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Abstract. In this note we construct a finite analogue of classical Siegel’s
Space. Our approach is to look at it as a non commutative Poincare’s
half plane. The finite Siegel Space is described as the space of La-
grangians of a 2n dimensional space over a quadratic extension E of
a finite base field F . The orbits of the action of the symplectic group
Sp(n, F ) on Lagrangians are described as homogeneous spaces. Also,
Siegel’s Space is described as the set of anti-involutions of the symplec-
tic group.

1. introduction

Classical Siegel’s half space is a clever generalization of Poincaré’s half
plane. In [4], the starting idea is to replace the real base field R by the
full matrix ring M(n,R). Then Siegel’s half space consists of all symmetric
complex n× n matrices whose imaginary part is positive definite.

We address here the case of a finite base field. Our approach to obtain
the finite analogue of Siegel’s half space is to extend the universal (double
cover of) Poincaré’s half plane construction given in [9] to the case where
the base field F is replaced by a ring A with involution denoted *, that
we read ”star”. A ring with involution is also called involutive ring, as in
[8, 10]. Instead of the group GF = SL(2, F ) we have now its star-analogue
GA = SL∗(2, A) introduced in [10]. A natural GA− space is the star-plane
PA consisting of all points x = (x1, x2) ∈ P = A× A whose coordinates x1
and x2 star-commute, i.e. x1x

∗
2 = x2x

∗
1. Notice en passant the analogy with

Manin’s q−plane, whose points have coordinates that anti-commute.
We introduce the canonical star - anti-hermitian form ω on P given by

ω(x, y) = x1y
∗
2 − x2y

∗
1

for all x, y ∈ P. We have then

ω(y, x) = −ω(x, y)∗
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for all x, y ∈ P, and we see that the star-plane PA consists of all isotropic
vectors for ω.

We also notice that if we write

x∗ =

(
x∗1
x∗2

)
for x = (x1, x2) ∈ PA, then we have

ω(x, y) = xwy∗

where

w =

(
0 1
−1 0

)
.

The star-plane PA is stratified by the family of GA− subplanes PA(J) of
PA given by the condition Ax+Ay = J where J is a left ideal in A. In what
follows we will be mainly interested in the generic case J = A, and we will
take A = Mn(F ) endowed with the transpose map.

As a motivation for the construction below, recall that finite Poincaré half
plane, more precisely the double cover of finite Poincaré half plane, may be
realized as the set of lines through the origin in the usual planeE2 = E×E,E
a quadratic extension of the base finite field F , whose slope does not lie in
F ∪{∞}. Lines through the origin are however just the Lagrangians for the
symplectic bilinear form determinant on E2. and the constraint that the
slope of a Lagrangian L does not lie in F ∪ {∞}. amounts to say that the
symplectic form h given by Galois twisting of the determinant, given by

h(x, y) = x1ȳ2 − x2ȳ1

for x =

(
x1
x2

)
, y =

(
y1
y2

)
in E, is non degenerate when restricted to L.

Indeed, if the constraint on L is fulfilled, we may take a representative
vector of the form (z, 1) ∈ L (z ∈ E), so that L = {(zx2], x2)|x2 ∈ E} and
then h on L is given by

h(

(
zx2
x2

)
,

(
zy2
y2

)
) = (z − z̄)x2ȳ2,

so h non degenerate means just z ̸= z̄.
Under the action of SL(2, F ) in the set L of all Lagrangians we have then

the generic orbit consisting of all Lagrangians on which h is non degenerate
and the residual orbit consisting of all Lagrangians on which h is degenerate,
i. e. null in this case, so that z = z̄, i.e. z ∈ F . More generally we will
see below that the rank of the restriction hL of h to L characterizes the
SL(2, F )− orbits in L.

2. Preliminaries

2.1. General setup. We assume now that the involutive ring (A, ∗) is a
quadratic Galois extension of a sub involutive ring A0, i.e. that the Galois
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group Γ = Gal(A,A0) is of order 2 and that A0 = FixA(Γ). We denote
a 7→ ā the nontrivial element τ of Γ. Notice that τ extends naturally to the
plane A2 = A×A and to the star-plane PA, Our data is then (PA, ω, τ).

We introduce the canonical star-τ -antihermitian form h on P given by

h(x, y) = ω(x, ȳ)

for all x, y ∈ P. We have

h(y, x) = −h(x, y)
∗

for all x, y ∈ P.

2.2. The full matrix ring case. We specialize now to the case where the
involutive ring (A, ∗) is the full matrix ring Mn(E) over a finite field E
endowed with the transpose mapping. We assume moreover that E is a
quadratic extension of a subfield F with Galois group {Id, τ}.

We have the big special linear groupGE = SL∗(2, A) and the small special
linear group GF = SL∗(2, A0) that appears as the fixed point set of τ in
GE . The set of all lines through the origin in the plane PA is denoted by LA

It follows from classical Witt’s theorem that GE acts transitively on LA.
Indeed the non-commutative 1- dimensional subspaces L ∈ PA may be

readily identified with classical Lagrangians in the symplectic space V =
E2n, endowed with the canonical symplectic form ω′, that in terms of the
canonical basis e1, · · · , e2n for V is given by ω(ej , en+j) = −ω(en+j , ej) =
1, j = 1, . . . , n and ω(ek, es) = 0 for |k − s| ≠ n.

Recall [8] that Lagrangian subspaces L in V may be described as L =
L(a,b) = ⟨aP + bQ⟩ (a, b ∈ A, aA + bA = A, ab∗ = ba∗) where the column
vectors P and Q are given by P = (e1, · · · , en)∗, Q = (en+1, · · · , e2n)∗ and
⟨u⟩ stands for the vector subspace of V spanned by the components u1, ..., un
of any u ∈ M = V n.

Moreover L(a,b) = L(a′,b′) if and only if a′ = ca and b′ = cb for a suitable
c ∈ A. So classical Lagrangians correspond to non commutative lines through
the origin in PA.

On the other hand regarding the action of GE we have g(L(a,b)) = L(a,b)gg
for g ∈ GE .

The set of classical Lagrangian subspaces for ω′ in V will be denoted by
LV or just L.

In what follows we will switch to the classical setting for Lagrangians in
V for the case of A = Mn(E).

We denote the set of symmetric matrices with coefficients in En by Sym(En).
The isotropy subgroup for the subspace L+ spanned by e1, . . . , en is the
semidirect product of the subgroups

K := {
(

A 0
0 tA−1

)
, A ∈ GLn(E)}
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P+ = {
(

I B
0 I

)
, B ∈ Sym(En)}

On the other hand, the isotropy subgroup for the subspace L− spanned by
the vectors en+1, . . . , e2n is the semidirect product of K times the subgroup

P− = {
(

I 0
B I

)
, B ∈ Sym(En)}

Let L : Sym(En) → LE,2n be the Siegel map defined by the formula

L(Z) = {
(

Zx
x

)
, x ∈ En}

We would like to point out that in [8], a complete description of the La-
grangian subspaces of E2n, E a finite field, is given, in the study of the
groups SL∗(2, A) (applied to A = Mn(E) and ∗ the transposition of matri-
ces). The Siegel Lagrangian L(Z) is LZ,In in the notation of [8].

