

A ŵA(r) = 1 in different places. The ones in Eqs. 10
and 11 are the most straightforward and if these already
show significant differences, the use and reliability of atom
condensation becomes questionable. Expressing the matri-
ces again in an orthonormal basis allows diagonalization
and therefore gives insight into the shape of the underlying
functions (the AB dual-descriptor orbitals) along with their
eigenvalues, shedding more light on the reactivity.

In what follows, the focus lies on the implementation and
proof of the properties of the above matrices and atom and
bond condensation. To that end, the relevant quantities are
computed for a test set of ethylene derivatives and resulting
(mathematical) properties discussed. As such, the chemical
significance is not the main topic of the present work and is
therefore not expanded upon to keep the focus of the work
on the three goals described.

Computational methods

In order to illustrate the newly introduced dual-descriptor
functions, matrices and their atom and bond counterparts,
B3LYP/6-31G* calculations were performed on the set of
ethylene derivatives shown in Fig. 1, recently used by
Gonzalez-Suarez et al. [24] and Bultinck et al. [25] to derive
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Fig. 1 Ethylene derivatives
considered in this work with
explicit indication of atoms
1, 2, and 3

atom- and bond-condensed Fukui functions and matrices
using the Hirshfeld-I AIM method (i.e., molecules 1–18
from Gonzalez-Suarez et al. [24]). The original idea of this
set of molecules was to examine the influence of the addi-
tion of certain electron-donating and electron-withdrawing
groups on the 1-2 bond-condensed Fukui function. Geom-
etry optimizations were carried out using the Cartesian
6-31G* basis set and all information required for the calcula-
tion of the Fukui matrices and hence dual-descriptor matri-
ces was extracted from the formatted checkpoint file from
Gaussian-03 [26]. Hirshfeld-I weight functions were com-
puted using atomic densities obtained at the same level of
theory. All required algebraic manipulations were described
previously by Bultinck et al. [13] with straightforward

extensions for the calculation of the dual-descriptor. For all
molecules and molecular ions, it is assumed that the num-
ber of α spin electrons is always larger than or equal to
the number of β spin electrons. In the following, we dis-
tinguish both α and β spin-blocks of the dual-descriptor
matrices. The weight functions wA (r) are expressed in
the basis of the molecular orbitals. Visualizations are done
using GaussView5 [27].

Results and discussion

For all molecules, first both the electron-addition and
electron-removal Fukui matrices have been computed using
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the expressions presented previously and yielding the data
reported by Oña et al. [19]. These matrices are then used
to compute the dual-descriptor matrices according to Eq. 7.
Before proceeding to the properties of the dual-descriptor
matrix, it is worth reiterating some properties [13, 14] of
the Fukui matrices as these will impact on the former. First
of all, the present level of theory, which corresponds to
Kohn-Sham DFT, results in idempotent spin-specific den-
sity matrices, meaning that the occupation numbers of the
spin orbitals are exactly zero or one. Admittedly, DFT does
not produce a density matrix so we use the common approx-
imation of using a density matrix based on the Kohn-Sham
orbitals in the same way as the (legitimate) calculation of
density matrices at the Hartree-Fock level of theory. The
special properties of differences of idempotent matrices
include the fact that eigenvalues can only be zero or one
or must appear in pairs +x and −x. It has previously been
shown that at both the Hartree-Fock and Kohn-Sham DFT
level, the Fukui matrix has one eigenvalue exactly equal to
one with all other eigenvectors being paired with an eigen-
value of +x and −x. The (necessary) presence of negative
eigenvalues immediately explains why negative Fukui func-
tions may exist and probably may be found in virtually any
molecule. One simply needs to identify a region where the
eigenvectors with negative eigenvalues outweigh the ones
with positive eigenvalues and there a negative Fukui func-
tion will be found. The second important remark is that with
the eigenvalue equal to 1, an eigenvector appears that has a
coefficient very close to 1 for the relevant frontier molecu-
lar orbital. Hence, for f +(r, r′) expressed in the molecular
orbital basis, one has a coefficient equal to 1 for the LUMO
in the eigenvector with eigenvalue 1. This explains why
FMOT works so well but the Fukui matrix revealed why
negative Fukui functions are nothing exceptional or pecu-
liar and why FMOT is not the complete story. At correlated
level, the unity eigenvalue disappears but there remains one
chief large eigenvalue compared to a large set of smaller
(positive and negative) eigenvalues.

