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a b s t r a c t

In this paper, we develop a reduced form multivariate quantile model, using a directional
quantile framework. The proposed model is the solution to a collection of directional
quantile models for a fixed orthonormal basis, in which each component represents a
directional quantile that corresponds to a particular endogenous variable. The model thus
delivers a map from the space of exogenous variables (or the σ -field generated by the
information available at a particular time) and a unit ball whose dimension is given by
the number of endogenous variables, to the space of endogenous variables. The main
effect of interest is that of exogenous variables on the vector of endogenous variables,
which depends on a multivariate quantile index. An estimator is proposed, using quantile
regression time seriesmodels, andwe study its asymptotic properties. The estimator is then
applied to study the interdependence among countries in the European sovereign bonds
credit default swap market.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Lags occur in time series for several reasons, including price stickiness, psychological inertia, permanent vs. transitory
shocks, adjustment costs, and delays in implementing new technologies. Modeling dynamic behavior has been a concern in
econometrics, and constant-coefficient linear time-series models play a large role. Further, an important way to summarize
the dynamics of macroeconomic data is to make use of a vector autoregressive (VAR) model. The VAR approach provides
statistical tools for data description, forecasting, and structural inference to study rich dynamics in multivariate time-series
models.

Nevertheless, the use of a constant-coefficient model as representative of time-series models may not be adequate, as
these models ignore the effects that a succession of small and varied shocks may have on the structure of dynamic economic
models, particularly for highly aggregated data series.Moreover, thesemodels cannot appropriately account for the presence
of asymmetric dynamic responses. Of particular interest is the asymmetric business cycle dynamics of economic variables,
as the occurrence of asymmetries may call into question the usefulness of models with time invariant structures as means
of modeling such series.

Quantile regression (QR) is a statistical method for estimating models of conditional quantile functions. This method
offers a systematic strategy for examining how covariates influence the location, scale, and shape of the entire response
distribution, thereby exposing a variety of heterogeneity in response dynamics. For a given cumulative distribution function
FY of a univariate random variable Y , the univariate quantile function is well defined. In particular, the τ -quantile for

* Correspondence to: Universidad de San Andrés-CONICET, Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina.
E-mail address: gmontesrojas@udesa.edu.ar.

http://dx.doi.org/10.1016/j.jmva.2017.03.007
0047-259X/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmva.2017.03.007
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2017.03.007&domain=pdf
mailto:gmontesrojas@udesa.edu.ar
http://dx.doi.org/10.1016/j.jmva.2017.03.007


G. Montes-Rojas / Journal of Multivariate Analysis 158 (2017) 20–30 21

τ ∈ (0, 1) is defined as QY (τ ) = inf{y ∈ Y : τ ≤ FY (y)}, and if FY is continuous, then QY (τ ) = F−1
Y (τ ). In the multivariate

case, however, there is no unique definition of a multivariate quantile function.
There is a growing literature on the estimation of QR models for multivariate random variables. Hallin et al. [14]

and Paindaveine and Šiman [19,20] build on the definition of directional quantiles, whereby quantiles are equipped with
a directional vector. Distributional features are thus explored by considering different directional models; see also [9]
for related work. Wei [23] develops a bivariate quantile model, following the marginal-conditional structure of Ma and
Koenker [18]. White et al. [24] develop an autoregressive model of the quantiles themselves, extending the CAViaR model
of Engle and Manganelli [7] to the multivariate case. In related work, Han et al. [15] study quantile dependence among
time-series models. Carlier et al. [3] propose a vector QR (linear) model that produces a monotone map, the gradient of
a convex function. In a more general setup, Chernozhukov et al. [5] develop a concept of multivariate quantile based on
transportation maps between a distribution of interest with a domain in multivariate real numbers and a unit ball of the
same dimension. Finally, another approach is to use copula-based quantile models, as any multivariate distribution can be
decomposed into itsmarginals and a dependence function or copula; see, e.g., [1,12,13]; however, such an approach requires
imposing distributional assumptions.

The purpose of this paper is to generalize to the multivariate case the quantile autoregressive framework proposed by
Koenker and Xiao [16] and Galvao et al. [11]. We develop a reduced form vector directional quantile (VDQ) model based on
the multivariate directional quantiles of [14]. The definition of the VDQmodel is based on a system of univariate directional
quantiles, and, as such, it satisfies some of the monotonicity properties desired in a multivariate setting. We argue that this
definition is natural in time-series contexts for which we are interested in estimating a reduced form model.

The proposed VDQmodel is a solution to a collection of directional quantilemodels for a fixed orthonormal basis, inwhich
each component represents a directional quantile that corresponds to a particular endogenous variable. The model thus
delivers a map from the space of exogenous variables (or the σ -field generated by the information available at a particular
time) and the unit ball whose dimension is given by the number of endogenous variables to the space of endogenous
variables. The main effect of interest is that of exogenous variables on the endogenous variables vector, which depends
on multivariate quantile indexes.