Following Siegel, we write sometimes (A,B,C,D) for the 2n× 2n matrix(
A B
C D

)
A,B,C,D ∈ Mn(E)

Remark 1. Whenever F = R, we have that L(Z) is equal to the action on
the subspace L− of the exponential of the Lie algebra element (0, Z, 0, 0) ∈
sp(n,C).

We define ϵ = ϵF by

ϵF =

{
1 if −1 is an square in F
−1 otherwise

This is just the Lagrange symbol (−1
p ) in the case of a finite field F of

characteristic p.
(We note that, in the real case, we always have ϵF = −1)

Proposition 1. We have the decomposition into GF− invariant subsets

LV =
∪

0≤r≤n

Hr,

where Hr stands for the set of all W ∈ LV such that the rank of hE restricted
to W ×W is r.

Next, we consider the hermitian form

h0 : E
2n × E2n → E

defined so that the canonical basis is an orthogonal basis for h0, h0(ej , ej) =
−1 for 1 ≤ j ≤ n and h0(ej , ej) = 1 for n+ 1 ≤ j ≤ 2n.

We consider the group

Sp0(n, F ) := U(E2n, h0) ∩ Sp(n,E).
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Later on, for a finite field F we construct a generalized Cayley transform,
that is, we show there exists an element C in Sp(n,E) which conjugates
Sp(n, F ) into Sp0(n, F ). That is, C−1Sp0(n, F )C = Sp(n, F ). Thus, we ver-
ify that Sp0(n, F ) is isomorphic to Sp(n, F ), (a well known result for F = R,
see page 242 of [6]).

Among the objectives of this note are, for a finite field F , to determine
the orbits of both groups Sp(n, F ), Sp0(n, F ) in LE,2n and the intersection
of each orbit with the image of the Siegel map. When F = R, E = C this
problem has been considered and solved by [7], [5] and references therein.

It is known that for a finite field E and a hermitian form (W,h) on a
finite dimensional vector space W over E, there always exists an ordered
basis w1, . . . of W and a nonnegative integer r so that h(wk, ws) = δks for
k, s ≤ r and h(wk, ws) = 0 for k > r or s > r.

In this situation we define the type of the form (W,h) to be r.

Let Or the set of Lagrangian subspaces W ∈ LE,2n so that the form h0
restricted to W is of type r. Obviously Sp0(n, F ) leaves invariant the subset
Or and LE,2n = On ∪ On−1 ∪ · · · ∪ O0.
One of the main results of this work is:

Theorem 1. Assume F is a finite field, then

• The orbits of Sp0(n, F ) in LE,2n are exactly the sets Oj , j = 0, · · · , n.
• The orbits of Sp(n, F ) in LE,2n are exactly the sets Hj , j = 0, · · · , n.
• Any orbit of either Sp(n, F ) or Sp0(n, F ) intersects the image of the
Siegel map.

• Except for n = 1, no orbit of Sp0(n, F ) is contained in the image of
the Siegel map.

• Hn is the unique orbit of Sp(n, F ) contained in the image of the
Siegel map.

• CHj = COj .

3. Proofs

In order to write down the proof of theorem 1 we need to set up some
notation and recall some known facts.

tA denotes the transpose of the matrix A. Vectors v in Ek are column
vectors, so that we write tv for the row vector corresponding to v

In particular, we will use

E2n ∋ v =

(
x
y

)
, x, y ∈ En, E2n ∋ w =

(
r
s

)
, r, s ∈ En,

Let In denote the n× n identity matrix and 0 denotes the zero matrix. We
set

J :=

(
0 In

−In 0

)
.
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Hence, ω(v, w) = txs− tyr = tvJw. Thus,

(A,B,C,D) =

(
A B
C D

)
, A,B,C,D ∈ Mn(E)

belongs to Sp(n,E) if and only if

tAC =tCA, tDB = tBD, tAD − tCB = In.

Let Gn(E
2n) denote the Grassmanian of the n−dimensional subspaces of

E2n. Hence, any of the the groups Sp(n,E), Sp(n, F ), Sp0(n, F ) acts on
Gn(E

2n) by TW = T (W ).
A n−dimensional linear subspace W of (V, ω) is a Lagrangian subspace

if and only if for every v, w ∈ W, tvJw = 0 if and only if txs − tyr = 0
for every v, w ∈ W. We fix R,S ∈ En×n and consider the subspace W =
{
(
Rx
Sx

)
, x ∈ En}. Then, W is Lagrangian if and only if tRS − tSR = 0

and the matrix
(
R
S

)
has rank n. Actually, any Lagrangian subspace may

be written as in the previous example (see also [8]). Particular examples
of Lagrangian subspaces are L+, L−,L(Z), (Z ∈ Sym(En)). Needles to say,
the image of L is equal to the orbit L− under the subgroup P+, hence,
Bruhat’s decomposition yields that the image of L is ”open and dense” in
LE,2n. Let p : E2n → En denotes projection onto the second component.
That is, p ( xy ) = y. It easily follows that:
A subspace W ∈ Gn(E

2n) belongs to the image of L if and only if W is
Lagrangian and p(W ) is equal to En. We are ready for,

Lemma 1. Let G be either Sp(n, F ) or Sp0(n, F ) and fix Z ∈ Sym(En).
Then the orbit GL(Z) is contained in the image of L if and only if for every
(A,B,C,D) ∈ G the matrix (CZ +D) is invertible.

Proof: The subspace (A,B,C,D)L(Z) = {
(

(AZ+B)x
(CZ+D)x

)
, x ∈ En}

is n−dimensional, Lagrangian and its image under p is equal to the image
of CZ+D. Hence, if (CZ+D) is invertible, by a change of variable we have
that (A,B,C,D)L(Z) is equal to L(Z1) for Z1 = (AZ + B)(CZ + D)−1.
Conversely, if the orbit GL(Z) is contained in the image of the Siegel map,
for each g = (A,B,C,D) ∈ G there exists Zg ∈ Sym(En) so that

{
(

(AZ+B)x
(CZ+D)x

)
, x ∈ En} = {

(
Zgx
x

)
, x ∈ En}.

Thus, the image of CZ +D is equal to En.

�

Corollary 1. (A,B,C,D)L(Z) belongs to the image of L if and only if
(CZ +D) is an invertible matrix.

