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Motivated by physical and topological applications, we study representations of the
group LB3 of motions of 3 unlinked oriented circles in R3. Our point of view is
to regard the three strand braid group B3 as a subgroup of LB3 and study the
problem of extending B3 representations. We introduce the notion of a standard
extension and characterize B3 representations admitting such an extension. In partic-
ular we show, using a classification result of Tuba and Wenzl [Pacific J. Math.
197, 491–510 (2001)], that every irreducible B3 representation of dimension at
most 5 has a (standard) extension. We show that this result is sharp by exhibiting
an irreducible 6-dimensional B3 representation that has no extensions (standard
or otherwise). We obtain complete classifications of (1) irreducible 2-dimensional
LB3 representations, (2) extensions of irreducible 3-dimensional B3 representa-
tions, and (3) irreducible LB3 representations whose restriction to B3 has abelian
image. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935361]

I. INTRODUCTION AND MOTIVATION

Over the last two decades, topological states of matter in 2 spatial dimensions and their poten-
tial computational applications have motivated the study of motions of systems of point-like excita-
tions on 2-dimensional surfaces. The mathematical model for such systems are (2 + 1)-topological
quantum field theories (TQFTs). The motions of points in the disk lead to representations of the
braid group Bn which play a central role in the topological model for quantum computation.9,10

Recently, the possibility of 3-dimensional topological states of matter (see, e.g., Refs. 22
and 23) modeled by (3 + 1)-TQFTs21 lead to new possible avenues for quantum computation.
Although motions of point-like excitations in 3 spatial dimensions are mathematically trivial, the
symmetries of loop-like excitations can be quite complicated. The simplest mathematical manifes-
tation of this idea is the group LBn of motions of an oriented n-component unlink Cn.6,11,17 In this
article, we begin a systematic study of the low-dimensional representations of the loop braid group
LB3. The generators and relations for LB3 are given in Ref. 7. We take it as a definition here:

Definition 1.1. The three component loop braid group LB3 is the abstract group generated by
σ1,σ2, s1, s2 satisfying the following relations:

(B1) σ1σ2σ1 = σ2σ1σ2,
(S1) s1s2s1 = s2s1s2,
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(S2) s2
1 = s2

2 = 1,
(L1) s1s2σ1 = σ2s1s2,
(L2) σ1σ2s1 = s2σ1σ2.

The group satisfying only (B1), (S1), and (S2) is the free product B3 ∗S3 of Artin’s braid
group B3 and the symmetric groupS3. The group satisfying (B1)-(L1) is known as the virtual braid
group on three strandsVB3.14 Some authors replace (L2) by
(L2′) σ2σ1s2 = s1σ2σ1
which leads to an isomorphic group. The group satisfying (B1)-(L2) and (L2′) is called the sym-
metric loop braid group SLB3.12

The 3-component loop braid group LB3 is geometrically understood as motions of 3 oriented
circles in R3. The generator σi is interpreted as passing the ith circle under and through the i + 1st
circle ending with the two circles’ positions interchanged. The generator si corresponds to simply
interchanging circles i and i + 1. We can represent these generators diagrammatically as follows,
with the time variable to be read from bottom to top.

A few authors have approached the representations of LB3 from the point of view of extending
representations of B3 (see Refs. 1–3, 12, and 20). Among these, the extending of specific families of
representations of B3, such as the Burau and Lawrence-Krammer-Bigelow representations, as well
as certain representations obtained from solutions to the Yang-Baxter equation has been considered.
We will pay special attention to extensions of the Tuba-Wenzl19 representations, which exhaust all
of the irreducible representations of B3 in five dimensions or less. In doing so, we obtain many
insights into finite-dimensional representations of LB3, especially in lower dimensions.

A. Results and methodology

Our basic strategy is the following:

(1) Let (ρ,V ) be a representation of B3, with ρ(σ1) = A and ρ(σ2) = B.
(2) Find S,S1,S2 ∈ End(V ) so that ρ(s1) = S1, ρ(s2) = S1S and S = S1S2 extends ρ to a representa-

tion ofVB3 (see, for example, Theorem 2.4 and Proposition 2.11).
(3) Determine which pairs (S1,S2) from the previous step factor over LB3.

Our original goal was to carry out this procedure with an irreducible representation in step
(1). Indeed, the classification results of Ref. 19 are very explicit: they show that any irreduc-
ible B3 representation of dimension 5 or less is equivalent to a matrix representation with A and
B in ordered triangular form: A (respectively, B) is upper (respectively, lower) triangular and
Bi, i = Ad−i+1,d−i+1. This is accomplished as part of the following theorem:

Theorem 1.2. Let ρ : B3 → GLd(C) be an irreducible representation of B3.

• If d ≤ 5, then there exists an extension of ρ to LB3.
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• If d = 6, there is an irreducible representation of B3 with no possible extensions.

We show the above theorem using the notion of a standard extension (Definition 2.1). The main
advantage of these extensions is that they trivialize step (3) in our methodology (see Lemma 2.2).
We have gone somewhat beyond our original goal, which we now summarize.

B. Summary of results

(1) In Section II, we characterize when standard extensions exist (Theorem 2.4). We show that
all irreducible representations of LB3 when ρ(σ1) = A = B = ρ(σ2) arise as standard exten-
sions (Theorem 2.8). We also show that extensions which factor through SLB3 are rare
(Theorem 2.16). An infinite-dimensional example is given.

(2) We have determined all two-dimensional representations of LB3 in Section III. In particular,
we show in Theorem 3.1 that every irreducible two-dimensional representation of LB3 is a
standard extension of some B3 representation and every two-dimensional B3 representation
admits a standard extension.

(3) In Section IV, we classify extensions of irreducible three dimensional B3 representations
and show that, generically, irreducible three dimensional representations of LB3 are standard
extensions.

(4) In Section V, we show all four and five-dimensional Tuba-Wenzl representations, including
the reducible ones, admit standard extensions.

(5) In Section VI, we give an example of an irreducible B3 representation that has no possible
extensions to LB3 and give some evidence for a conjecture that any B3 representation in the
Tuba-Wenzl ordered-triangular form must have an extension.

II. GENERAL RESULTS

We record here our main results on extending B3 representations to LB3, which are not dimen-
sion specific. We first introduce the notion of a standard extension. Throughout this section, and for
the remainder of the text, V will be a finite dimensional vector space over C unless otherwise stated.