We apply the VDQ estimator tomodel European sovereign bonds interdependence. In particular, we propose amultivari-
ate model for the sovereign bonds credit default swaps of Greece and Spain. We also study the effect of Euro-area monetary
variables on those countries’ sovereign bonds as a means to explore heterogeneity of monetary shocks.

The paper is organized as follows. Section 2 presents the theory of directional quantiles and the definition of the VDQ
model. Section 3 provides the development of the case of a bivariate model. An investigation of its monotonicity properties
is then given in Section 4. Section 5 describes the asymptotic theory. Section 6 presents an application of the VDQ to the
European sovereign risk credit default swap market. Section 7 concludes.

2. Model

Consider an m-dimensional process Yt = (Y1t , . . . , Ymt )⊤ and assume that for all t ∈ {0, 1, . . .}, Yt ∈ Y ⊆ Rm. Further,
consider a k × 1 vector of covariates Xt ∈ X ⊆ Rk. Our goal is to develop a model for the conditional random variable Yt |Xt .
In particular, we seek to define and estimate the multivariate conditional quantile function of Yt |Xt .

Of particular interest is the case of the covariates generated by the σ -field given by (Ys : s < t) and all other information
available at time t . One then deals with a vector autoregressive quantile model. For an autoregressive model of order p,
Xt = (Y⊤

t−1, . . . ,Y
⊤
t−p)

⊤ and k = mp, or, if we consider d exogenous covariates Zt , then Xt = (Y⊤

t−1, . . . ,Y
⊤
t−p, Z⊤

t ) ∈ Z ⊆ Rd

and k = mp + d.
Let the vector τ = (τ1, . . . , τm) be an index of the Rm space, which is an element of the open unit ball in Rm (deprived

of the origin) T m
= {z ∈ Rm

: 0 < ∥z∥ < 1}, where ∥ · ∥ denotes the Euclidean norm. Our interest lies in defining and
estimating

QYt |Xt (τ|Xt ) = B(τ)Xt + A(τ), (1)

where Q is an m × 1 vector, which corresponds to the multivariate quantiles of the m random variables, B(τ) =

(B1(τ), . . . ,Bm(τ))⊤ is an m × k matrix of coefficients with Bj(τ) for each j ∈ {1, . . . ,m}, the corresponding k × 1 vector of
coefficients of the jth element in Y , andA(τ) is anm×1 vector of coefficients. Thus,Q is amapX ×T m

↦→ Y and corresponds
to our proposed definition of multivariate quantiles, the VDQs.

Our definition builds on the work of Hallin et al. [14], who propose to analyze the distributional features of multivariate
response variables using the directional quantiles notion of [4,17,23] and others. Quantiles are analyzed in terms of a quantile
magnitude and a direction. The vector τ factorizes into τ = τv, where τ = ∥τ∥ ∈ (0, 1) and v ∈ {z ∈ Rm

: ∥z∥ = 1}. Then, τ
represents a scalar quantile index, and v is anm× 1 directional vector. We define Γv as anm× (m− 1)-dimensional matrix,
such that (v,Γv) forms an orthonormal basis. Note that Γv is not unique but, rather, anym× (m− 1) matrix whose columns
are orthogonal to v and to each other.

Following [14], we define the directional regression quantiles as the directional hyperplanes

π(τ ,v) =
{
(x⊤, y⊤)⊤ ∈ Rk+m

: v⊤y = c(τ , v,Γv)⊤Γ⊤

v y + b(τ , v,Γv)⊤x + a(τ , v)
}
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such that{
c(τ , v,Γv)⊤, b(τ , v,Γv)⊤, a(τ , v)

}⊤
= argmin

(c⊤,b⊤,a)∈Rk+m
E
{
ρτ (v⊤Yt − c⊤Γ⊤

v Yt − b⊤Xt − a)
}
,

where ρτ (z) = |z| + (2τ − 1)z is the QR (univariate) check function. In this case, a is a scalar, b is a k × 1 vector, and c
is an (m − 1) × 1 vector. Note that, while a depends on τ and v, c and b depend on the triplet (τ , v,Γv); see [14], p. 639.
Note, however, that, for fixed (v,Γv), the directional quantiles are univariate QR models. That is, for fixed v, v⊤Yt is a scalar.
Then, for fixed (v,Γv), this representation implicitly defines a conditional quantile model of the response variable v⊤Yt ,
conditional onWΓv

t =
{
(Γ⊤

v Yt )⊤,X⊤
t

}⊤, i.e.,

Qv⊤Yt |W
Γv
t

(τ |WΓv
t ) = c(v,Γv )(τ )

⊤Γ⊤

v Yt + b(v,Γv )(τ )
⊤Xt + av(τ ). (2)

Our objective is to estimate Eq. (1), using a systemof equations given bydirectional quantiles as described above.We fix an
orthonormal basis Vm