Example 1. Orbits of Sp0(1, F ) in the space of Lagrangians LE,2. We as-
sume F is a finite field. Let N(e) = eē be the norm of the extension E/F.
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The hypothesis on F implies N is a surjective map onto F. After a compu-
tation, we obtain that Sp0(1, F ) is the set of matrices

{
(
α β
β̄ ᾱ

)
: α, β ∈ E,αᾱ− ββ̄ = 1}.

In this case LE,2 = G1(E
2), a typical element of G1(E

2) is denoted by
E ( ab ) with a ̸= 0 or b ̸= 0. Since h0((

z
1 ) , (

w
1 )) = 1− zw̄, it readily follows:

O1 = {E ( z1 ) , z ∈ E,N(z) ̸= 1} ∪ {L+},
O0 = {E ( z1 ) , z ∈ E,N(z) = 1}

For z so that N(z) ̸= 1 we have (1 − zz̄)−1 = tt̄, t ∈ E. If we define the
matrix

A :=

(
t̄ zt
z̄t̄ t

)
then A ( 01 ) = ( ztt ) . Obviously A ∈ Sp0(1, F ). We are left to transform E ( 01 )
into E ( 10 ) . For this, we fix z ̸= 0 such that N(z−1) ̸= 1. Then, by means
of A the line E ( 10 ) is transformed into the line E ( 1z̄ ) , which is equal to the
line E

(
z̄−1

1

)
. From the previous calculation the last line is transformed into

the line E ( 01 ) . Thus, Sp0(1, F ) acts transitively in O1.
We now show Sp0(1, F ) acts transitively in O0.
We fix E ( a1 ) so that aā = 1. Let E

(
b
1

)
in O0. Then N(a) = N(b),

owing to theorem 90 of Hilbert we have a
b = dd̄−1. Since, the character-

istic of F is different from two, the pair of vectors ( a1 ) ,
(

1
−ā

)
, as well as(

b
1

)
,
(

1
−b̄

)
determine two ordered basis for E2. . Let T be the linear op-

erator defined by T (( a1 )) = d
(
b
1

)
and T (

(
1
−ā

)
) = d−1

(
1
−b̄

)
. One checks

that h0(T ( a1 ) , T
(

1
−ā

)
) = h0(d

(
b
1

)
, d−1

(
1
−b̄

)
) and that ω(T ( a1 ) , T

(
1
−ā

)
) =

ω(d
(
b
1

)
, d−1

(
1
−b̄

)
) to conclude that T lies in U(E2, h0)∩Sp(E2, ω) = Sp0(1, F ).

Hence, O0 is an orbit of Sp0(1, F ).

Remark 2. The orbit O0 is contained in the image of the Siegel map,
whereas the orbit O1 does contain a point in the complement to the im-
age of the Siegel map. This observation shows that for a finite field F and
n = 1 our conclusions are in concordance with the results obtained by other
authors for the case of F = R. More precisely in the real case, O1 splits
in the union of two orbits, one orbit is the set of lines where h0 is positive
definite and the other is the set of lines where h0 is negative definite. In this
case the orbit corresponding to the set of lines where h0 is positive definite is
contained in the image of the Siegel map, whereas the orbit corresponding to
the set of lines where h0 is negative definite is not contained in the image of
the Siegel map. The orbit corresponding to the set of lines where h0 vanishes
is contained in the image of the Siegel map.
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Remark 3. The previous computations together with corollary 1 to lemma
1, let us conclude that β̄z+ ᾱ is nonzero for every element of Sp0(1, F ) such
that −zz̄ + 1 = 0. Whereas, for each z so that −zz̄ + 1 ̸= 0, there exist an
element of Sp0(1, F ) so that β̄z + ᾱ = 0, it is the element that carries the
line of direction (z, 1) onto the line of infinite slope!

We have

Lemma 2. Z be an element of Sym(En). Then L(Z) belongs to Hr if and
only if the anti-hermitian form on En defined by Z − Z̄ has rank r.

Proof. For the non-degenerate anti-hermitian form hE on E2n, given by
hE(v, w) := w(v, w̄) = txs̄− tyr̄ (v, w ∈ E2n), we have Sp(n, F ) = U(E2n, hE)∩
Sp(n,E). Hence, Hj is invariant under the action of Sp(n, F ). It follows that

hE(( Zx
x ) ,

(
Zy
y

)
) = tx(Z − Z̄)y (x, y ∈ En),

from which the result. �

Example 2. We now compute the orbits of Sp(1, F ) in LE,2 for a finite
field F. For this we show that each Hj is an orbit of Sp(1, F ). In fact,

H1 = {E ( z1 ) : z − z̄ ̸= 0} and H0 = {E ( z1 ) : z ∈ F} ∪ {E ( 10 )}.

Since J ∈ Sp(n, F ) we have that E ( 10 ) is in the orbit of E ( 01 ) . Since the ma-
trix (1, t, 0, 1) ∈ Sp(1, F ) and (1, t, 0, 1)(0, 1) = (t, 1) we have that Sp(1, F )
acts transitively in H0.

We now show that Sp(1, F ) acts transitively in H1. Let E ( z1 ) , E (w1 ) so
that z − z̄ ̸= 0, w − w̄ ̸= 0, Since F is a finite field, there exists t0 ∈ E so
that z − z̄ = t0t̄0(w − w̄). We define

A :=
1

z − z̄

(
t0w − t̄0w̄ zt̄0w̄ − z̄t0w
t0 − t̄0 zt̄0 − z̄t0

)
The coefficients of A belong to F and

A ( z1 ) =
z

z − z̄

(
t0w − t̄0w̄
t0 − t̄0

)
+

1

z − z̄

(
zt̄0w̄ − z̄t0w
zt̄0 − z̄t0

)
= t0

(
w
1

)
.

detA =
(z − z̄)(w − w̄)t0t̄0

(z − z̄)2
= 1.

We note that H1 is contained in the image of the Siegel map, whereas H0

is not.

We consider now
Let g ∈ Sp0(n, F ), then

g−1 = diag(−In, In)
tḡ diag(−In, In)
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Therefore, the elements of Sp0(n, F ) are the matrices(
A B
B̄ Ā

)
A,B ∈ Mn(E), tĀB = tBĀ, tAĀ− tB̄B = I

Since Sp0(n, F ) is invariant under the map g 7→ tg, we get the character-
ization of Sp0(n, F ) obtained by [4], namely,

(R,S, T, V ) ∈ Sp0(n, F ) if and only if

T = S̄, V = R̄, R tS = S tR, R tR̄− S tS̄ = In. (S)

as is readily seen.

A simple computation shows:

Sp0(n, F ) ∩KP+ = Sp0(n, F ) ∩KP− = diag(A, Ā), A ∈ U(n,E).

Now assuming that F is a finite field, we prove that any set Or intersects
nontrivially the image of the Siegel map, and for r > 0, that Or contains a
point of the complement of the image of the Siegel map.