A. The standard extension

Definition 2.1. A standard extension of a representation ρ : B3 → GL(V ) to LB3 is one for
which ρ(s1s2) = k ρ(σ1σ2) for some k ∈ C.

The following lemma shows that if A, B, S1, and S2 satisfy relations (B1) and (S1) and S1S2 is
proportional to AB, then (L1) and (L2) are also satisfied.

Lemma 2.2. Let A,B,S1,S2 ∈ End(V ) satisfy ABA = BAB and S1S2S1 = S2S1S2. If S1S2 = k AB
for some k ∈ C×, then ABS1 = S2AB and S1S2A = BS1S2.

Proof. ABS1 = k−1S1S2S1 = k−1S2S1S2 = S2AB, S1S2A = k ABA = kBAB = BS1S2. �

Next, we describe extensions of representations of the alternating group A3 toS3. We use cycle
notation for elements ofS3 and denote by ω a primitive 3rd root of unity.

Lemma 2.3. Let γ : A3 → GL(V ) be a representation given by γ((1 2 3)) = S. Then γ can be
extended to S3 by γ(s1) = S1 and γ(s2) = S2 with γ(s1s2) = S1S2 = S if and only if Tr(S) ∈ Z. De-
noting by Vλ the λ-eigenspace of S, we can take S1 to be any involution which preserves V1 and
interchanges Vω and Vω−1.

Proof. If γ is a representation of S3 then Tr(s1s2) ∈ Z, since every character of S3 is integral.
Conversely, if Tr(S) ∈ Z then the non-real eigenvalues ω±1 of S must appear with the same multi-
plicity. Now take S1 to be any involution that preserves the 1-eigenspace of S and interchanges the
ω and ω−1 eigenspaces and define S2 = S1S. It is enough to verify that S1S2S1 = S2S1S2, whence
S2

2 = I will follow from (S1S2S1)2 = S3 = I. We verify the equivalent condition SS1 = S1S2. On V1,



111707-4 Bruillard et al. J. Math. Phys. 56, 111707 (2015)

this is clearly true. For v ∈ Vω, we have S1S2v = ω−1S1v and S1v ∈ Vω−1 so SS1v = ω
−1(S1v). Con-

versely, the relation SS1 = S1S2 with the same argument in reverse shows that the involution S1 must
preserve V1 and interchange vectors in Vω and Vω−1. �

We now characterize when a B3 representation has a standard extension.

Theorem 2.4. Let ρ : B3 → GL(V ) be a finite-dimensional representation of B3, with ρ(σ1) =
A and ρ(σ2) = B. Then, the following are equivalent for k and m in C:

(a) ρ has a standard extension to LB3 with S = k AB and Tr(S) = m.
(b) (AB)3 = k−3I and Tr(AB) = k−1m with m ∈ Z.
(c) AB is diagonalizable and Tr((AB)ℓ) = k−ℓm with m ∈ Z for all ℓ ≤ dim V not divisible by 3

and Tr((AB)ℓ) = k−ℓ dim V for all ℓ ≤ dim V divisible by 3.

Proof. The equivalence of (a) and (b) can be seen from Lemmas 2.2 and 2.3. The implication
from (a) to (c) is obtained by taking the trace of both sides of Sℓ = (k AB)ℓ. For (c) implies (b), we
appeal to the fact that the coefficients of the characteristic polynomial of a d × d matrix X is deter-
mined by the numbers Tr(X ℓ) for 1 ≤ ℓ ≤ d (see, for example, Ref. 18 or Ref. 24). In particular,
the characteristic polynomial of AB is identical to the characteristic polynomial of some matrix X
satisfying X3 = k−3I and Tr(X) = k−1m. Therefore, AB and X have the same set of eigenvalues, and
since AB is assumed to be diagonalizable we are done. �

Remark 2.5. When Tr(k AB) , 0, there is at most one possible value of k for which Tr(k AB) ∈
Z, otherwise there are exactly three such values differing by a factor of ω. In any case, we can now
produce all standard extensions of a given B3 representation satisfying either condition (b) or (c) of
Theorem 2.4.

(1) For fixed ρ(σ1) = A, ρ(σ2) = B, choose k ∈ C so that (AB)3 = k−3I and Tr(k AB) ∈ Z. Define
S = k AB.

(2) Choose any M so that M−1SM = (Iℓ,ωIt,ω2It) (i.e., put S in its block diagonal Jordan form).
(3) Pick any G ∈ GLt(C) and 0 ≤ a ≤ ℓ and an N ∈ GLℓ(C).
(4) Set S1 =

(
N (Ia, −Iℓ−a)N−1 0 0

0 0 G

0 G−1 0

)
.

(5) Define ρ(s1) = MS1M−1 and ρ(s2) = ρ(s1)S.

Notice that distinct involutions on Cℓ with characteristic polynomial (x − 1)a(x + 1)ℓ−a are param-
eterized by N(Ia,−Iℓ−a)N−1, where N ∈ GLℓ(C)/(GLa(C) × GLℓ−a(C)), a representative of the left
coset of GLa(C) × GLℓ−a(C) ⊂ GLℓ(C).

Denote by ⌈n⌉ = min{k ∈ Z : n ≤ k} the usual ceiling function.

Proposition 2.6. Let ρ : LB3 → GL(V ) be a representation with ρ(σ1) = A, ρ(σ2) = B and
ρ(s1s2) = S = k AB. Suppose W ⊆ V is invariant under A and B. Then, W is LB3 invariant only
if dim(W ∩ Vω) = dim(W ∩ Vω2). In this case, denote dim(W ∩ Vω) = dim(W ∩ Vω2) = m and let
dim(W ∩ V1) = ℓ. For ρ(s1) = S1 and ρ(s2) = S2, we have the following:

(a) (S1|W ,S2|W) are parametrized by GLm(C) × ⨿ℓ
j=0(GLℓ(C)/(GL j(C) × GLℓ− j(C))).

(b) Unitary (S1|W ,S2|W) are parametrized by Um × ⨿ℓ
j=0(Uℓ/(U j × Uℓ− j)).

(c) In either cases, the parameter space has dimension m2(⌈ ℓ2−1
2 ⌉) if ℓ > 1, and m2 otherwise.