= {v1, . . . , vm} and define the corresponding orthogonal partitions (vj,Γvj ) indexed by j ∈ {1, . . . ,m}.
For further reference, we use the −j notation to denote a vector or matrix that excludes the jth column or row. Moreover,
we define v−j = Γvj . In particular, we let {vj}mj=1 be column vectors with 1 in the jth component and 0 otherwise, while
{v−j}

m
j=1 are m × (m − 1) matrices that exclude the jth column from Vm. Then, we have, for each j, that v⊤

j Yt = Yjt and
v⊤

−jYt = Y−jt = (Y1t , . . . , Yj−1t , Yj+1t , . . . , Ymt )⊤.
The directional quantiles are key components in our definition. For the fixed orthonormal basis Vm, the objects in Eq. (2)

are of the form QYjt |W
j
t
(τj|W

j
t ) with j ∈ {1, . . . ,m} andW j

t =
(
Y⊤

−jt ,X
⊤
t

)⊤, and correspond to the τj-quantile of Yjt conditional
onY−jt , the contemporaneous variables of the otherm−1 elements inYt , and the lags and exogenous variables inXt .We then
solve for all j simultaneously at particular quantile indexes given by the vector τ. That is, the definition of the VDQ model
requires us to compute the τj-quantile of Yjt conditional on the other −j components evaluated in the given τ−j quantiles,
which, in turn, depend on the value of the τj-quantile of the jth component. Thus, we need to simultaneously solve a system
of equations, such that the τ quantiles are obtained.

We then define the VDQ as Q (τ, xt ) = (Q1(τ, xt ), . . . ,Qm(τ, xt ))⊤, for Xt = xt , where⎧⎪⎪⎨⎪⎪⎩
Q1(τ, xt ) = QY1t |Y−1t ,Xt {τ1|Y−1t = Q−1(τ, xt ),Xt = xt}

... =
...

Qm(τ, xt ) = QYmt |Y−mt ,Xt {τm|Y−mt = Q−m(τ, xt ),Xt = xt},
(3)

with Q−j(τ, xt ) = (Q1(τ, xt ), . . . ,Qj−1(τ, xt ),Qj+1(τ, xt ), . . . ,Qm(τ, xt ))⊤, i.e., leaving the jth component out.
Then, assuming linear conditional directional quantile functions, as in Eq. (2), we define the reduced form VDQmodel of

them-dimensional process Yt |Xt in the following way:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q1(τ, xt ) = c1(τ1)⊤Q−1(τ, xt ) + b1(τ1)⊤xt + a1(τ1)

... =
...

Qm(τ, xt ) = cm(τm)⊤Q−m(τ, xt ) + bm(τm)⊤xt + am(τm),
(4)

where {cj(τj)}mj=1 and {bj(τj)}mj=1 are vectors of dimension (m − 1) × 1 and k × 1, respectively, and {aj(τj)}mj=1 are scalars.
The following definition provides a summary of the object of interest.

Definition 1 (Vector Directional Quantile (VDQ)). We define the following matrices based on the coefficients of Eq. (4):
C (τ) = (C1(τ1), . . . , Cm(τm))⊤ is anm×mmatrix in which them× 1 vectors {Cj(τj)}mj=1 contain all the elements of them− 1
vector of coefficients {cj(τj)}mj=1 augmented with a 0 in the corresponding jth component, b(τ) = (b1(τ1), . . . , bm(τm))⊤ is an
m × k matrix, and a(τ) = (a1(τ1), . . . , am(τm))⊤ is an m × 1 vector. Then

Q (τ, xt ) = {Im − C (τ)}−1
{b(τ)xt + a(τ)} = B(τ)xt + A(τ), (5)

where Im is the m-dimensional identity matrix, B(τ) = {Im − C (τ)}−1b(τ) and A(τ) = {Im − C (τ)}−1a(τ).

The following assumption guarantees that there is a solution to the system of equations defined above.

Assumption 1. For all τ ∈ (0, 1)m, Im − C (τ) is non-singular.

Note that the proposed VDQ model is a fixed point of a system of equations given by (3). In this case, the model requires
the running ofm separate QRmodels of each of them elements in Y with respect to the otherm− 1 components and X , and
then solving for a system of equations ofm unknowns, given by Q (τ, xt ), andm equations, each from a different directional
quantile model. If linearity of the directional quantiles is assumed, the solution simplifies to that in Definition 1, in which
case them equations are given by (4).
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3. Intuition for our proposed estimator: Bivariate model

Tomotivate our proposedmethodology, consider the following bivariate example. Let Yt = (Y1t , Y2t )⊤ be the endogenous
variables and let Xt be an exogenous scalar random variable. Consider the following bivariate process

Y1t = γ1Y2t + β1Xt + α1 + ϵ1t , ϵ1t ∼ iid(0, σ 2
1t ),

Y2t = γ2Y1t + β2Xt + α2 + ϵ2t , ϵ2t ∼ iid(0, σ 2
2t ). (6)