We observe that the form h0 restricted to L(diag(d1, . . . , dn)) is the diag-
onal form

(1− d1d̄1)x1ȳ1 + · · ·+ (1− dnd̄n)xnȳn.

Thus, F being a finite field, allow us to find d so that dd̄ = 1, from which
we obtain that L(diag(0, . . . , 0, d, . . . d)) (r zeros) belongs to Or.

We fix now 0 < r ≤ n and d ∈ E such that dd̄ = 1. Let Wr denote the
subspace spanned by the vectors e1, . . . , er, der+1 + en+r+1, . . . , den + e2n.
Then Wr is n−dimensional and isotropic for ω. The matrix of the form
h0 restricted to Wr, on the above basis, is diag(−1, . . . ,−1, 0, . . . , 0), (here
−1 occurs r-times). Hence, Wr belongs to Or. Moreover, the dimension of
p(Wr) (p as defined before lemma 1) is n − r < n. Therefore Wr does not
belong to the image of the Siegel map.

Remark 4. For any permutation matrix T we have that the matrix

(
tT−1 0
0 T

)
belongs to Sp(n, F )0 ∩ Sp(n, F ).

For the time being we assume −1 is not a square in F.

We now show that for odd n > 1 , O0 contains points in the image of the
Siegel map, and contain points in the complement of the image of the Siegel
map.

To begin with, we consider n = 3.
We fix d, c ∈ E so that 0 = 1 + cc̄+ dd̄ and cd̄ ∈ F.
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We set

A :=

1 0 −c
0 1 −d
c̄ d̄ 1

 B :=

1 0 0
0 1 0
c d 0


Then,

tAB =

1 + cc̄ c̄d 0
cd̄ 1 + dd̄ 0
0 0 0

 , tBA =

1 + cc̄ cd̄ 0
c̄d 1 + dd̄ 0
0 0 0


Given that c̄d ∈ F, both matrices are equal. Thus, the subspace L :=
{(Ax,Bx), x ∈ En} is Lagrangian.

Since

tAĀ =

1 + cc̄ c̄d 0
cd̄ 1 + dd̄ 0
0 0 cc̄+ dd̄+ 1

 , tBB̄ =

1 + cc̄ cd̄ −c
c̄d 1 + dd̄ 0
0 0 0


both matrices are equal, and therefore h0 restricted to L is the zero form.
On the other hand, detA = 1 + dd̄ + cc̄ = detB = 0. This shows that L is
an element of O0 which is not in the image of the Siegel map.

Now, in order to produce an element of O0 in the complement of the
image of the Siegel map for odd n with n > 3 , we write n = 3+n−3. Then
the subspace L⊕E(e4+ en+4)⊕ · · · ⊕E(en+ e2n) satisfies our requirement.

Finally, the subspace L(In), is an element of O0 which is in the image of
the Siegel map.

For n even, O0 contains points in the complement of image of the Siegel
map.

Let us take c, b ∈ E such that bb̄ = −1. We set

A :=

(
−bc −b
c 1

)
B :=

(
1 0
b 0

)
Then tAB = tBA = (0, 0, 0, 0)

Thus, W := {(Ax,Bx), x ∈ E2} is a Lagrangian subspace.
Given that tAĀ = tBB̄ = (0, 0, 0, 0), we see that, h0 restricted to W is

the null form, that is, W ∈ O0.
Further, neither A nor B is invertible, and so W is not in the image of

the Siegel map.
For n = 2k, it readily follows that the subspace W ⊕ · · · ⊕W2 ( k−times)

belongs to O0 and it does not belong to the image of the Siegel map.

We compute now an example of points in On which are outside the image
of the Siegel map, and also compute an element in Sp0(n, F ) which carries
these points into the image of the Siegel map.
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For this, we notice that (αIn, βIn, β̄In, ᾱIn) belong to Sp0(n, F ) if and
only if αᾱ− ββ̄ = 1.

We fix an integer k so that 1 < k < n. The subspace Zk spanned by
e1, . . . , ek, en+k+1, . . . , en is Lagrangian, and h0 is non degenerate on it. Ob-
viously, Zk does not belong to the image of the Siegel map. We may choose
nonzero α, β so that αᾱ − ββ̄ = 1. Then (αIn, βIn, β̄, ᾱ) takes Zk into a
subspace which belongs to the image of the Siegel map.

We will use bellow the following involution: for a matrix A, A⋆ =t Ā

Lemma 3. Sp0(n, F ) acts transitively on On.

Proof. We have that L− = L(0) is an element of On. First, we will prove
that given L(Z) ∈ On, there is an element of Sp0(n, F ) which carries L(Z)
onto L−.

The matrix of the form h0 restricted to L(Z) is In − ZZ̄. Choosing an
adequate basis, there exists an invertible matrix A so that A(In −ZZ̄) tĀ =
In. Let set B := −AZ. Then, since

A t(−AZ) = −AZ tA, andA tĀ− (−AZ)(− t(ĀZ) = A(In − ZZ̄) tĀ = In

the matrix (A,B, B̄, Ā) belongs to Sp0(n, F ) (it satisfies (S)).
On the other hand,

(A,B,C,D)L(Z) = {
(

(AZ+(−AZ))x

(B̄Z+Ā)x

)
, x ∈ En} = {

(
0

Ā(In−Z̄Z)x

)
, x ∈ En},

By above, the matrix Ā(In − Z̄Z) is invertible, so that L(Z) belongs to the
orbit of L−.

Next, we will show that if W = {
(
Rx
Sx

)
: x ∈ En} ∈ On, then there exists an

element g in Sp0(n, F ) so that gW ∈ Image(L).
In fact, we will show there exists g ∈ Sp0(n, F ) so that gW = {(Cx,Dx) :

x ∈ En} with C invertible, and then by means of a matrix (0, dIn, d̄In, 0)
we will transform gW into an element of the image of the Siegel map.

Since W is in On, there exists an invertible matrix A such that

A(−R⋆R+ S⋆S)A⋆ = In.

Let us consider g = (−AR⋆, AS⋆, ¯AS⋆, ¯−AR⋆). Then

gW = {((A⋆)−1x, ( ¯AS⋆R− ¯AR⋆S)x)x ∈ En}.

Since

−AR⋆(−AR⋆)⋆ −AS⋆(AS⋆)⋆ = A(−R⋆R+ S⋆S)A⋆ = In

Also tRS = tSR, (because W is a Lagrangian subspace), hence we have
−AR⋆ t(AS⋆) = −AR⋆S̄ tA = −A t̄SR̄ tA = AS⋆ t(AR⋆), and so the matrix
g belongs to Sp0(n, F )This concludes the proof that On is the orbit of L−
under the group Sp0(n, F ). �
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Proposition 2. There exists element C in Sp(n,E) so that C−1 conjugates
Sp0(n, F ) onto Sp(n, F ).