Proof. For (a), we apply Lemma 2.3 to W and use Remark 2.5. A small modification gives (b).
Part (c) is a routine calculation. �

B. Extensions where ρ(σ1) = ρ(σ2)
We classify here the irreducible LB3 representations V in which A = ρ(σ1) = ρ(σ2) = B.

In this case, the mixed relation (L1) implies that S B ρ(s1s2) commutes with A. Thus, the S-
eigenspace decomposition V = V1 ⊕ Vω ⊕ Vω2 must be A-stable. Moreover, setting S1 B ρ(s1) and
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S2 B ρ(s2) = S1S and restricting to the subgroup ⟨s1, s2⟩ � S3, we see that V1 and Vω ⊕ Vω2 are
complementary subrepresentations of V . Therefore, it suffices to assume either V = V1 or V =
Vω ⊕ Vω2. We consider the first case in Theorem 2.7 and the second in Theorem 2.8.

Theorem 2.7. Any irreducible LB3 representation V with ρ(s1s2) = I and A = ρ(σ1) =
ρ(σ2) = B and dim(V ) > 1 is 2-dimensional of the form

A = *
,

λ x
0 −λ

+
-

ρ(s1) = S1 = ρ(s2) = S2 = *
,

0 1
1 0

+
-
,

for x ∈ C and λ ∈ C×. For distinct pairs (x, λ), the representations are inequivalent. �

Proof. Since V = V1, S1 = S2, the group G B ⟨a,b : a2 = 1, [a,b2] = 1⟩ is isomorphic to a split
extension K o Z2, where K is the kernel of G → Z2 sending both a and b to 1 ∈ Z2. Clearly,
ρ(LB3) = ⟨A,S1⟩ is a quotient of G � K o Z2 under which the image of K is L B ⟨A2, AS1,S1A⟩.
Note that A2 ∈ Z(L) and AS1 = (S1A)−1 modulo Z(L). Hence, we have 1 → Z → L → Z → 1,
which must split to give L = Z × Z. Therefore, our representation factors over (Z × Z) o Z2. We
show it must be at most two-dimensional and leave the rest to the reader: restrict to the abelian sub-
group ρ(K) and consider a one-dimensional subrepresentation C. Let indLB3

K C and resLB3
K V be the

corresponding induced and restriction representation, see Ref. 5 [Section 10.A]. By Frobenius Reci-
procity (see, for example, Ref. 5 [Theorem 10.8]), HomLB3(indCLB3

K ,V ) = HomK(C, resLB3
K V ) , 0,

which means there is a non-zero map from indLB3
K C to V . Since V is irreducible and indLB3

K C is
two-dimensional, then V must be at most two-dimensional. A direct calculation shows that distinct
pairs (x, λ) give rise to inequivalent representations—any invertible matrix that commutes with S1 as
in the statement must also commute with A. �

Theorem 2.8. Let (ρ,V ) be an irreducible representation of LB3 such that A = ρ(σ1) =
ρ(σ2) = B and V1 = 0. If V is finite-dimensional, then dim V = 2n and there is a basis such that

ρ(s1s2) = S = µ−1ωA2, ρ(s2) = S2 = *
,

0 In
In 0

+
-
, A = diag(A1, A2),

A1 =

*..................
,

√
µ

0 µ

1 0
0 µ

1 0
. . .

0 µ

1 0

+//////////////////
-

or

*...............
,

√
µ

0 µ

1 0
. . .

0 µ

1 0
∓√µ

+///////////////
-

,

A2 =

*..................
,

0 µω

1 0
0 µω

1 0
. . .

0 µω

1 0
√
µω2

+//////////////////
-

or

*...............
,

0 µω

1 0
0 µω

1 0
. . .

0 µω

1 0

+///////////////
-

.
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Proof. Suppose V = Vω ⊕ Vω2. Over C, there is some non-zero A2-eigenspace Vω,µ ⊂ Vω. The
relation A2S = S2A2S2 shows S2(Vω,µ) = Vω2, µω. Both eigenspaces are preserved by A and so if V
is irreducible, we can assume V = Vω,µ ⊕ Vω2, µω and that there are no proper A invariant subspaces
of Vω,µ whose image under S2 is A-invariant. Let v ∈ Vω,µ be an eigenvector of A and consider
the sequence v , S2v , AS2v , S2AS2v, . . . , (AS2)lv,S2(AS2)lv, . . .. Since V is finite-dimensional, this
sequence will eventually be linearly dependent. Let n be the largest integer for which the first 2n
terms are linearly independent. Note any odd number of independent terms cannot be maximal
because S2 is a linear bijection between those terms in Vω,µ and those in Vω2, µω. Therefore, the
2n + 1 term (AS2)2nv is in the span of the previous 2n terms, which in particular means the span of
the first 2n terms are A invariant. Since it was already obviously S2 and S invariant, we have the span
of the first 2n terms is all of V . We also have that those terms with an even number of S2’s appearing
span Vω,µ and those with an odd number span Vω2,ωµ. We see with respect to this basis, the matrices
have the desired form. �

Example 2.9. Let V be an infinite-dimensional vector space with basis {e1, f1,e2, f2, . . .}. Then,
we can define a representation of LB3 with respect to some µ ∈ C× and A = B, V1 = 0,

Sei = ωei,S f i = ω2 f i,S2ei = f i,

Ae1 = µe1, Aei = ei+1, A f i−1 = f i even i,

Aei = µ2ei−1, A f i+1 = µ
2 f i odd i.

C. Beyond the standard extension

The following computational result will be useful:

Lemma 2.10. Suppose S1,S2 ∈ GLd(C) satisfy (S1) and (S2), i.e., S1S2S1 = S2S1S2 and S2
i = I.

Then, the following are equivalent for matrices A,B ∈ GLd(C):
(a) ABS1 = S2AB,
(b) S2 commutes with ABS−1 [or equivalently with S(AB)−1],
(c) S1 commutes with (AB)−1S [or equivalently with S−1(AB)],
(d) ABS = S2ABS2.

Proof. (a) implies (b): Then, ABS−1S2 = ABS2S1S2 = ABS1S2S1 = S2ABS2S1 = S2ABS−1.
(b) implies (c): (AB)−1SS1 = (AB)−1S2S1S2 = S−1S2S(AB)−1S = S1(AB)−1S.
(c) implies (d): ABS = SS−1(AB)S1S2 = SS1S−1(AB)S2 = S2ABS2.
(d) implies (a): ABS1 = ABSS2 = S2ABS2S2 = S2AB. �

Proposition 2.11. Let ρ be a B3 representation with ρ(σ1) = A and ρ(σ2) = B. Suppose there
is an extension ρ′(s1) = S′1 and ρ′(s2) = S′2, with ρ′(s1s2) = S′ to LB3. Suppose further that a stan-
dard extension is possible for k ∈ C×. Then, ρ(s1s2) = S = kB2S′ defines an extension of ρ toVB3.
In particular, S = k2B2AB givesVB3 representations.