The parameters (γ1, γ2, β1, β2, α1, α2) are the so-called structural parameters. These cannot be identified unless ad-
ditional assumptions are made, as in structural VAR models. The following calculations show that, by simultaneously
considering the conditional models Y1|(Y2, X) and Y2|(Y1, X), we can solve for the reduced form in a standard mean VAR,
i.e., E(Yt |Xt ). This is, in turn, the logic behind our VDQ definition, indexed by a pair τ = (τ1, τ2) ∈ (0, 1)2, which describes
the bivariate distribution of Yt conditional on Xt , which is, in fact, a reduced form model. The conditional expectations
E(Y1t |Xt = x), E(Y2t |Xt = x), i.e., the reduced form mean VAR model, can be identified and consistently estimated by using
the model

E(Y1t |Xt = x) =
β1 + γ1β2

1 − γ1γ2
x +

α1 + γ1α2

1 − γ1γ2
, E(Y2t |Xt = x) =

β2 + γ2β1

1 − γ1γ2
x +

α2 + γ2α1

1 − γ1γ2
.

Note that this can be found by solving a system of equations, using

E (Y1t |Xt = x) = γ1E(Y2t |Xt = x) + β1x + α1 + E(ϵ1t |Xt = x),
E (Y2t |Xt = x) = γ2E(Y1t |Xt = x) + β1x + α2 + E(ϵ2t |Xt = x),

where E(ϵj|Xt = x) = E(ϵj) = 0 for j ∈ {1, 2}. In other words, the reduced form can be obtained by evaluating the
corresponding conditional expectations (where we are conditioning on X only) and solving.

Consider now the conditional form model

E(Y1t |Y2t , Xt ) = c1Y2t + b1Xt + a1, E(Y2t |Y1t , Xt ) = c2Y1t + b2Xt + a2,

and note that, by adding the endogenous variables, i.e., Y−j, to the model above, it produces another model for which, in
general, aj ̸= αj, bj ̸= βj, cj ̸= γj, j ∈ {1, 2}. The conditional model could thus be interpreted as a biased structural system,
provided that (γ1, γ2, β1, β2, α1, α2) may not be recovered. This model could be interpreted in terms of the directional
models defined in the previous section, where we set v1 = (1, 0)⊤ and v2 = (0, 1)⊤, such that Γv1 = v−1 = (0, 1)⊤

and Γv2 = v−2 = (1, 0)⊤. Then, the orthonormal basis is V2
=

(1 0
0 1

)
. We evaluate Y on a given direction vj, j ∈ {1, 2}, by

considering the model v⊤

j Y = Yj, conditional on v⊤

−jY = Y3−j and X .
A simple result is that the reduced form model can be obtained, as an unnecessary detour, using the conditional form.

That is, for j ∈ {1, 2},

aj + cja3−j

1 − cjc3−j
=

αj + γjα3−j

1 − γjγ3−j
,

bj + cjb3−j

1 − cjc3−j
=

βj + γjβ3−j

1 − γjγ3−j
.

We consider whether this result could be generalized to quantiles. As a note of caution, we explain that, contrary to the
expectation operator, quantiles are not linear operators. We do, however, consider a definition of multivariate quantiles
that is built upon conditional forms. Consider the estimation of the conditional QR models

q1(τ1, y2, x) = QY1|(Y2,X)(τ1|y2, x) = c1(τ1)y2 + b1(τ1)x + a1(τ1),
q2(τ2, y1, x) = QY2|(Y1,X)(τ2|y1, x) = c2(τ2)y1 + b2(τ2)x + a2(τ2),

where

QYj|(Y3−j,X)(τj|y3−j, x) = inf{yj ∈ Yj : τj ≤ FYj|(Y3−j,X)(yj|y3−j, x)},

where FYj|(Y3−j,X)(yj|y3−j, x) is the conditional distribution function of Yj conditional on (Y3−j, X), for j ∈ {1, 2}, and τ =

(τ1, τ2) ∈ (0, 1)2. This corresponds to the directional quantiles for the fixed orthonormal basis V2 defined above.
Each equation is seen as a particular directional quantile, as in [14]. As such, they provide useful information about the

joint distribution of (Y1, Y2)⊤. However, the parameters {cj(τj), bj(τj), aj(τj)}, j ∈ {1, 2}, do not have a structural interpretation,
and additional exclusion restrictions are needed to identify the corresponding structural parameters; see [6,18]. Neverthe-
less, they are valid models when the conditional quantiles are linear, and they serve our purpose of estimating a reduced
form multivariate model.