Proof. When −1 is not an square in F the proof follows quite close to the
real case. We fix i ∈ E a square root for −1. We consider the 2n×2n matrix

Cn :=
1√
−2

(
iIn In
In iIn

)
It readily follows that the matrix Cn ∈ Sp(n,E). Let τF denote −1 if −2 is
not a square in F and 1 if −2 is a square in F. We now verify the equality

τF ihE(v, w) = h0(Cnv, Cnw) for every v, w ∈ E2n.

For this, we note that
tCndiag(−In, In)C̄n = τF iJ, C̄nJ

−1 tCn = iτFdiag(−In, In)

Indeed,

tCndiag(−In, In)C̄n =
1

−2τF

( −i 1
−1 i

) (−i 1
1 −i

)
=

−2i

−2τF
J.

C̄nJ
−1 tCn =

1

−2τF

(−i 1
1 −i

) (−1 −i
i 1

)
= iτFdiag(−In, In).

Hence, for g ∈ Sp(n, F ) we have

t(CngC
−1
n )diag(−In, In)CgC−1 = τi tC−1 tgJgC̄−1

= τi(τi diag(−In, In))
−1 = diag(−In, In).

Thus, CgC−1 ∈ Sp0(n, F ). Owing to the equalities of above we deduce,
h0(v, w) = h0(CgC−1v, Cgc−1w) = τF ihE(v, w). Tracing back the compu-
tation, we arrive to C−1gC ∈ Sp(n, F ) for g ∈ Sp0(n, F ). Hence, we have
proved the proposition when −1 /∈ F. In case −1 ∈ F we follow the proof in
[6]. We choose v ∈ E so that N(v) = −1, b ∈ E× : b+ b̄ = 0. We define

Cn :=
1√

b(v2 − 1)

(
vIn bIn
In vbIn

)
Then, Cn ∈ Sp(n,E) and (b(v2 − 1)) tC̄nCn = (v + v̄)bJ. A similar compu-
tation gives h0(Cv,Cw) = −(v + v̄)b hE(v, w). �
Corollary 2. The group Sp(n, F ) acts transitively on Hn.

Proof. Since the groups Sp(n, F ) and Sp0(n, F ) are conjugated by the Cay-
ley transform and the Cayley transform is a conformal map for the pair of
bilinear forms h0, hE the corollary follows �

Remark 5. If −1 is not a square in F.

C−1
n = −τF C̄n.

For a subset W of E2n, we define W = {w̄, w ∈ W}. For the linear
subspace W, we denote by rW the rank of the form hE restricted to W.
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Lemma 4. For a Lagrangian subspace W of E2n we have:

dim(W +W ) = n+ rW

dim(W ∩W ) = n− rW

Furthermore, W ∩W = (W +W )⊥ω = W⊥hE .

Proof. We use the identities

Z⊥ω ∩ U⊥ω = (Z + U)⊥ω , (Z ∩ U)⊥ω = Z⊥ω + U⊥ω .

Since W,W are Lagrangian subspaces we have

W ∩W = W⊥ω ∩W
⊥ω

= (W +W )⊥ω .

Fix y = z̄ ∈ W ∩W, z ∈ W, andx ∈ W, hence hE(x, y) = ω(x, ȳ) = ω(x, z) =

0. Hence, y ∈ W⊥hE . Next, for y ∈ W⊥hE , we have ω(x̄, y) = 0 for every x ∈
W. The hypothesisW is Lagrangian forces ȳ ∈ W, hence y = ¯̄y ∈ W∩W. �
Proposition 3. For a finite field F and k = 0, . . . , n, the group Sp(n, F )
acts transitively on Hk.

Proof. We make the following induction hypothesis: for every m < n and
for every k ≤ m the group Sp(m,F ) acts transitively on the Hk determinate
by the corresponding form hE on (E2m, ω).

Since, we have already shown that Sp(1, F ) acts transitively on Hk, k =
0, 1, the first step of the induction process follows.

We recall also that for n and k = n we have shown that Sp(n, F ) acts
transitively on Hn. We are left to consider r < n.

We fix W,Y ∈ Hr with r = rW < n, we must find g ∈ Sp(n, F ) so that
gW = Y.

Since, each of the subspaces W ∩ W,W + ∩W are invariant under the
Galois automorphism, it follows that the subspaces are the complexification
of, respectively, F 2n∩W ∩W,F 2n∩ (W +∩W ). We notice that the quotient
space (W +∩W )/(W ∩W ) is of dimension n+ r− (n− r) = 2r < 2n. Now,
by above we have that the push forward to (W +W )/(W ∩W ) of the form
ω is a non degenerate form, and the same holds for hE .

Thus, the inductive hypothesis gives a linear transform

T : F 2n ∩ (W +W )/(F 2n ∩W ∩W ) → F 2n ∩ (Y + Y )/(F 2n ∩ Y ∩ Y )

such that T ⋆ω = ω, and the complex extension transforms W/(W ∩W ) onto
Y/(Y ∩ Y ). We lift T to a linear transform

T : F 2n ∩ (W +W ) → F 2n ∩ (Y + Y )

so that T ⋆ω = ω and the complex extension transforms W onto Y. Now we
apply the theorem of Witt to T to get an element g of Sp(n, F ) which carries
W into Y. This completes the induction process and we have the result �
Corollary 3. Sp0(n, F ) acts transitively in Ok, k = 1, . . . , n
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Lemma 5. Hn is contained in the image of the Siegel map.

Proof. Let W ∈ Hn. We may choose representatives R and S for W and
write then W = {

(
Rx
Sx

)
, x ∈ En} with tRS− tSR = 0,

(
R
S

)
of rank n . Since

W ∈ Hn the matrix tRS̄ − tSR is invertible.
The matrix S has rank r, with 0 ≤ r ≤ n. We will show that r = n.
We choose two n×n permutation matrices matrices P,Q in GLn(F ) such

that

PSQ =

(
B1 B2

B3 B4

)
where B1 is an invertible r×r matrix. We may writeW = {

(
RQx
SQx

)
, x ∈ En}

and (
(tP )−1 0

0 P

)
W = {

(
(tP )−1RQx

(B1,B2,B3,B4)x

)
, x ∈ En}

Since (B1, B2, B3, B4) has rank r performing column operations, we may
assume B2 and B4 are the zero matrices. This amounts to a new change of

representatives for W. Thus, W = {
(

Ax
(B1,0,B3,0)x

)
, x ∈ En}

Write A := (A1, A2, A3, A4) with , A1 ∈ Mr(F ), A4 ∈ Mn−r(F ). The
hypothesis W is a Lagrangian, implies tA(B1, 0, B3, 0) = t(B1, 0, B3, 0)A
from which tA1+

tA3B3 = A1+
tB3A3, A2+

tB3A4 = 0. The hypothesis the
rank of (A, (B1, 0, B3, 0)) is n implies A4 is invertible. Hence, replacing x by
(diag(Ir), 0, 0, A

−1
r )x gives W = {

(
Cx
Dx

)
, x ∈ En}, with C = (A1, 0, A3, In−r)

and D = (diag(Ir), 0, B3, 0). The matrix of hE in this new coordinates is

tCD̄ − tDC̄ =

(
• 0
• 0

)
.