Proof. We show Tr(S) ∈ Z, SA = BS, and S3 = I and apply Lemma 2.3. First, we show S
satisfies SA = BS: SA = kB2S′A = kB2BS′ = BkB2S′ = BS. Now we check the trace of S using
Lemma 2.10(d): Tr(S) = kTr(B2S′) = kTr(BS′A) = kTr(ABS′) = kTr(S′2ABS′2) = Tr(k AB) ∈ Z. Fi-
nally, we check S3 = I: S3 = k3B2S′B2S′B2S′ = k3BS′ABS′ABS′A = A−1S′2(k AB)3S′2A = I . �

The following well-known result helps to narrow down the possibilities for S = ρ(s1s2), and we
include a proof for completeness.

Lemma 2.12. Let X ∈ End(V ) with V a d-dimensional vector space. Suppose the minimal poly-
nomial of X coincides with its characteristic polynomial. Then, any Y with XY = Y X is of the
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form

Y =
d−1
n=0

bnX n.

Proof. The hypothesis implies that there exists a v ∈ V such that the set {v,Xv, . . . ,Xd−1v}
is a basis for V . Therefore, Y v =

d−1
n=0 bnX nv for some bn. Since Y commutes with X n, we have

Y =
d−1

n=0 bnX n because they agree on the basis. �

Proposition 2.13. Let ρ be any B3 representation with ρ(σ1) = A and ρ(σ2) = B such that the
characteristic and minimal polynomials of B coincide. Then any extension of ρ to LB3 has

ρ(s1s2) = S =
d−1
n=0

anBnAB

for some scalars a0, . . . ,ad−1.

Proof. Since SA = BS by (L1) and AB−1A−1 = B−1A−1B by (B1), we compute

(S(AB)−1)B = SB−1A−1B = SAB−1A−1 = BSB−1A−1 = B(S(AB)−1).
So by Lemma 2.12, S(AB)−1 is a polynomial in B of degree at most d − 1 as required. �

D. Symmetric extensions

Representations of LB3 that factor over SLB3 contain essentially no topological information,
see Ref. 13. We show here that it is not common to find extensions that factor through SLB3.

Lemma 2.14. A matrix S1 ∈ GLd(C) commutes with a full d × d Jordan block matrix J and
S2

1 = Id if and only if S1 = ±Id.

Proof. Since S1 and J commute, S1 is a polynomial f (J) in J = Id + N where N is the nilpotent
Jordan matrix of nilpotency d − 1. Now the result follows from S2

1 = Id. �

Proposition 2.15. Let ρ be a d-dimensional LB3 representation with ρ(σ1) = A and ρ(σ2) =
B, whose minimal and characteristic polynomials agree, and ρ(s1) = S1 and ρ(s2) = S2. Suppose
(AB)3 = cId, then ρ factors through SLB3 if and only if [S2,B2] = [S1, A2] = 0.

Proof. From Proposition 2.13, S = a0AB + a1BAB + · · · + ad−1Bd−1AB. By Lemma 2.10(b),
S2 commutes with a0 + · · · + ad−1Bd−1. Now, B2AB is a multiple of A−1B−1 when (AB)3 = cId. So,
we can rewrite S(A−1B−1)−1 up to scalar as (a0 + · · · + ad−1Bd−1)B−2. Now, S2 commutes with the
last expression if and only if it commutes with B−2. Hence, if we replace A and B by A−1 and B−1 in
Lemma 2.10, we see this is exactly (L2′) as required. The condition for A is similar. �

Theorem 2.16. Let ρ be a d-dimensional B3 representation with ρ(σ1) = A and ρ(σ2) = B,
whose minimal and characteristic polynomials agree and that no eigenvalue of A is the negation of
another. Suppose a standard extension is possible. Then, there are only finitely many extensions of ρ
that factor through SLB3.

Proof. By Proposition 2.15, S1 commutes with A2. Since no eigenvalue of A is a negation
of another, A2 must have a characteristic polynomial equal to its minimal polynomial. In other
words, the Jordan blocks have distinct eigenvalues. Restricting S1 to a any A2 eigenspace, we apply
Lemma 2.14 to see that only finitely many S1 can commute with A2, and similarly for S2 and B. �

We will see in the low-dimensional cases that the assumption on the eigenvalues cannot be
removed and that finitely many cannot be strengthened to none.
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III. TWO-DIMENSIONAL REPRESENTATIONS

The main goal of this section will be to prove the following:

Theorem 3.1. Let (ρ,V ) be any two-dimensional irreducible representation of LB3 with
ρ(σ1) = A , ρ(σ2) = B, ρ(s1) = S1, and ρ(s2) = S2. Then, ρ(s1s2) = −(Tr(AB))−1AB. Moreover,
every representation of B3 with ρ(σ1) = A , ρ(σ2) = B can be extended in this way. Let Gr(V,1) be
the set of one-dimensional linear subspaces of V . Choices for (S1,S2) are in one to one correspon-
dence with Gr(V,1) \ {Vω,Vω2}.

Remark 3.2. We only consider the A , B case because A = B was considered in Sec. II. The
reducible representations must satisfy S1 = S2 (and therefore A = B) and is a straightforward calcu-
lation we have omitted.

If A , B then we must have S1 , S2, whence S3 must act by its two-dimensional irreducible
representation so that any extension to LB3 must also be irreducible. We also have

Tr(S1) = Tr(S2) = 0, Tr(S) = −1, and Det(S1) = Det(S2) = −1.

Lemma 3.3. If γ((1 2)) = S1, γ((2 3)) = S2 defines an irreducible two-dimensionalS3 represen-
tation, then the matrix equation X S1 = S2X has a two-dimensional solution space spanned by S1S2
and S2S1S2.

Proof. It is easy to see that S1S2 and S2S1S2 are solutions, which are linearly independent
because S1 , S2. Now viewing X → X S1 − S2X as a linear transformation on M2(C) it suffices to
show that the image is at least two dimensional. Evaluating at X = I and X = S1 gives S1 − S2 and
1 − S2S1 in the image. They are independent because one has zero trace and the other does not. �

Lemma 3.4. If A , B satisfies the braid relation (B1), then either

A = *
,

λ1 λ1

0 λ2

+
-
, B = *

,

λ1 −λ2

0 λ2

+
-
, −λ1/λ2 = ω

±1, or

A = *
,

λ1 λ1

0 λ2

+
-
, B = *

,

λ2 0
−λ2 λ1

+
-
, λ2

1 − λ1λ2 + λ
2
2 , 0.