We now set the system of equations to solve for Q (τ, x) = (Q1(τ, x),Q2(τ, x))⊤, defined as

Q1(τ, x) = Q1 [τ1, y2 = q2{τ2,Q1(τ, x), x}, x] = c1(τ1)Q2(τ, x) + b1(τ1)x + a1(τ1),
Q2(τ, x) = Q2 [τ2, y1 = q1{τ1,Q2(τ, x), x}, x] = c2(τ2)Q1(τ, x) + b2(τ2)x + a2(τ2).
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Fig. 1. Bivariate Example 1. Notes: Data generating process: (Y1t , Y2t ) = (γ1Y2t +β1Xt +α1+ϵ1t , γ2Y1t +β2Xt +α2+ϵ2t ), ϵjt ∼ iid N (0, 1), Xt ∼ iid U(0, 10)
for t ∈ {1, . . . , T }, αj = βj = 1 and γj = 0.5, for j ∈ {1, 2}, T = 10,000. Left panel: The white surface is Q̂ VDQ

1 {(τ1, τ2), x = 5} = Â1(τ1, τ2) + B̂1(τ1, τ2) × 5,
the estimated bivariate VDQ for Y1 evaluated at x = 5, and the gray surface is Q̂ QR

1 (τ1, x = 5) = α̂(τ1) + β̂1(τ1) × 5, the predicted τ1-quantile of a QR of Y1

on X evaluated at x = 5. Right panel: The white surface is B̂1(τ1, τ2), and the gray surface is β̂1(τ1).

The solution is thus

Q1(τ, x) =
b1(τ1) + c1(τ1)b2(τ2)

1 − c1(τ1)c2(τ2)
x +

a1(τ1) + c1(τ1)a2(τ2)
1 − c1(τ1)c2(τ2)

= B1(τ)x + A1(τ),

Q2(τ, x) =
b2(τ2) + c2(τ2)b1(τ1)

1 − c1(τ1)c2(τ2)
x +

a2(τ2) + c2(τ2)a1(τ1)
1 − c1(τ1)c2(τ2)

= B2(τ)x + A2(τ),

where, for j ∈ {1, 2},

Bj(τ) =
bj(τj) + cj(τj)b3−j(τ3−j)

1 − c1(τ1)c2(τ2)
, Aj(τ) =

aj(τj) + cj(τj)a3−j(τ3−j)
1 − c1(τ1)c2(τ2)

.

Then, by assuming linearity of the conditional (directional) quantile models, the above solution is valid. Our definition of
VDQ for m = 2 is thus given by Q1(τ, x) and Q2(τ, x). Note that we are, in fact, estimating a reduced form model, as we are
modeling Yt |Xt , as in Eq. (1).

To illustrate the VDQ model, we implement two simulations of the bivariate example given by the data-generating
process (6) above. Let ϵjt ∼ iid N (0, σ 2

jt ), Xt ∼ iid U(0, 10) for all t ∈ {1, . . . , T }, and set αj = βj = 1 and γj = 0.5, for
j = 1, 2. Example 1 imposes homoscedastic innovations, with σ 2

jt = 1 for all t and j ∈ {1, 2}. Example 2 has heteroscedastic
innovations,withσ 2

jt = (1+0.5Xt )2 for all t and j ∈ {1, 2}.We consider randomsamples of size T = 10,000.We then compute
the VDQ estimator for (τ1, τ2) ∈ (0.05, . . . , 0.95)2, described in Section 5, and compare it with univariate standard QR.

Figs. 1 (left panel) and 2 (left panel) plot, for Examples 1 and 2, respectively,

Q̂ VDQ
1 {(τ1, τ2), x = 5} = B̂1(τ1, τ2) × 5 + Â1(τ1, τ2),

the estimated bivariate VDQ for Y1 evaluated at x = 5, and

Q̂ QR
1 (τ1, x = 5) = β̂1(τ1) × 5 + α̂(τ1),

the predicted τ1-quantile of a QR of Y1 on X evaluated at x = 5, both as a function of (τ1, τ2). Figs. 1 (right panel) and 2 (right
panel) plot, for Examples 1 and 2, respectively, B̂1(τ1, τ2), the estimated VDQ coefficients for the effect of X on Y1, and β̂1(τ1),
the estimated QR coefficient for the effect of X on Y1, also as a function of (τ1, τ2). Note that, by construction, Q̂ QR

1 (τ1, x = 5)
and β̂1(τ1) do not vary with τ2.

In both cases, the VDQmodel has a larger variation than does the univariate model across τ1 and τ2. This determines that
greater flexibility can be obtained by considering a bivariate VDQ model rather than the standard univariate model. Note,
however, that there are differences between the homoscedastic and heteroscedastic examples in terms of the estimated
effects of X on Y1. In the former model, the estimated slope coefficients, B̂1(τ1, τ2) and β̂1(τ1) are close to 2 for all τ1 and τ2.
In the latter model, B̂1(τ1, τ2) varies across τ1 and τ2, while β̂1(τ1) varies across τ1, but B̂1(τ1, τ2) offers more variation than
β̂1(τ1).
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Fig. 2. Bivariate Example 2. Notes: Data generating process: (Y1t , Y2t ) = (γ1Y2t + β1Xt + α1 + ϵ1t , γ2Y1t + β2Xt + α2 + ϵ2t ), ϵjt ∼ iid N {0, (1 + 0.5Xt )},
Xt ∼ iid U(0, 10) for t ∈ {1, . . . , T }, αj = βj = 1 and γj = 0.5, for j ∈ {1, 2}, T = 10,000. Left panel: The white surface is Q̂ VDQ