The hypothesis hE restricted W has rank n implies then n− r = 0. �

Corollary 4. For any element Z ∈ Sym(En) such that Z − Z̄ is invertible
and for any (A,B,C,D) ∈ Sp(n, F ), the matrix CZ +D is invertible.

We have completed the proof of theorem 1.

Furthermore, we have the following facts:

Remark 6. For a symmetric matrix Z such that Z − Z̄ is not invertible,
there exists (A,B,C,D), (M,N,R, S) ∈ Sp(n, F ) such that CZ + D is in-
vertible and RZ + S is not invertible.

This follows from Corollary 1 to lemma 1 and theorem 1.

Remark 7. For n > 1 and any symmetric matrix Z there exists (A,B,C,D),
(M,N,R, S) ∈ Sp(n, F )0 so that CZ + D is invertible and RZ + S is not
invertible.

This follows from lemma 1 and theorem 1
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4. Isotropy subgroups

The purpose of this section is to explicitly compute the structure of
Ok,Hk, k = 0, . . . , n as homogeneous spaces. For the real case, this has
been accomplished by [11] [7] and references therein.

An element of On−k is constructed as follows: we define Vk to be the
subspace spanned by the vectors e1+en+1, . . . , ek+en+k, ek+1, . . . , en. Then,
V0 = L+. A simple computation shows that the form hE restricted to Vk×Vk

is the null form, whereas the type of the form h0 restricted to Vk × Vk is
n−k,. Obviously Vk is a lagrangian subspace. Henceforth, for x ∈ Sp(n,E),
Ad(x) denotes the inner automorphism defined by x. Let tk be the partial
Cayley transform

tk :=

(
D1 D2

D3 D4

)
where, D1 = D4 = diag(

√
2
2 Ik, In−k), D2 = diag(−

√
2
2 Ik, 0), D3 = −D2.

Then, tk is an element of Sp(n,E) and tkL+ = tkV0 = Vk. A computation
gives

t−1
k =

(
L1 L2

L3 L4

)
where, L1 = L4 = diag(

√
2
2 Ik, In−k), L2 = diag(

√
2
2 Ik, 0), L3 = −L2.

Let ESp0(n,F )(Vk) denote the set stabilizer of Vk in Sp0(n, F ). The equality

ESp(n,E)(V0) = KP+ implies

ESp0(n,F )(Vk) = Ad(tk)ESp(n,E)(V0)∩Sp0(n, F ) = Ad(tk)(KP+)∩Sp0(n, F ).

The stabilizer of V0 in Sp(n, F ) is KP+ ∩ Sp0(n, F ) = K ∩ Sp0(n, F ) =
{diag(T, T̄ ) : T ∈ U(n,E)}. Thus, the stabilizer of V0 in Sp0(n, F ) is
isomorphic to U(n,E).

The main result of this section is

Theorem 2. The stabilizer group ESp0(n,F )(Vk) is isomorphic to the semidi-
rect product of the group O(k, F )×U(n−k,E) times the unipotent subgroup
Ad(tk)(P

+) ∩ Sp0(n, F ).

The proof of the result requires some computations, which we carry out.
First, we verify that the subgroup of Sp0(n, F ), diag(S, T, S, T̄ ), S in

O(k, F ), T in U(n − k,E) is contained in ESp0(n,F )(Vk). For this, we write

for v ∈ Vk, v =


x
y
x
0

 with x ∈ Ek, y ∈ En−k. Hence,

diag(S, T, S, T̄ )v =


Sx
Ty
Sx
0

 ∈ Vk.

Is clear that the unipotent subgroup is contained in ESp0(n,F )(Vk).
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For a matrix T ∈ En×n we write

T =

(
T1 T2

T3 T4

)
, T1 ∈ Ek×k, T2 ∈ Ek×n−k, T3 ∈ En−k×k, T4 ∈ En−k×n−k

And for (A,B, 0, D) ∈ KP+ we have

Ad(tk)(A,B, 0, D)

=


1
2(A1 −B1 +D1)

√
2
2 A2

1
2(A1 +B1 −D1)

√
2
2 (B2 −D2)√

2
2 (A3 −B3) A4

√
2
2 (A3 +B3) B4

1
2(A1 −B1 −D1)

√
2
2 A2

1
2(A1 +B1 +D1)

√
2
2 (B2 +D2)

−
√
2
2 D3 0

√
2
2 D3 D4

 .

Next, we show that Ad(tk)K ∩ Sp0(n, F ) is equal to the subgroup
{diag(S, T, S, tT−1) : S ∈ O(k, F ), T ∈ U(n,E)}. In fact, the computation
for Ad(tk)X gives for S ∈ O(k, F ), T ∈ U(n,E) that
Ad(tk)(diag(S, T, S,

tT−1)) = diag(S, T, S, tT−1).
Now for diag(A,D) = diag(A, tA−1) ∈ K, such thatAd(tk)(diag(A,D)) ∈

Sp0(n, F ), (1.2) and the formula for Ad(tk)X imply the equalities

(A1 +D1) = A1 +D1, Ā2 = D2 Ā3 = D3, Ā4 = D4

and
A1 −D1 = A1 −D1, A2 = −D̄2, A3 = −D̄3

So
D2 = A2 = 0, D3 = A3 = 0, , Ā1 = A1, D̄1 = D1.

Hence, A1 ∈ O(n, F ). Finally, the equality D = tA−1 yields, A1 = D1, which
shows the claim.

Now Ad(tk)P
+ ∩ Sp0(n, F ) = {Ad(tk)(In, B, 0, In) : tB = B and B̄1 =

−B1, B3 =
tB2 = 0, B4 = 0}. In fact, the formula for Ad(tk)X leads us

to

Ad(tk)(I,B, 0, I) =


1
2(2I −B1) 0 1

2B1

√
2
2 B2

−
√
2
2 B3 I

√
2
2 B3 B4

−1
2B1 0 1

2(2I +B1)
√
2
2 B2

0 0 0 I


From (1.2) we get B̄1 = −B1, B2 = 0, B4 = 0, and the equality follows.

(E) We will show at this point the equality
ESp0(n,F )(Vk) = (Ad(tk)K ∩ Sp0(n, F ))(Ad(tk)P

+ ∩ Sp0(n, F )).