These special properties of the Fukui matrices have an
impact on the dual-descriptor matrix. First of all, by the
presence of eigenvalues +x and −x (x �= 0, 1), the Fukui
matrices are not idempotent. This immediately entails that
we should expect a more complicated structure of the eigen-
system. Obviously, the trace of the matrix in an orthonormal
basis equals zero throughout but the presence of many
non-zero eigenvalues indicates that using a Koopmans type
approximation might be a rather poor choice. To shed more
light on this, we first discern two spin-specific different
dual-descriptors and the total dual-descriptor as:

f (2,α)(r, r′) = f (+,α)(r, r′) − f (−,α)(r, r′) (12)

f (2,β)(r, r′) = f (+,β)(r, r′) − f (−,β)(r, r′) (13)

f (2)(r, r′) = f (2,α)(r, r′) + f (2,β)(r, r′) (14)

The trace of f (2,α)(r, r′) obviously equals 1 and of
f (2,β)(r, r′) equals -1 as we always consider molecules and
ions where the α electrons are in the majority. The total
dual-descriptor matrix f (2)(r, r′) therefore has trace zero,
as expected. Taking as an example ethyene and f (2,α)(r, r′),
we find that the most positive eigenvalue equals one to
within 10−4. This is, however, not a universal feature as it
is rather exceptional among the molecular set considered.
In most molecules, the largest eigenvalue is slightly larger
than 1. The most negative eigenvalue for ethylene has a value
equal to −0.03879. In total there are 14 positive eigenval-
ues and 8 negative eigenvalues (eigenvalues between 10−4

and −10−4 excluded), leading to the fact that the dual-
descriptor can have any sign. For f (2,β)(r, r′) we find a
trace of exactly minus 1 with the most negative eigenvalue
equal to −1.00479 as one of the 8 negative eigenvalues.
For the total dual-descriptor matrix, so the sum of the α

and β parts, we find that -as expected- the trace equals
zero but the sign of the largest eigenvalue in magnitude
changes depending on the molecule. In only some of the
cases we find something that suggests approximate validity
of a Koopmans approximation, i.e. we find eigenvectors that
contain sufficiently large coefficients for specifically the
HOMO and the LUMO. Given the ease by which the dual-
descriptor matrix can be computed according to Eq. 7 and
subsequently diagonalized, we see little reason to still use a
FMOT approximation. Moreover, Eq. 7 remains valid at cor-
related levels of theory where no orbital energy diagram can
be obtained as easily as at the Hartree-Fock and formally
the Kohn-Sham DFT level. Once the eigenvectors of the
dual-descriptor matrix have been computed, another advan-
tage is that the most important eigenvector(s) (those with
the largest eigenvalues in magnitude) can be transformed
to a basis that allows them to be visualized using com-
mon programs thereby allowing a very simple graphical and
chemically interesting representation. Such visualizations
will be shown below for the atom and bond dual-descriptor
matrices.

Fig. 2 Labels of the C2H4 molecule
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The second goal of the present paper is to demonstrate
the possibility to obtain atomic and diatomic (or where
applicable, bond) dual-descriptor matrices by introducing a
weight function in both the r and r′ coordinate. We first
use the FMR approach using the weight functions from the
Hirshfeld-I method for the molecule with N0 electrons. This
entails that, based on earlier matrix partitioning studies for
electron density [28] and the Fukui function [19], we use the
following working expression:

f
(2)
FMR,AB(r, r′)= 1

2
(wA(r; N0)wB(r′; N0)