1 {(τ1, τ2), x = 5} =

Â1(τ1, τ2)+ B̂(τ1, τ2)× 5, the estimated bivariate VDQ for Y1 evaluated at x = 5, and the gray surface is Q̂ QR
1 (τ1, x = 5) = α̂(τ1)+ β̂1(τ1)× 5, the predicted

τ1-quantile of a QR of Y1 on X evaluated at x = 5. Right panel: The white surface is B̂(τ1, τ2), and the gray surface is β̂1(τ1).

4. Monotonicity properties

This section concerns the requirements to satisfy non-decreasing monotonicity in the VDQ model. Let Π (τ, x) =

b(τ)x+ a(τ) andΛ(τ) = {Im − C (τ)}−1. Following [3], monotonicity in multivariate quantile models is defined with respect
to τ by the condition

∀τ,τ′∈(0,1)m ∀x∈Rk
{
Λ(τ)Π (τ, x) − Λ(τ ′)Π (τ ′, x)

}⊤(τ − τ ′) ≥ 0. (7)

This can be written in two terms as

∀τ,τ′∈(0,1)m ∀x∈Rk
{
Π (τ, x) − Π (τ ′, x)

}⊤
Λ(τ)⊤(τ − τ ′) + Π (τ ′, x)⊤

{
Λ(τ) − Λ(τ ′)

}⊤(τ − τ ′) ≥ 0.

Note that, because Π (τ, x) is obtained separately from each equation, it depends only on the corresponding τj-quantile
for each j row ofΠ (τ, x). This is, however, only one component in the quantile system, and it excludes the contemporaneous
interdependence of the Y s, i.e., it does not take into consideration the {cj(τj)}mj=1 coefficients. If Λ(τ) = Im, i.e., there is no
contemporaneous interdependence, and cj(τj) = 0m−1 for all j, then the model satisfies monotonicity by definition of the
univariate quantile models, as{

Π (τ, x) − Π (τ ′, x)
}⊤(τ − τ ′) =

m∑
j=1

{bj(τj)⊤x + aj(τj) − bj(τ ′

j )
⊤x − aj(τ ′

j )}(τj − τ ′

j )

=

m∑
j=1

{QYj|(Y−j,X)(τj|Y−j,X = x) − QYj|(Y−j,X)(τ ′

j |Y−j,X = x)}(τj − τ ′

j ) ≥ 0.

In general, we impose the following assumption:

Assumption 2. For all τ, τ ′
∈ (0, 1)m, x ∈ Rk,

{
Π (τ, x) − Π (τ ′, x)

}⊤(τ − τ ′) ≥ 0.

Assumption 2 determines that for each j ∈ {1, . . . ,m}, the directional quantile model QYjt |Y−jt ,Xt (τ |Y−jt ,Xt ) satisfies
monotonicity in the last components, i.e., bj(τ )⊤Xt + aj(τ ), for all possible values of the first component, i.e., cj(τ )⊤Y−jt .

If Λ(τ) = Λ for all τ ∈ (0, 1)m, i.e., a constant matrix that does not depend on τ, monotonicity depends on the first term{
Π (τ, x) − Π (τ ′, x)

}⊤
Λ(τ)⊤(τ − τ ′). Assumption 1 determines that C (τ ) is a convergent matrix. A mild refinement, such as

Im − C (τ ) as an M-matrix, i.e., C (τ ) ≥ 0, determines that Λ(τ ) is a positive matrix. As such, if each element in τ − τ ′ has the
same sign, then monotonicity is satisfied.

For a more general case, we consider the following assumption:

Assumption 3.

(i) For all τ ∈ (0, 1)m, let Λ(τ) = {Im − C (τ)}−1
∈ L, where L is the class of two-way semi-monotone matrices, such that

for all λ1, λ2 ∈ Rm, λ⊤

1 λ2 ≥ 0 implies λ⊤

1 Λ
⊤λ2 ≥ 0 for all Λ ∈ L.
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Fig. 3. Greek debt/GDP and deficit/GDP effects on 10-year CDS, VDQ coefficients.

(ii) For all τ, τ ′
∈ (0, 1)m, x ∈ Rk, Π (τ ′, x)⊤

{
Λ(τ) − Λ(τ ′)

}⊤(τ − τ ′) ≥ 0.

Assumption 3(i) implies thatΛ(τ) does not change the sign of
{
Π (τ, x) − Π (τ ′, x)

}⊤(τ−τ ′), which is assumed to be non-
negative by Assumption 2. Intuitively, this condition is satisfied if the amount of interdependence among the Yt components
is small or cj(τj) is small, such that the model is, indeed, driven by Xt only. Assumption 3(ii) determines that Λ(τ) satisfies a
monotonicity property for all possible values of Π (τ, x).