Let X ∈ KP+ so that Ad(tk)X ∈ Sp0(n, F ). Condition (1.2) gives us the
following equalities,

Ā1 − B̄1 + D̄1 = A1 +B1 +D1, B2 +D2 = Ā2, Ā3 − B̄3 = D3, Ā4 = D4

Ā1+ B̄1− D̄1 = A1−B1−D1, B̄2− D̄2 = A2, Ā3+ B̄3 = −D3, B4 = 0.

From the second equality on each line, we deduce D2 = 0. Thus, B2 = Ā2.
From the third equality in both lines we obtain Ā3 = 0. Hence A3 =
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0 and B3 = −D̄3. Next tAD − tB0 = I give us D = tA−1. Explicitly
D = ( tA−1

1 , 0,− t(A−1
1 A2A

−1
4 ), tA−1

4 ). Since (A,B, 0, D) ∈ Sp(n,E) and so
tBD = tDB. The computation of the last equality lead us to(

A−1
1 B1 − tY Ȳ A−1

1 Ā2

A−1
4 Ȳ 0

)
=

(
tB1

tA−1
1 − tȲ Y tȲ tA−1

4

− tĀ−1
2

tA−1
1 0

)
where Y := t(A−1

1 A2A
−1
4 )

Now, the equality of the (2,1)-coefficients givesA−1
4

tĀ−1
4

tĀ2Ā
−1
1 = − tĀ2

tA−1
1 ,

which, after we transpose both members of the last equality, we obtain

Ā−1
1 Ā2Ā

−1
4

tA−1
4 = −A−1

1 Ā2.

From, equality of the (1,2)-coefficients implies

Ā−1
1 Ā2Ā

−1
4

tA−1
4 = A−1

1 Ā2.

Thus, A2 = 0 and we have that

(A,B, 0, D) = (diag(A1, A4), diag(B1, 0), 0, diag(
tA−1

1 , tA−1
4 )).

The hypothesis Ad(tk)(A,B, 0, D) ∈ Sp0(n, F ) let us conclude that A1 ∈
O(k, F ),
A4 ∈ U(n− k,E). From here, (E) is shown, and the theorem follows.

5. Anti-involutions in Sp(n, F ).

In this section we analyze the structure on the set of anti-involutions in
the group Sp(n, F ). We will show that this set is a homogeneous space for
Sp(n, F ).
The denote by C(n, F ) the set of anti-involutions ,i.e.,

C(n, F ) = {T ∈ Sp(n, F ) : T 2 = −1}.

Proposition 4. C(n, F ) is equivariant isomorphic to Hn when −1 is not a
square in F, whereas is isomorphic to
Sp(n, F )/(Sp(n, F ) ∩K) when −1 is a square in F.

It is clear that C(n, F ) is invariant under conjugation. Since J = (0, In,−In, 0)
is an element of Sp(n, F ) we have that JT is an element of Sp(n, F ). The

poof of the proposition will follow from the next three lemmas

Lemma 6. i) Let T be an involution, then JT is a symmetric matrix. That
is, t(JT ) = JT

ii) For T ∈ Sp(n, F ), such that JT is symmetric, we have that T is an
involution.

Proof: Recall tJ = −J, tTJT = J, T 2 = −1 Hence, t(JT ) = − tTJ =
−JT−1 = JT. For the second statement, we have t(JT ) = JT hence J =
− tT−1JT = tTJT thus T 2 = −I.

�
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According to lemma 6, to each involution T in Sp(n, F ) we naturally
associate a symmetric non-degenerate bilinear form bT on F 2n. The matrix
of the form bT in the canonical basis is JT.

Now, from the classification of symmetric non-degenerate bilinear forms
on F 2n we have that bT is either equivalent to the Euclidean form x21+ · · ·+
x22n or to the non-Euclidean form x21+ · · ·+x22n−1+ cx22n where c ∈ F is not
a square.

Since det(JT ) = 1. we obtain

Remark 8. The form bT is always equivalent to the Euclidean form.
The group Sp(n, F ) acts on Sp(n, F ) ∩ Sym(F 2n) by the formula

(g, S) → t(g−1)Sg−1.

It readily follows that the map C(n, F ) ∋ T → JT ∈ Sp(n, F ) ∩ Sym(F 2n)
intertwines the respective actions of Sp(n, F ).

Hence, for g ∈ Sp(n, F ) the forms bT and bgTg−1 are equivalent.

To continue with, we split up the analysis of C(n, F ) into the two possible
cases, namely, −1 is either a square in F or −1 is not a square in F.

We assume first that −1 is not an square in F. Let us fix a square root
i ∈ E of −1.

For an anti involution T ∈ Sp(n, F ) we have that T is a semisimple linear
map with possible eigenvalues i,−i because the minimal polynomial of T
divides x2 + 1.

Let Vi(T ) (resp V−i(T )) the corresponding possible eigenspace in E2n.
Hence, E2n = Vi(T )⊕ V−i(T ), and we have

Proposition 5. i) Both subspaces Vi(T ), V−i(T ) are nonzero.

ii) Vi(T ) = V−i(T ).
iii) F 2n ∩ Vi(T ) = F 2n ∩ V−i(T ) = {0}.
iv) The map F 2n ∋ v → v − iTv ∈ Vi(T ) is linear bijection over F.
v) Vi(T ) (resp V−i(T )) is a lagrangian subspace.
vi) hE(v − iTv, w − iTw) = 2ω(v, w) + 2ibT (v, w), for v, w ∈ F 2n.
vii) The decomposition E2n = Vi(T ) ⊕ V−i(T ) is orthogonal with respect

to hE .
viii) hE restricted to Vi(T ) is non degenerate.

Proof: The result from the facts T ∈ U(hR, E
2n) ∩ Sp(n,E) and i /∈

F.Inparticular, viii) follows from vii) and that hE is non degenerate. For
x, y ∈ Vi(T ), ω(x, y) = ω(Tx, Ty) = iiω(x, y) = −ω(x, y).

�

Let vj − iTvj , j = 1, . . . , n denote an orthonormal basis of Vi(T ) for the
restriction of 1

2ihE . Then, v1, . . . , vn span a lagrangian subspace of F 2n and

v1, . . . , vn, T v1, . . . , T vn is a basis for F 2n.
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In fact, from vi) we obtain w(vk, vs) = 0, bT (vk, vs) = δk,s. The last state-
ment follows from T 2 = −1 applied to

∑
1≤j≤n cjvj+djTvj = 0 for cj , dj ∈ F

and a short computation.

Lemma 7. Assume −1 is not a square in F . Then, the action of Sp(n, F )
in C(n, F ) is transitive.

Proof. Proposition 6 gives rise to a map from C(n, F ) to LE,2n by the rule

C(n, F ) ∋ T −→ Vi(T )

From viii) we have the image of the map is contained inHn. For g ∈ Sp(n, F )
we have the equality gVi(T ) = Vi(gTg

−1), which shows that the map is equi-
variant. The maps is obviously injective. Since Hn is an orbit of Sp(n, F )
(Theorem 1) we have that the map is a bijection and hence the result �

Next, we assume −1 = i2 with i ∈ F. Then, due to the semisimplicity of
T we have the decomposition F 2n = (F 2n ∩ Vi(T ))⊕ (F 2n ∩ V−i(T )).