+wA(r′; N0)wB(r; N0))f
(2)(r, r′) (15)

f
(2)
FMR,AB(r, r′) = 1

2
(wA(r; N0)wB(r′; N0)

+wA(r′; N0)wB(r; N0))[ρN0+1(r, r′)

−2ρN0(r, r
′) + ρN0−1(r, r′)] (16)

where we explicitly indicated the N dependence of the
weight function as it occurs in the Hirshfeld-I AIM method
[29] (the same applies to Bader’s QTAIM method [30, 31]).
Note that the weight functions can also be expressed in the
same orthonormal basis as the density matrices, such that
f

(2)
FMR,AB(r, r′) can be expressed in the same orthonormal

basis of, in this case, the molecular orbitals. Equation 16
gives the result for the total dual-descriptor but the differ-
ent spin parts are obtained in analogous way. Note, however,
that the weights are always derived using Hirshfeld-I and
reflect the total density and hence are the same for comput-
ing f

(2)
FMR,AB(r, r′) or f

(2,α)
FMR,AB(r, r′) and f

(2,β)
FMR,AB(r, r′).

The matrices may be diagonalized to investigate their spec-
trum. Taking ethylene as an example (see Fig. 2 for atom
numbering), Tables 1 and 2 present the data obtained for
ethylene. Results for the other 17 compounds gathered in
Fig. 1 are reported as Supporting Information.

These tables clearly show that for every combination of
two atoms, one has both negative and positive eigenvalues.

Table 1 Eigenvalues and traces of f
(2,α)
FMR,AB(r, r′) dual matrices within the FMR framework for C2H4, calculated in the 6-31G* basis set on the

B3LYP level of theory using weights from the neutral molecule

Fragment

Eigenvalues
1 2 3 4 5 · · · 33 34 35 36 37 38 F(2,α)

FMR,AB

C1C1 −0.007 −0.004 −0.003 −0.003 0.000 · · · 0.001 0.003 0.006 0.014 0.018 0.312 0.338

C1C2 −0.262 −0.006 −0.006 −0.005 −0.004 · · · 0.003 0.006 0.007 0.008 0.008 0.349 0.095

C1H3 −0.037 −0.003 −0.001 0.000 0.000 · · · 0.000 0.000 0.001 0.001 0.003 0.046 0.009

C1H4 −0.013 −0.012 −0.001 −0.001 0.000 · · · 0.001 0.001 0.001 0.002 0.006 0.066 0.048

C1H5 −0.013 −0.012 −0.001 −0.001 0.000 · · · 0.001 0.001 0.001 0.002 0.006 0.066 0.048

C1H6 −0.037 −0.003 −0.001 0.000 0.000 · · · 0.000 0.000 0.001 0.001 0.003 0.046 0.009

C2C2 −0.007 −0.004 −0.003 −0.003 0.000 · · · 0.001 0.003 0.006 0.014 0.018 0.312 0.338

C2H3 −0.013 −0.012 −0.001 −0.001 0.000 · · · 0.001 0.001 0.001 0.002 0.006 0.066 0.048

C2H4 −0.037 −0.003 −0.001 0.000 0.000 · · · 0.000 0.000 0.001 0.001 0.003 0.046 0.009

C2H5 −0.037 −0.003 −0.001 0.000 0.000 · · · 0.000 0.000 0.001 0.001 0.003 0.046 0.009

C2H6 −0.013 −0.012 −0.001 −0.001 0.000 · · · 0.001 0.001 0.001 0.002 0.006 0.066 0.048

H3H3 −0.012 0.000 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.002 0.005 −0.005

H3H4 −0.004 −0.001 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.001 0.007 0.002

H3H5 −0.005 −0.001 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.001 0.006 0.002

H3H6 −0.002 −0.002 −0.001 0.000 0.000 · · · 0.000 0.000 0.000 0.001 0.002 0.009 0.007

H4H4 −0.012 0.000 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.002 0.005 −0.005

H4H5 −0.002 −0.002 −0.001 0.000 0.000 · · · 0.000 0.000 0.000 0.001 0.002 0.009 0.007

H4H6 −0.005 −0.001 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.001 0.006 0.002

