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On the Chern-Ricci flow and its solitons for Lie groups

Jorge Lauret∗1 and Edwin Alejandro Rodrı́guez Valencia∗∗1,2
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This paper is concerned with Chern-Ricci flow evolution of left-invariant hermitian structures on Lie groups.
We study the behavior of a solution, as t is approaching the first time singularity, by rescaling in order to prevent
collapsing and obtain convergence in the pointed (or Cheeger-Gromov) sense to a Chern-Ricci soliton. We give
some results on the Chern-Ricci form and the Lie group structure of the pointed limit in terms of the starting
hermitian metric and, as an application, we obtain a complete picture for the class of solvable Lie groups having
a codimension one normal abelian subgroup. We have also found a Chern-Ricci soliton hermitian metric on
most of the complex surfaces which are solvmanifolds, including an unexpected shrinking soliton example.
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1 Introduction

The Chern-Ricci flow (CRF) is the evolution equation for a one-parameter family ω(t) of hermitian metrics on a
fixed complex manifold (M,J) defined by

∂

∂t
ω = −2p, or equivalently,

∂

∂t
g = −2p(·, J ·), (1)

where p = p(J, ω(t)) is the Chern-Ricci form and g = ω(·, J ·) (see [6, 21, 22, 7]). This paper is concerned with
CRF-flow evolution of (compact) hermitian manifolds (M,J, ω) whose universal cover is a Lie groupG and such
that if π : G −→ M is the covering map, then π∗J and π∗ω are left-invariant. This is in particular the case of
invariant structures on a quotient M = G/Γ, where Γ is a cocompact discrete subgroup of G (e.g. solvmanifolds
and nilmanifolds). A CRF-flow solution on M is obtained by pulling down the corresponding CRF-flow solution
on the Lie group G, which by diffeomorphism invariance stays left-invariant. Equation (1) therefore becomes
an ODE for a non-degenerate 2-form ω(t) on the Lie algebra g of G and thus short-time existence (forward and
backward) and uniqueness of the solutions are always guaranteed (see [14]). We therefore study, more in general,
left-invariant solutions on Lie groups which may or may not admit a cocompact discrete subgroup.

Let (G, J) be a Lie group endowed with a left-invariant complex structure. Since on Lie groups the Chern-
Ricci form p depends only on J (see (3)), we obtain that along the CRF-solution starting at a left-invariant
hermitian metric ω0, p(t) ≡ p0 := p(J, ω0). This implies that ω(t) is simply given by

ω(t) = ω0 − 2tp0.

If P0 is the Chern-Ricci operator of ω0 (i.e. p0 = ω0(P0·, ·)), then

ω(t) = ω0((I − 2tP0)·, ·),

and so the solution exists as long as the hermitian map I − 2tP0 is positive, say on a maximal interval (T−, T+),
which can be easily computed in terms of the extremal eigenvalues of the symmetric operator P0.
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2 J. Lauret and E. Rodrı́guez Valencia: Chern-Ricci flow

We aim to understand the behavior of a CRF-solution (G,ω(t)), as t is approaching T±, in the same spirit as
in [16, Section 3], where the long-time behavior of homogeneous type-III Ricci flow solutions is studied. In order
to prevent collapsing and obtain as a limit a manifold of the same dimension as G, the question is whether we
can find a hermitian manifold (M,J±, ω±), bi-holomorphic embeddings φ(t) : M −→ G and a scaling function
a(t) > 0 so that a(t)φ(t)∗ω(t) converges smoothly to ω±, as t → T±. Sometimes it is only possible to obtain
this along a subsequence tk → T± and the diffeomorphisms φ(tk) may be only defined on open subsets Ωk
exhausting M and so M might be non-diffeomorphic and even non-homeomorphic to G. This is called pointed
or Cheeger-Gromov convergence of (G, a(t)ω(t)) toward (G±, ω±).

It is proved in [14] that given any CRF-solution (G,ω(t)), there is always a pointed limit (G±, J±, ω±) as
above, where G± is a Lie group (possibly non-isomorphic to G) and the hermitian structure (J±, ω±) is left-
invariant. Moreover, (J±, ω±) is a CR-soliton, i.e.

p(J±, ω±) = cω± + LXω±,

for some c ∈ R and a complete holomorphic vector field X on G±, or equivalently, the CRF-flow solution ω̃(t)
starting at ω± is self-similar, in the sense that

ω̃(t) = (−2ct+ 1)ϕ(t)∗ω±,

for some bi-holomorphic diffeomorphisms ϕ(t) of (G±, J±). Actually, ϕ(t) can be chosen to be a one-parameter
group of automorphisms of G±. In many cases, the rescaling considered to obtain a pointed limit is the usual one
given by ω(t)/t.