From the equalities ω(x, y) = −ω(x, y) forx, y ∈ Vi(T ), we have that the
subspaces F 2n ∩ Vi(T ), F

2n ∩ V−i(T ) are isotropic, Corollary 3 pag 81 in [1]
gives us that both subspaces are lagrangian. Therefore, the anti hermitian
form hE restricted to F 2n ∩ Vi(T ) is the null form, which forces to Vi(T ) to
be an element of H0.

Lemma 8. Assume −1 is a square in F . Then, C(n, F ) is a homogeneous
space equivalent to Sp(n, F )/(Sp(n, F ) ∩K).

Remark 9. The map C(n, F ) ∋ T −→ Vi(T ) ∈ H0 is equivariant for
Sp(n, F ) and in this case is no longer injective (c.f. example 3-a) , due
to theorem 1 H0 is a homogeneous space for Sp(n, F ), hence, the map is
surjective.

We now show lemma 7. We set

H :=

(
iIn 0
0 −iIn

)
.

Then, H ∈ C(n, F ). Let T be an anti involution in Sp(n, F ) we will show that
T is conjugated in Sp(n, F ) to the matrixH. For this, we defineD := J−1TJ,
which is another anti involution in Sp(n, F ).

The minimal polynomial of J−1TJ divides the polynomial x2 + 1 = (x−
i)(x+ i) . Hence, D := J−1TJ is diagonalizable over F.

Let W±i the associated eigenspaces. Thus, F 2n = Wi ⊕W−i.
Since for every v, w ∈ F 2n, ω(Dv,Dw) = ω(v, w), we have that W±i are

isotropic subspaces for ω. The hypothesis that ω is non degenerate forces,
W±i to be lagrangian subspaces. Thus, there exists P ∈ Sp(n, F ) so that

Pe1, . . . , P en is a basis for Wi, P en+1, . . . , P e2n is a basis for W−i

We have

DPej = iPej = P (iej) = PH(ej), j = 1, . . . , n,
DPej = −iPej = P (−iej) = PH(ej), j = n+ 1, . . . , 2n.
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Hence, DP = PH. That is,

PH = DP = J−1TJP.

Therefore,

H = P−1J−1TJP = (JP )−1T (JP ).

The matrices inGl(2n, F ) which commute withH are the matrices diag(A,B),
A,B,∈ Gln(F ). Thus, the isotropy at H is Sp(n, F ) ∩K.

�
Remark 10. A particular element of Sp(n, F ) which conjugates H onto J
is the Cayley transform

C(ej) =
1

−2i
(ej + ien+j), j = 1, . . . , n, C(en+j) = ej − ien+j , j = 1, . . . , n.

Example 3. We assume −1 = i2, i ∈ F.
A simple calculation yields C(1, F ) is

{
(
±i x
0 −± i

)
,

(
±i 0
y −± i

)
, x ∈ F, y ∈ F×}

union the set

{
(
a −1+a2

c
c −a

)
, c ∈ F×, a ∈ F\{±i}}

Hence, the cardinal of the set of involutions is 2(q+ q−1)+(q−2)(q−1) =
q(q + 1). The isotropy at diag(i,−i) is the subgroup diag(a,−a), a ∈ F×.
Hence card(Sl(2, Fq))/card(F

×) = q(q − 1)(q + 1)/(q − 1) = card(C(1, F )).
Also,

Vi(

(
−i 0
x i

)
) = F

(
0
1

)
, Vi(

(
i x
0 −i

)
) = F

(
1
0

)
.

Vi(

(
a −1+a2

c
c −a

)
) = F

(
1+a2

c
a− i

)
,

Vi(

(
−i x
0 i

)
) = F

(
x
2i

)
, Vi(

(
i 0
x −i

)
) = F

(
2i
x

)
.

5.1. The case T 2 = a, a square. Let F be a field of odd characteristic,
and let ω be a non degenerate alternating form in V = F 2n . We fix a ∈ F
and define

Sa := {T ∈ Sp(w) : T 2 = aId}
for a = 1 the identity matrix belongs to Sa

for a = −1 the matrix J belongs to Sa

Proposition 6. For a /∈ {1,−1} and a = b2, b ∈ F the set Sa is empty.
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Proof. Let T ∈ Sa , then the eigenvalues of T belongs to the set ±b. Let
Wb,W−b be the eigenspaces of V.

The equality 1
2(bI − T ) + 1

2(bI + T ) = bI implies that V = Wb ⊕W−b.

For x, y ∈ Wb, we have ω(x, y) = 0 ( ω(x, y) = ω(Tx, Ty) = b2ω(x, y), )
. Similarly, for x, y ∈ W−b we have ω(x, y) = 0. Therefore, both subspaces
are isotropic.

We now verify for x,∈ Wb, y ∈ W−b that ω(x, y) = 0. In fact, ω(x, y) =
ω(Tx, Ty) = b(−b)ω(x, y) = −aω(x, y). Since a ̸= −1, we get ω(x, y) = 0.

Then, assuming Sa is not empty, unless a ∈ {1,−1} we have ω equal to
the null form, and the result follows.

Another proof follows along the following lines :
For a symplectic matrix, if λ is an eigenvalue, then 1/λ is also an eigen-

value.
So if b,−b are the unique eigenvalues, and b /∈ {±1,±i} we must have

−b = 1/b from which b2 = −1 so a = −1. �

5.1.1. The case a = 1. Let W be any subspace of V such that ω restricted
to W is non degenerate, so V = W ⊕W⊥.

Define TW to be the linear operator equal to the identity in W and equal
to −I in W⊥.

It readily follows that TW ∈ Sp(n, F ) and TW is an involution.

Proposition 7. Any involution T in Sp(n, F ) is equal to a TW for a con-
venient W.

Proof. In fact, the eigenvalues of T belongs to the set ±1 Let W1,W−1 be
the eigenspaces of V the equality 1

2(I − T ) + 1
2(I + T ) = I implies that

V = W1 ⊕W−1.
For x,∈ W1, y ∈ W−1 we have ω(x, y) = 0. In fact, ω(x, y) = ω(Tx, Ty) =

1(−1)ω(x, y) = −1ω(x, y).
It follows: ω restricted to any of the subspaces in non degenerate. Hence,

T = TW1 . �

Corollary 5. The orbits of Sp(n, F ) in C1(n, F ) are parameterized by k =
1, 2, . . . , 2n. Indeed, for each k the set of involutions T such that its 1−eigenspace
is of dimension k, is an orbit for Sp(n;F ).
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