H5H5 −0.012 0.000 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.002 0.005 −0.005

H5H6 −0.004 −0.001 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.001 0.007 0.002

H6H6 −0.012 0.000 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.002 0.005 −0.005∑
AB F(2,α)

FMR,AB 1.000

Eigenvalues are ordered from the lowest value to the highest
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Table 2 Eigenvalues and traces of the f
(2,β)
FMR,AB(r, r′) dual matrices for C2H4, calculated in the 6-31G* basis set on the B3LYP level of theory

using weights from the neutral molecule

Fragment

Eigenvalues
1 2 3 4 5 · · · 33 34 35 36 37 38 F(2,β)

FMR,AB

C1C1 −0.334 −0.018 −0.006 −0.004 0.000 · · · 0.001 0.001 0.001 0.003 0.003 0.007 −0.347

C1C2 −0.413 −0.008 −0.003 −0.002 −0.002 · · · 0.002 0.002 0.003 0.005 0.009 0.255 −0.154

C1H3 −0.032 −0.002 −0.001 −0.001 0.000 · · · 0.000 0.000 0.000 0.001 0.002 0.027 −0.005

C1H4 −0.047 −0.006 −0.004 −0.001 0.000 · · · 0.000 0.001 0.001 0.002 0.007 0.012 −0.036

C1H5 −0.047 −0.006 −0.004 −0.001 0.000 · · · 0.000 0.001 0.001 0.002 0.007 0.012 −0.036

C1H6 −0.032 −0.002 −0.001 −0.001 0.000 · · · 0.000 0.000 0.000 0.001 0.002 0.027 −0.005

C2C2 −0.334 −0.018 −0.006 −0.004 0.000 · · · 0.001 0.001 0.001 0.003 0.003 0.007 −0.347

C2H3 −0.047 −0.006 −0.004 −0.001 0.000 · · · 0.000 0.001 0.001 0.002 0.007 0.012 −0.036

C2H4 −0.032 −0.002 −0.001 −0.001 0.000 · · · 0.000 0.000 0.000 0.001 0.002 0.027 −0.005

C2H5 −0.032 −0.002 −0.001 −0.001 0.000 · · · 0.000 0.000 0.000 0.001 0.002 0.027 −0.005

C2H6 −0.047 −0.006 −0.004 −0.001 0.000 · · · 0.000 0.001 0.001 0.002 0.007 0.012 −0.036

H3H3 −0.003 −0.002 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.000 0.008 0.004

H3H4 −0.002 −0.001 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.001 0.003 0.000

H3H5 −0.002 −0.001 −0.001 0.000 0.000 · · · 0.000 0.000 0.000 0.001 0.001 0.003 0.000

H3H6 −0.006 −0.004 −0.001 0.000 0.000 · · · 0.000 0.000 0.000 0.001 0.001 0.006 −0.003

H4H4 −0.003 −0.002 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.000 0.008 0.004

H4H5 −0.006 −0.004 −0.001 0.000 0.000 · · · 0.000 0.000 0.000 0.001 0.001 0.006 −0.003

H4H6 −0.002 −0.001 −0.001 0.000 0.000 · · · 0.000 0.000 0.000 0.001 0.001 0.003 0.000

H5H5 −0.003 −0.002 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.000 0.008 0.004

H5H6 −0.002 −0.001 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.001 0.003 0.000

H6H6 −0.003 −0.002 0.000 0.000 0.000 · · · 0.000 0.000 0.000 0.000 0.000 0.008 0.004∑
AB F(2,β)

FMR,AB −1.000

Eigenvalues are ordered from the lowest value to the highest

Note that many of them are not shown as they are quasi zero
and hence of little interest. From these data AB condensed
dual-descriptor values may be computed by simply taking
the trace:

F(2)
FMR,AB =

∫
r=r′

f
(2)
FMR,AB(r, r′)dr (17)

and analogously for spin-specific parts. As required, the sum of
the traces F(2,α)