5. Asymptotic properties

For each element of Yt , i.e., Yjt with j ∈ {1, . . . ,m}, and conditioning setW j
t =

(
Y⊤

−jt ,X
⊤
t

)⊤ defined above, let Fjt and fjt be
the distribution and density functions, respectively, of Yjt conditional onW j

t . Then, we canwrite the τ th conditional quantile
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Fig. 4. Spanish debt/GDP and deficit/GDP effects on 10-year CDS, VDQ coefficients.

function of Yjt , conditional onW j
t , as

QYjt |W
j
t
(τ |W j

t ) = cj(τ )⊤Y−jt + bj(τ )⊤Xt + aj(τ ). (8)

Galvao et al. [10,11] consider the estimation of θj(τ ) = (cj(τ )⊤, bj(τ )⊤, aj(τ ))⊤ and the regularity conditions to achieve
uniform consistency and asymptotic normality in time-series models.

For a given sample {(yt , xt )}Tt=1, let the QR estimator be

θ̂j(τ ) = {ĉj(τ )⊤, b̂j(τ )⊤, âj(τ )}⊤ = argmin
(c⊤,b⊤,a)∈Rk+m

T∑
t=1

{ρτ (yjt − c⊤y−jt − b⊤xt − a)}.

The following assumptions provide sufficient conditions for consistency and asymptotic normality of θ̂j(τ ) for all τ ∈

(0, 1) and extend the directional quantile model of [14] to the dependent time-series framework.
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Fig. 5. ECB rate and M3 growth effects on 10-year CDS, VDQ coefficients.

Assumption 4.

(i) The sequence (Yt ,Xt )Tt=1 is strictly stationary, ergodic, andρ-mixing,withρ-mixing coefficients’ satisfying
∑

∞

i−1ρ
1/2
i <

∞, with distribution F that is absolutely continuous with respect to the Lebesgue measure with supp(F ) ⊂ (Y,X ) ⊂

Rm+k, where (Y,X ) is compact. Further, we assume that F admits a density function that is continuous and non-zero
over (Y,X ).

(ii) E(∥(Yt ,Xt )∥2+ϵ) < ∞ with ϵ > 0, ∥ · ∥ the Euclidean norm, and max(Yt ,Xt )∥(Yt ,Xt )∥ = O(
√
T ).

Assumption 5. For all τ ∈ T and j ∈ {1, . . . ,m}, T a compact set in (0, 1), the following hold true.

(i) There exists a unique

θj(τ ) = (cj(τ )⊤, bj(τ )⊤, aj(τ ))⊤ = argmin
(c⊤,b⊤,a)∈Rk+m

E{ρτ (Yjt − c⊤Y−jt − b⊤Xt − a)} ∈ Θ,

where Θ is a compact set in Rk+m.
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(ii) Let Ωj0 = E(W j
tW

j⊤
t ) and Ωj1 = E[fjt{F−1

jt (τ )}W j
tW

j⊤
t ]. Then the matrix Σj(τ ) = Ωj1(τ )−1Ωj0Ωj1(τ )−1 exists and is

non-singular.

The following lemma summarizes the asymptotic distribution of the univariate directional quantile coefficients, θ̂j(τ ) for
all τ ∈ (0, 1).

Lemma 1. Under Assumptions 4 and 5, the limiting distribution of the QR estimators satisfies for τ ∈ T , T a compact set in (0, 1),
j ∈ {1, . . . ,m},

Σj(τ )−1/2
√
T {θ̂j(τ ) − θj(τ )} ⇝ Bk+m(τ ),

as T → ∞, where Bk+m(τ ) represents a (k + m)-dimensional Brownian Bridge.

Proof. The result follows from an application of the quantile autoregressive model of [10]. □

The VDQ model is constructed after all the directional quantiles are estimated. In particular, (B̂(τ), Â(τ)) is a function of
{θ̂j(τj)}mj=1, as given by Definition 1. Assumption 1 guarantees that the continuous mapping theorem can be applied to obtain
consistent estimates of the VDQ model parameters.

6. Empirical application

Weapply theVDQestimator tomodel sovereign bonds interdependence among European countries. A credit default swap
(CDS) is a contract inwhich the buyer of the CDSmakes a series of premiumpayments to the seller and, in exchange, receives a
payoff if a bond (or contract) goes into default. A CDS is a directmeasure of the default risk but not of the probability of default,
as the price of a CDS depends both on the probability of default and on the expected recovery value of the defaulted bond. The
standard specification adopted for sovereign bonds assumes a persistent process that reverts toward a time-varying mean
determined by country-specific factors, namely, fiscal and growth fundamentals, and common factors, measuring market
appetite for risk; see [8].