Moreover, (Tr(AB))2 = Det(AB).
Proof. If reducible, then we are in the first case. Otherwise, we are in the second. The last

statement is a calculation. �

Proof of Theorem 3.1. First, we show S = −(Tr(AB))−1AB. Lemma 3.3 gives

AB = c0S1S2 + c1S2S1S2.

Taking the trace gives c0 = −Tr(AB) and taking determinant gives

Det(AB) = (−Tr(AB) + c1)(−Tr(AB) − c1).
Hence by Lemma 3.4, c1 = 0 and S1S2 = −(Tr(AB))−1AB.

Now, we show every B3 representation with A , B admits a standard extension. By Lemma 3.4,
the characteristic equation for AB is

(AB)2 − Tr(AB)AB + (Tr(AB))2 = 0.

Multiplying both sides by AB + Tr(AB), we see (−(Tr(AB))−1AB)3 = 1. For the last claim, let Cv
be a one-dimensional subspace spanned by v ∈ V , then v = vω + vω2 for unique vω ∈ Vω \ {0} and
vω2 ∈ Vω2 \ {0}, we define S1 by S1(vω) = vω2.

Corollary 3.5. Suppose (V, ρ) is an irreducible two-dimensional representation of LB3. Then,
ρ factors through SLB3 if and only if Tr(B) = 0.
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Proof. Suppose Tr(B) = 0. Then from the characteristic equation of B, B2 is a scalar multiple
of I, and hence AB is a scalar multiple of B2AB which is a scalar multiple of A−1B−1. Conversely,
if the opposite relations are satisfied, we get a standard extension of A−1 and B−1 and A and B
simultaneously. So, AB is a scalar multiple of A−1B−1. Therefore, B2 is a scalar multiple of I and
from the characteristic equation Tr(B) = 0 since B is not a scalar. �

IV. THREE DIMENSIONAL REPRESENTATIONS

In this section, we show that most irreducible three dimensional representations come from
standard extensions in Theorem 4.5. First, we state a slightly stronger version of Theorem 2.4 in
three dimensions.

Lemma 4.1. Let ρ be a three dimensional representation of B3 such that ρ(σ1) = A , B =
ρ(σ2). Then, there exists a (standard) extension to LB3 with ρ(s1s2) = S = k AB if and only if
Tr(AB) = Tr((AB)2) = 0. In this case, we have k3 = Det(AB)−1.

Proof. Suppose there exists a standard extension, i.e., with S = k AB. Since A , B, we have
S , I. Restricting to S3 and considering characters, we see that Tr(S±1) = 0. Therefore, Tr(AB) =
k−1Tr(S) = 0 and since (AB)2 is a multiple of S−1, we have Tr((AB)2) = 0 as well. Conversely,
suppose Tr(AB) = Tr((AB)2) = 0. The characteristic polynomial of a 3 × 3 matrix C is

−x3 + Tr(C)x2 +
1
2
[Tr(C)2 − Tr(C2)]x + Det(C),

so for C = AB, the Cayley-Hamilton Theorem implies (AB)3 = Det(AB)I. Thus for any choice of
k3 = Det(AB)−1, we have (k AB)3 = I so that Theorem 2.4 implies the result. �

Proposition 4.2. Let ρ be a three dimensional representation of LB3. Suppose the minimal
and characteristic polynomials of ρ(σ1) = A (and ρ(σ2) = B) coincide, Tr(AB) = Tr(B2AB) = 0,
Tr(B4AB) , 0, and A , B. Then, S B ρ(s1s2) = k AB.

Proof. Observing that Tr(B2AB) = Tr((AB)2), we apply Lemma 4.1 to see that there exists a
k such that (k AB)3 = I. Thus, (BAB)2 is a scalar multiple of I and so Tr(BAB) , 0 as ρ is three
dimensional. By Proposition 2.13, we have

S = a0AB + a1BAB + a2B2AB.

Since A , B and SA = BS, then S , I. Therefore, Tr(S) = 0 and taking the trace of the above
expression gives a1 = 0. Multiplying by B2, we obtain

B2S = a0B2AB + a2B4AB.

Noting (by Proposition 2.11) that Tr(B2S) = Tr(AB) = 0 = Tr(B2AB), we get a2Tr(B4AB) = 0. So
a2 = 0, i.e., S = a0AB. �

The following is a summary of the results in Ref. 19 on three dimensional B3 representations.

Lemma 4.3 (Ref. 19). Let λ1, λ2, λ3 ∈ C× and define

A =
*...
,

λ1 λ1λ3λ
−1
2 + λ2 λ2

0 λ2 λ2

0 0 λ3

+///
-

and B =
*...
,

λ3 0 0
−λ2 λ2 0
λ2 −λ1λ3λ

−1
2 − λ2 λ1

+///
-

.

Then,

(a) Tr(AB) = Tr(B2AB) = Tr((AB)2) = 0 whereas Tr(B4AB) = λ1λ2λ3(λ1 + λ2)(λ1 + λ3)(λ2 +

λ3) and (AB)3 = (λ1λ2λ3)2I.
(b) ρ(σ1) = A and ρ(σ2) = B defines a representation of B3, which is irreducible provided

λ2
i + λ jλk , 0 for {i, j, k} = {1,2,3}. In this case, the minimal and characteristic polynomials

of A and B coincide.
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(c) Let (ρ,V ) be any irreducible three dimensional representation of B3. Then, there exists a basis
of V with respect to which ρ(σ1) = A and ρ(σ2) = B.

(d) Two three-dimensional irreducible representations ρ, ρ′ of B3 are equivalent if and only if
Spec(ρ(σ1)) = {λ1, λ2, λ3} = Spec(ρ′(σ1)).

We may now describe all extensions of three dimensional Tuba-Wenzl representations of B3 to
LB3. In particular, we have a full description of extensions of irreducible B3 representations, up to
equivalence.