FMR,AB of the α spin dual-descriptor matrices

corresponds to 1 or to −1 for the sum of the traces F(2,β)
FMR,AB

of the β spin dual-descriptor matrices. Do note that obvi-
ously for each combination AB the eigenvectors differ from
other combinations as they stem from different matrices so
it is of no use to make a sum over the individual eigenval-
ues in these tables. For the trace, this is of no importance
as this is independent of the orthonormal basis used. As the
tables also show, the traces can have both signs. The total
dual matrix, the sum of the α and β parts, has trace zero

and may well attach larger values in magnitude to certain
combinations AB compared to its constituent parts. When
reporting data in tabular form we take into account that for
both the condensed dual function and dual-descriptor matri-
ces values we have F(2)

FMR,AB = F(2)
FMR,BA. The numerical

Table 3 Atom condensed dual functions F(2)
FMR,A using wA(r) from

the neutral molecule

Atom F(2)
FMR,A

C1 −0.023

C2 −0.023

H3 0.012

H4 0.012

H5 0.012

H6 0.012∑
A F(2)

FMR,A 0.000
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Fig. 3 The lowest and highest
eigenvalues with their
eigenvectors for the α and β AB

condensed dual-descriptor
matrices for AB = C1C2 in
molecules 1 (top row) and 15
(bottom row) of the set of
ethylene derivatives within the
FMR framework using wA(r)

from the neutral molecule, all
plotted for a 0.04 isovalue

data in the tables consistently report the data for (2 −
δAB)F(2)

FMR,AB where the symbol δAB means the Kronecker
delta. A single atom condensed dual-descriptor value is also
available by simple addition:

F(2)
FMR,A =

∑
B

F(2)
FMR,AB (18)

resulting in the data in Table 3 for ethylene for the total dual-
descriptor.

The single-atom condensed values in Table 3 are com-
puted using the FMR approach and hence are not directly
comparable to the data based on differences of atomic
charges. As the dual-descriptor matrices are expressed in an
orthonormal basis that is directly linked to basis functions,
the eigenvectors can be easily visualized using any common
orbital plotting tool. This can be done for either the total

dual-descriptor matrices or atom and bond condensed ones.
For instance, Fig. 3 shows the eigenvectors for the lowest
and highest eigenvalues for the α and β spin dual-descriptor
matrices for molecules 1 and 2 of the test set.

The individual eigenvectors can be compared to the fron-
tier molecular orbitals, as has been done in Figs. 4 and
5. Such figures may, however, be deceptive, as they seem
to indicate that FMOT is quite good. Still, one lacks all
other eigenvalues and eigenvectors, entailing the risk that
one may be led to make wrong assumptions about the
nature of the dual-descriptor. This is reminiscent of the
long-lasting discussion on the possibility of negative Fukui
functions, closed ultimately with the proof that the Fukui
matrix has negative eigenvalues. Again, given the ease with
which one can compute the dual-descriptor matrix, we opt to
always proceed that way, especially since exactly the same
manipulations can be done at the correlated level of theory.

Fig. 4 a The HOMO of C2H4 at the B3LYP/6-31G* level of theory,
b the eigenvector with eigenvalue close to –1 of the total dual matrix
and c and d the eigenvectors of the f

(2,β)
FMR,AB(r, r′) dual matrix with

the highest absolute eigenvalues of respectively the AB = C1C1 and

C1C2 atomic pairs, all plotted for a 0.04 isovalue. The eigenvalues
corresponding to the dual orbitals are −0.334 and −0.206 within the
FMR framework



J Mol Model  (2017) 23:185 Page 9 of 10 185 

Fig. 5 a The LUMO of C2H4 at the B3LYP/6-31G* level of the-
ory, b eigenvector with the highest eigenvalue close to 1 of the total
dual matrix and c and d the eigenvectors of the f

(2,α)
FMR,AB(r, r′) dual

matrix with the highest eigenvalues of respectively the AB = C1C1

and C1C2 atomic pairs, all plotted for a 0.04 isovalue. The eigenvalues
corresponding to the dual orbitals are 0.312 and 0.174 within the FMR
framework

Still, the plots may be informative when one is interested in
where specifically a reaction will occur.