Favero [8] proposes a global VAR specification [21,22] to model CDS interdependence. Let Yjt be the natural logarithm of
the CDS index for country j, and let Yjt − YGERt denote the CDS spread with respect to Germany’s CDS. Germany (GER) was
perceived as a ‘‘safe-haven’’ in international financial markets after the 2008–2009 financial crisis [2]. Following Favero [8],
we consider a model for ∆(Yjt − YGERt ) as a function of Yjt−1 − YGERt−1 and a set of covariates Xt . These covariates are given
by fiscal and growth fundamentals denoted by bjt , debt/GDP (in %), and djt , deficit/GDP (in %), respectively, together with
(Baat−1 − Aaat−1), a global risk aversion measure.

We also consider two monetary variables of interest, namely, the Euro-M3 annual growth rate (in %), m3t , and the
European Central Bank’s (ECB) refinancing rate (in %), ecbt , to evaluate the effect of aggregate European monetary shocks.

Data on daily CDS with maturities between 1 and 10 years are provided by Bloomberg and S&P Capital-IQ from 2006
to 2014. In particular, we consider the monthly mean of 10-years CDS bonds. Data on European countries, Euro-M3 annual
growth rate, and the ECB rate are obtained from Eurostat. Finally, the Baa-Aaa spread variable is a US corporate long-term
risk-aversion measure, computed on the basis of the data made available in the FRED database of the Federal Reserve of St.
Louis.

In terms of the VDQmodel, for each country j, the τj directional quantile shows the CDS QRmodel conditional on other−j
countries’ performance and Xt . The VDQ model allows for different quantile configurations of all countries taken together.
Thus, for instance, a certain covariate of interest may have a different effect on each country CDS level, depending on its
specific quantile (i.e., τj) and on other countries’ quantiles (i.e., τ−j). In our case, some European countries may be key
predictors of other countries’ market valuation, and, as such, parameter heterogeneity needs to be analyzed using its own
and other countries’ quantile indexes together.

We estimate a bivariate VDQmodel for Greece and Spain. Greece has been the most seriously damaged country after the
European debt crisis (with at least three bailouts). Spain has been affected mainly by contagion because it started with a
supposedly appropriate value of fundamentals. We thus use the VDQ model to evaluate the potential interdependence of
these two seemingly unrelated countries that share their dependence on the Euro and the rule of the European institutions.
We report the VDQ coefficients on the (τGreece, τSpain) plane, and, in particular, we use the grid τGreece ∈ {0.05, . . . , 0.95} and
τSpain ∈ {0.05, . . . , 0.95}.

Fig. 3 shows the effect of changes in Greece’s debt and deficit ratios to GDP on Greek and Spanish CDSs. The Greek debt
ratio affects both Greece and Spain, and its effect is monotonic on both τGreece and τSpain for both countries. The Greek deficit
ratio, however, showsheterogeneity only in the τGreece-axis direction but not in the τSpain-axis direction.We can thus interpret
this result as both CDSs’ being affected by the Greek debt performance, although Greek deficits are important only for the
Greek CDS.

Fig. 4 presents an analysis of changes in the Spanish debt and deficit ratios to GDP onGreek and Spanish CDSs. The Spanish
debt ratio has a negative effect on Spain’s CDS and a heterogeneous and weaker (as compared to the reverse analysis) effect
on Greece’s CDS. The Spanish deficit has a symmetric effect on both countries.

Finally, Fig. 5 presents the effect of monetary changes in the Euro area on CDS performance. A rise in the ECB rate and
a decrease in the M3 growth correspond to a tightening of the monetary policy. The results show that a tightening of the
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aggregatemonetary conditions in the Euro area has a heterogeneous effect onGreece and Spain. In Greece, the ECB rate effect
depends on both countries’ conditional quantiles, for which the largest effect corresponds to high τGreece and low τSpain. In
Spain, however, the effect is clearly monotonic, decreasing on Spain’s τ , and only weakly monotonic on Greece’s τ . Similar
patterns are observed for the effect of M3 growth.

7. Conclusion

In this paper, we propose a model for analyzing reduced form heterogeneity in a multivariate time-series context. Based
on directional quantiles, we propose to solve for a fixed point on themultivariate quantile space. The result is a generalization
of the vector autoregressive model for the conditional mean to conditional multivariate quantiles.

The present paper can be extended in several directions. First, we have addressed only linear QRmodels for each separate
direction, and, as such, the VDQ model requires a simple matrix inversion. This model could be applied to nonlinear and
nonparametric models for each direction, and the VDQmodel would thus be a fixed-point solution to a nonlinear system of
equations.

Second, the model should be further evaluated in terms of in-sample and out-sample dynamic forecasting. In particular,
given fixed covariates for which we would like to forecast, random draws on the m-dimensional unit ball should be able to
forecast the m-dimensional density function. As QR provides a flexible model to construct univariate density estimations,
the VDQ model could be applied to multivariate density frameworks.

Third, the VDQmodel could be used for building heterogeneous impulse-response functions. These would be quite useful
for macroeconomics models, where complex models are analyzed in terms of specific shocks.
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