Proposition 4.4. Let (ρ,V ) be a three dimensional representation of B3 such that ρ(σ1) = A
and ρ(σ2) = B as in Lemma 4.3, with Spec(A) = {λ1, λ2, λ3}. Then, ρ extends to LB3, and either

(a) ρ(s1s2) = S = γ−2AB, where γ3 = λ1λ2λ3, ρ(s1) = MS1M−1, where S1 = *
,

±1 0 0
0 0 α

0
1
α

0
+
-

and

M ∈ GL(V ) is any matrix such that γ−2M−1ABM = diag(1,ω,ω2) or
(b) ρ(s1s2) = S , k AB, (λ1 + λ2)(λ1 + λ3)(λ2 + λ3) = 0 and ρ factors over SLB3. After permut-

ing the eigenvalues if necessary, we have

ρ(s1s2) = *.
,

0 0 z
0 z z

− 1
z2

1 − z3

z2 −z

+/
-

and ρ(s1) = ± *.
,

1 z − 1 z
0 z z

0
1 − z2

z
−z,

+/
-

where z ∈ C× is a free parameter.

Proof. Combining Lemma 4.3 with Proposition 4.2, we get either S = k AB or (λ1 + λ2)(λ1 +

λ3)(λ2 + λ3) = 0. In the first case the constant is as in Lemma 4.1 and the parametrization of S1 is
trivial. Hence, we have (a).

Assume (λ1 + λ2)(λ1 + λ3)(λ2 + λ3) = 0 and let S = a0AB + a2B2AB with a2 , 0 (see proof of
Proposition 4.2 for why a1 = 0). By Lemma 2.10(b), S2 = ρ(s2) commutes with S(BA)−1 = a0 +

a1B2, so S2 commutes with B2. Similarly, S1 B ρ(s1) commutes with A2, so by Proposition 2.15,
we see that ρ factors over SLB3. By Lemma 4.3(d), we may relabel the λi so that λ3 = −λ2. Set
z = λ1λ2(a0 + λ

2
2a2). We obtain the required form of S by solving S3 = I and Tr(ABS) = Tr(AB)

and ABS1 = S2AB. �

One consequence of this result is that, generically, three dimensional B3 representations equiva-
lent to the form of Proposition 4.4 do not have non-standard extensions. This is also true in slightly
greater generality, as the following illustrates (cf. Corollary 3.5 and Theorem 2.16).

Theorem 4.5. Let (ρ,V ) be an irreducible three dimensional representation of LB3 with
ρ(σ1) = A, ρ(σ2) = B with Spec(A) = Spec(B) = {λ1, λ2, λ3} and ρ(s1s2) = S. Then,

(a) Any other LB3 representation ψ with ψ(σ1) = A, ψ(σ2) = B, and ψ(s1s2) = S is also irreduc-
ible.

(b) Suppose the minimal and characteristic polynomials of A (and B) coincide, Tr(AB) =
Tr((AB)2) = 0 and (λ1 + λ2)(λ1 + λ3)(λ2 + λ3) , 0. Then, ρ(s1s2) = k AB.

Proof. For (a), suppose some (ψ,U) satisfying the hypotheses is reducible. Clearly, ψ(s1s2) =
S = ρ(s1s2) , I since A = SA = BS = B implies dim(V ) is even by Theorems 2.7 and 2.8. Thus,
S has 3 distinct eigenvalues 1,ω±1, and the only ψ(s1),ψ(s2) invariant subspaces of U are the 1
eigenspace U1 of S and its S-invariant complement Uω ⊕ Uω−1. So one of these two spaces is
invariant under A, B, and S. But then, the same is true for (ρ,V ) which contradicts irreducibility as
they will also be ρ(s1), ρ(s2) invariant.

For (b), if B3 acts irreducibly on V , then Proposition 4.4 gives the result. So assume that B3
acts reducibly on V and S = ρ(s1s2) , k AB for any k. The hypotheses and Proposition 2.13 imply
that any A,B invariant subspace W ⊂ V is also S-invariant and S = a0AB + a2B2AB, from which it
follows from Lemma 2.10(b) that S2 = ρ(s2) commutes with B2. Thus if B2 has distinct eigenvalues,
S2 is a polynomial in B2 by Lemma 2.12 and thus W is S2 invariant, a contradiction. After permuting
labels, we may assume λ2

1 = λ
2
2. We eliminate the possibility that λ1 = λ2 by considering the sizes

of the Jordan blocks when the minimal polynomial of B must be of degree 3. Thus, (λ1 + λ2) = 0, a
contradiction. (Note Lemma 4.1 guarantees existence). �
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We illustrate our results with some applications.

Example 4.6. The Lawrence-Krammer-Bigelow representation for B3 (see, for example,
Ref. 15) is defined by

ρ(σ1) = A =
*...
,

tq2 0 tq(q − 1)
0 1 − q q
0 1 0

+///
-

, ρ(σ2) = B =
*...
,

1 − q 0 1
0 tq2 tq2(q − 1)
q 0 0

+///
-

,

for q, t ∈ C×. We see that Tr(AB) = Tr(B2AB) = 0 and a standard extension is possible by
Lemma 4.1. The minimal polynomial of A and B both have degree 3 and the eigenvalues are not
negations of each other when tq2 , −1, tq , 1, and q , 1. In this case, the irreducible extensions
must be standard by Theorem 4.5. See also Ref. 3, where it is shown that the Lawrence-Krammer-
Bigelow representation of Bn with n ≥ 4 does not extend except for degenerate cases.

Example 4.7. For any 1 , t ∈ C, the B3 representation given by ρ(σ1) = A =
(

0 t 0
1 0 0
0 0 1

)
and

ρ(σ2) = B =
(

1 0 0
0 0 t
0 1 0

)
is irreducible (see Ref. 8). Thus, there is a basis with respect to which A and

B are in the Tuba-Wenzl form. The eigenvalues of A are {1,±
√

t}, so that a 1-parameter family of

non-standard extensions exist, by Proposition 4.4(b). It is easy to verify that ρ(s1) = S1 =

(
0 1 0
1 0 0
0 0 1

)
and ρ(s2) = S2 =

(
1 0 0
0 0 1
0 1 0

)
define an extension. Since AB =

(
0 0 t2

1 0 0
0 1 0

)
, it is clear that ρ(s1s2) ,

k AB for this example. One may verify directly that this representation factors over SLB3. In fact,
the analogous extension works for all n and factors over SLBn.

V. DIMENSIONS 4 AND 5

The following is a summary of the results in Ref. 19 on four dimensional B3 representations.