A third issue discussed in the present paper concerns the
impact of going from the FMR to the RMF scenario. In
case of the RMF scenario, one needs to also deal with the
dependence of the weight wA(r) on the number of elec-
trons: ∂wA(r)

∂N
�= 0. This makes the expressions slightly

more complicated but, at least for Fukui functions, it is a
more commonly used approach, as then the Fukui function

Table 4 B3LYP/6-31G* Bond dual functions F(2)
FMR,AB between the

indicated atoms and the atom condensed dual function on atom 1
within the FMR framework for each molecule using wA(r) from the
neutral molecule

System F(2)
FMR,12 F(2)

FMR,23 F(2)
FMR,1

1 −0.059 0.011 −0.023

2 −0.006 0.021 0.051

3 0.006 0.031 0.081

4 −0.030 0.031 0.026

5 0.010 0.026 0.091

6 −0.011 0.028 0.061

7 −0.036 0.032 0.010

8 −0.028 0.019 0.028

9 −0.019 0.015 0.028

10 0.014 0.017 0.087

11 0.004 0.028 0.071

12 0.002 0.005 0.018

13 −0.025 0.002 −0.016

14 −0.042 0.008 −0.117

15 −0.036 0.005 −0.068

16 −0.016 −0.001 −0.029

17 −0.016 0.040 −0.007

18 −0.019 0.030 −0.036

corresponds to a simple difference in atomic charges. In
Tables 4 and 5, we compare bond condensed (between
atoms 1 and 2 plus between atoms 2 and 3) and the atom
condensed dual-descriptor on atom 1 for the entire set of
molecules. As the tables show, the difference between the
FMR and RMF results is not so large that it would likely
reverse conclusions on the reactivity of the atoms and bonds
in the molecules. A sign reversal only occurs for the bond
between atoms 1 and 2 in molecule 9.

Table 5 B3LYP/6-31G* Bond dual functions F(2)
RMF,AB between the

indicated atoms and the atom condensed dual function on atom 1
within the RMF framework for each molecule

System F(2)
RMF,12 F(2)

RMF,23 F(2)
RMF,1

1 −0.061 0.014 −0.040

2 −0.004 0.041 0.085

3 0.016 0.060 0.139

4 −0.058 0.022 0.148

5 0.025 0.059 0.145

6 −0.007 0.054 0.112

7 −0.028 0.033 −0.001

8 −0.006 0.031 −0.002

9 0.017 0.022 0.080

10 0.040 0.034 0.113

11 0.030 0.057 0.179

12 0.005 0.014 0.021

13 −0.016 0.013 −0.124

14 −0.039 0.033 −0.262

15 −0.026 -0.020 −0.211

16 −0.007 0.005 −0.156

17 −0.009 0.069 −0.086

18 −0.040 0.053 −0.069
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Conclusions

In this work, a new partitioning of the dual-descriptor
matrix has been proposed within the Hirshfeld-I frame-
work. Starting from the molecular Fukui matrices and using
a symmetrized product of weight functions for the atoms
in a molecule, one- and two-atom dual-descriptor matrices
have been obtained, giving rise to atom and bond condensed
matrices, respectively. The resulting matrices in terms of the
molecular orbitals are diagonalized, allowing much more
insight in the nature of the dual-descriptor while still allow-
ing the calculation of the usual position space and atom
condensed dual-descriptors. As part of this extra insight, the
eigenvectors can be easily plotted and inspected to evalu-
ate the reactivity of a molecule. Moreover, once the Fukui
matrices are available, the dual-descriptor matrix can be
computed very easily without having to rely on a fron-
tier molecular orbital approach. This eliminates the risk
of undesirable (and undetected) approximations and allows
the straightforward calculation of dual-descriptors at the
correlated level of theory.
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