Lemma 5.1 (Ref. 19). Let λ1, λ2, λ3, λ4 ∈ C× and choose γ2 such that γ4 = λ1λ2λ3λ4. Define

A =

*.........
,

λ1 (1 + λ1λ4

γ2 +
λ2

1λ
2
4

γ4 )λ2 (1 + λ1λ4

γ2 +
λ2

1λ
2
4

γ4 )λ3 λ4

0 λ2 (1 + λ1λ4

γ2 )λ3 λ4

0 0 λ3 λ4

0 0 0 λ4

+/////////
-

and

B =

*.........
,

λ4 0 0 0
−λ3 λ3 0 0
λ2

2λ3

γ2 −(λ2λ3

γ2 + 1)λ2 λ2 0

−
λ1λ

3
2λ

3
3

γ6 (λ
3
2λ

3
3

γ6 +
λ2

2λ
2
3

γ4 +
λ2λ3

γ2 )λ1 −(λ
2
2λ

2
3

γ4 +
λ2λ3

γ2 + 1)λ1 λ1

+/////////
-

.

(1) Setting ρ(σ1) = A and ρ(σ2) = B defines a representation of B3, and every irreducible B3
representation of dimension 4 is equivalent to such a representation.

(2) Tr(AB) = −γ2 and (AB)3 = −γ6I4.

Proposition 5.2. All four dimensional Tuba-Wenzl representations admit a standard extension.
In particular, all irreducible four dimensional representations of B3 admit a standard extension.
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Proof. By Lemma 5.1, (−γ−2AB)3 = I4 and Tr(−γ−2AB) = 1. Now, apply Theorem 2.4. �

Proposition 5.3. Any extension of a four dimensional Tuba-Wenzl representation satisfies
Tr(S) = 1.

Proof. Tr(S) must either be −2 or 1 since S , 1. If Tr(S) = −2, then e1 + Se1 + S2e1 = 0 and
e2 + Se2 + S2e2 = 0 means S must have diagonal entries 0, 0, −1, −1 and other entries zero unless
they are on the skew diagonal, in which case they would be x, x, −x−1, −x−1. We see that such a
matrix cannot satisfy SA = BS. Equating the (2,4) entry gives λ4 = −λ3. Then equating the (3,4)
entry gives x(x − 1) = λ2

2/γ
2. �

Example 5.4. If V and W are both two-dimensional irreducible representations of LB3 then
V ⊗W is a four dimensional representation with S = k AB.

The following is a summary of the classification of simple B3 representations of dimension 5
found in Ref. 19.

Lemma 5.5 (Ref. 19). Let λ1, λ2, λ3, λ4, λ5 ∈ C× with γ a fixed fifth root of λ1λ2λ3λ4λ5. Define

A =

*..............
,

λ1 (1 + γ2

λ2λ4
)(λ2 +

γ3

λ3λ4
) (1 + λ1λ5

γ2 )(λ3 + γ +
γ2

λ3
) (1 + λ2λ4

γ2 )(λ3 +
γ3

λ2λ4
) γ3

λ1λ5

0 λ2 λ3 + γ +
γ2

λ3
λ3 + γ +

γ3

λ1λ5

γ3

λ1λ5

0 0 λ3 λ3 +
γ3

λ1λ5

γ3

λ1λ5
0 0 0 λ4 λ4

0 0 0 0 λ5

+//////////////
-

and B by Bi, j = (−1)i− jA6−i,6− j .

1. Defining ρ(σ1) = A and ρ(σ2) = B defines a representation of B3, and every irreducible B3
representation of dimension 5 is equivalent to such a representation.

2. (γ−2AB)3 = I5 and Tr(γ−2AB) = −1.

From this lemma and Theorem 2.4 we immediately have the following:

Proposition 5.6. All five-dimensional Tuba-Wenzl representations admit a standard extension.
In particular, all irreducible five-dimensional representations of B3 admit a standard extension.

Proposition 5.7. Any extension of a five-dimensional Tuba-Wenzl representation satisfies
Tr(S) = −1.

Proof. Assume otherwise, Tr(S) = 2. In this case, the non-real eigenspace of S is a unique two-
dimensional subspace. So, the span of e1,Se1,S2e1, and e2,Se2,S2e2 must have a two-dimensional
intersection. Assuming the skew triangular form of S, this determines the 3rd row and column
completely (all but (3,3) entry zero, which is 1). Applying SA = BS to this row and column gives
two of the skew diagonal entries next to the (3,3) entry are both −1. Now S3e1 = e1 and S3e2 = e2
gives the matrix for S has only non-zero entries on the skew diagonal x,−1,1,−1, x−1 and the last
row and column: x, v,0, v,1, x−1,−v−1,0,−v−1,1. This now should be checked to fail the relation
SA = BS. �

In dimension d = 4 and 5, every irreducible B3 representation can be extended to a standard
LB3 representation. Now we show that most extensions are standard. That is, whenever an exten-
sion exists, S = k AB for some k ∈ C× unless the eigenvalues (λ1, . . . , λd) of A and B are zeros of a
set of polynomials. This relies on the special form of A, B, S and their products. Recall the notation
of skew triangular matrices. A matrix M = [mi j]d×d is called a skew lower (upper) triangular matrix
if mi j = 0 for i + j < d (i + j > d).
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Proposition 5.8. Let ρ be an extension to LB3 of an irreducible B3 representation of dimension
4 or 5 in the form of Lemma 5.1 or 5.5, with ρ(σ1) = A, ρ(σ2) = B and ρ(s1s2) = S. Then AB,
S, and BSA are skew lower triangular matrices. Furthermore, S2 and (BSA)2 are skew upper
triangular matrices.

Proof. A direct computation shows that AB is skew lower triangular. Since the characteristic
and minimal polynomials of A coincide, Proposition 2.13 implies S is the product of a lower trian-
gular matrix by a skew lower triangular matrix, which is evidently skew lower triangular. Therefore,
S2 = S−1 is skew upper and the same holds for BSA = B2A by Proposition 2.11. �

Theorem 5.9. Let ρ be an irreducible d-dimensional B3-representation with d = 4 or 5 as in
Lemmas 5.1 and 5.5 with ρ(σ1) = A and ρ(σ2) = B. For each d = 4 and 5, there is a variety V (Jd)
where Jd ⊂ K[λ1, . . . , λd, γ], such that if (λ1, . . . , λd) ∈ Cd \ V (Jd), then

S = k AB

is the only solution for the loop braid relations, where k4 = −γ−2 for d = 4 and k5 = γ
−2 for d = 5.

Proof. By Proposition 2.13, S =
d−1

i=0 biBiAB. We will prove that, except when (λ1, . . . , λd, γ)
is a solution to a certain system of polynomial equations, all coefficients bi vanishes except b0. Let
Pi j be the (i, j)-entry of S2 and Qi j be the (i, j)-entry of (BSA)2. Then Pi j and Qi j are second degree
homogeneous polynomials of b0, . . . ,bd−1. Proposition 5.8 gives

Pi j = 0 and Qi j = 0, if i < j. (1)

Note that for i < j, the term b2
0 does not appear in Pi j and Qi j for (AB)2 and (BABA)2 are skew

upper triangular. Therefore, for i < j, system (1) can be viewed as a homogeneous linear system of
unknowns bmbn. It has more equations than unknowns when d ≥ 2. In fact, it has d2 − d equations
and Nd unknowns bmbn (m + n > 0), where Nd = (d + 2)(d − 1)/2 and Nd ≤ d2 − d for d ≥ 2. In
general, it only has zero solutions depending on whether the coefficient matrix has rank Nd.

Let Md be the coefficient matrix of system (1) and Jd be the set of the determinants of all
Nd × Nd submatrices of Md. If (λ1, . . . , λd, γ) < V (Jd), then system (1) only has zero solutions, that
is

bmbn = 0 for m + n > 0.

Therefore, for generic values of (λ1, . . . , λd, γ) (i.e., away from V (Jd)), we must have
S = b0AB. �

VI. BEYOND DIMENSION 5

We show that six-dimensional irreducible representations of B3 do not always extend.

Proposition 6.1. Let ω = e2πi/3 be a primitive 3rd root of unity and define

A =

*...........
,

1 −ω + 1 −ω2 + 1 ω − 1 ω2 − 1 ω − 1
ω2 − 1 ω2 0 −ω2 + 1 0 0
ω2 − 1 ω2 − 1 ω2 −ω2 + 1 −ω2 + 1 0

0 ω − 1 ω2 − 1 −ω −ω2 + 1 −ω + 1
−ω2 + 1 −ω2 + 1 0 ω2 − 1 −1 0
−ω2 + 1 −ω2 + 1 −ω2 + 1 ω2 − 1 ω2 − 1 −1

+///////////
-



111707-14 Bruillard et al. J. Math. Phys. 56, 111707 (2015)

and

B =

*...........
,

1 −ω + 1 −ω2 + 1 −ω + 1 −ω2 + 1 −ω + 1
ω2 − 1 ω2 0 ω2 − 1 0 0
ω2 − 1 ω2 − 1 ω2 ω2 − 1 ω2 − 1 0

0 −ω + 1 −ω2 + 1 −ω −ω2 + 1 −ω + 1
ω2 − 1 ω2 − 1 0 ω2 − 1 −1 0
ω2 − 1 ω2 − 1 ω2 − 1 ω2 − 1 ω2 − 1 −1

+///////////
-

.

Then ρ(σ1) = A and ρ(σ2) = B define an irreducible representation of B3 which cannot be extended
to an LB3 representation.

Proof. These two matrices follows the construction in Ref. 16, where the representation is
shown to be indecomposable. We verify (using Magma4) that the dimension of the algebra gener-
ated by A,B is 36, and we see that the representation is irreducible. Alternatively, one may
use Ref. 19, Remark 2.11(4) to verify irreducibility: in this case, Det(A)6 = 1 so that if there were
a non-trivial r < 6-dimensional subrepresentation W ⊂ C6, the eigenvalues of A on W must satisfy
(µ1 · · · µr)36 = 1. Computing the characteristic polynomial, one finds that the eigenvalues of A are
eπi/3 and the 5 roots of an irreducible 5 degree polynomial in Q(√3i)[x]. In particular, the minimal
polynomial of B (and A) coincides with the characteristic polynomial. In any case, any subrepresen-
tation either has dimension 1 or a 1 direct complement. One then verifies that A and B do not have a
common eigenvector of eigenvalue eπi/3.

Now if an extension of ρ to LB3 exists, then, by Proposition 2.13, S =
5

i=0 biBiAB. The
requirement S3 = I and a calculation imply that S = qAB or S = qB2AB where q is any third root of
unity. But for such S, tr(S) < R. Therefore, this irreducible B3 representation cannot be extended to
a LB3 representation. �

In Ref. 19 [Subsection 1.5], there is a general construction of (d + 1) × (d + 1) representa-
tions in ordered triangular form. We recall the details for the reader’s convenience. For 0 ≤ i ≤ d
define i = d − i and let c ∈ C×. For 0 ≤ i ≤ d, let λi satisfy λiλd−i = c. Define matrices A and

B by Ai j =

(
i

j

)
λi and Bi j = (−1)i+ j ( ij ) λi. The identity

d
k=0(−1)k (

i
k

) (
k

j

)
=

(
i
j

)
is useful to

verify the relation ABA = BAB so that these matrices define a B3 representation. One computes

(AB)i j = c(−1) j
(
i

j

)
and (AB)3 = (−1)dc3I. Define S = (−1)d

c
AB, that is,

Si j = (−1)d+ j *
,

i
j
+
-
= (−1) j *

,

i
j
+
-
.

Clearly, Tr(S) ∈ R (in fact Tr(S) ∈ {0,±1} and S3 = I) and this representation admits a standard
extension. Using Ref. 19 [Remark 2.11(4)] (due to Deligne), it is possible to show that, for suffi-
ciently generic eigenvalues, these B3 representations are irreducible.

Our investigations of low-dimensional LB3 representations suggest the following:

Conjecture 1. Suppose that ρ is an irreducible d-dimensional matrix representation of B3 such
that ρ(σ1) = A and ρ(σ2) = B are in ordered triangular form (Ref. 19), that is, A is upper triangular
and B is lower triangular with Bi, i = Ad−i+1,d−i+1. Then, ρ has a standard extension to LB3.

To prove this conjecture, it is enough to show that for some root k of cx3 − 1 where (AB)3 = cI,
we have Tr(k AB) ∈ Z. Fixing some root c1/3, we have Spec(c1/3AB) ⊂ {1,ω±1} where ω = e2πi/3.
If these appear with multiplicities µ1, µ± then there is a choice of k such that Tr(k AB) ∈ Z if and
only if two of these eigenvalues coincide.
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