After some preliminaries, we give in Section 2 an alternative proof of the fact that any hermitian nilmanifold
(i.e. G nilpotent) is Chern-Ricci flat (see [1, Lemma 2.2]) and so a fixed point for CRF. In Sections 3 and 4, we
give an overview on the bracket flow approach and a structural result on CR-solitons from [14] and then give a
construction procedure for CR-solitons, including a characterization of those which are Kähler-Ricci solitons.

We study in Section 5 to what extent the Chern-Ricci form and the Lie group structure of the pointed limit
(G±, ω±) are determined by the starting hermitian metric (G,ω0). For instance, we proved the following:

• If P0 ≤ 0 (i.e. T+ = ∞) and k := KerP0 is an abelian ideal of g, then ω(t)/t converges in the pointed
sense, as t → ∞, to a Chern-Ricci soliton (G+, ω+) with Lie algebra g+ = k⊥ n k and Lie bracket [·, ·]+
such that [k, k]+ = 0. The Chern-Ricci operator of (G+, ω+) is given by P+|k⊥ = −I , P+|k = 0.

• If the eigenspace gm of the maximum positive eigenvalue of P0 is a nonzero Lie subalgebra of g, then
T+ <∞ and ω(t)/(T+ − t) converges in the pointed sense, as t→ T+, to a Chern-Ricci soliton (G+, ω+)
with Lie algebra g+ = gm n g⊥m and Lie bracket [·, ·]+ satisfying [g⊥m, g

⊥
m]+ = 0 and whose Chern-Ricci

operator equals P+|gm = 1
2I , P+|g⊥m = 0.

In Section 6, we apply the above mentioned results on convergence and CR-solitons to the class of solvable
Lie groups having a codimension one normal abelian subgroup.

Finally, we deal with complex surfaces in Section 7. The family of 4-dimensional solvable Lie groups admit-
ting a left-invariant complex structure is quite large. It consists of 19 groups, although six of them are actually
continuous pairwise non-isomorphic families (see Table 1). Moreover, many of them admit more than one com-
plex structure up to equivalence and one of them does admit a two-parameter continuous family of complex
structures (see Table 2). This classification was obtained in [17]. We found a CR-soliton hermitian metric for
each of these complex structures, with the exceptions of only seven structures. Most of them are either expanding
or steady (i.e. c ≤ 0), but one of the groups does admit an unexpected shrinking (i.e. c > 0) CR-soliton (see
Example 7.3). Recall that this is in clear contrast to the behavior of other curvature flows on solvmanifolds like
the Ricci flow (see [12]) and the symplectic curvature flow (see [15]). We were able to prove the non-existence
of a CR-soliton in only one of the seven cases; namely for r4,1. In this case, we found the non-isomorphic CR-
soliton (G+, ω+) where all CRF-solutions on r4,1 are converging to (see Example 7.2). The CR-soliton metrics
and their respective Chern-Ricci operators are given in Table 3.

Acknowledgements. We are very grateful to Isabel Dotti for pointing us to the reference [1] and for helpful
conversations. We would also like to thank the referees for very useful corrections and comments on a first
version of this paper.
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2 Chern-Ricci form

Let (M,J, ω, g) be a 2n-dimensional hermitian manifold, where ω = g(J ·, ·). The Chern connection is the
unique connection∇ on M which is hermitian (i.e. ∇J = 0,∇g = 0) and its torsion satisfies T 1,1 = 0. In terms
of the Levi Civita connection D of g, the Chern connection is given by

g(∇XY,Z) = g(DXY,Z)− 1
2dω(JX, Y, Z).

We refer to e.g. [24, (2.1)], [5, (2.1)] and [21, Section 2] for different equivalent descriptions. Note that ∇ = D
if and only if (M,J, ω, g) is Kähler.

The Chern-Ricci form p = p(J, ω, g) is defined by

p(X,Y ) =

n∑
i=1

g(R(X,Y )ei, Jei),

whereR(X,Y ) = ∇[X,Y ]− [∇X ,∇Y ] is the curvature tensor of∇ and {ei, Jei}ni=1 is a local orthonormal frame
for g. It follows that p is closed, of type (1, 1) (i.e. p = p(J ·, J ·)), locally exact and in the Kähler case coincides
with the Ricci form Rc(J ·, ·).

Consider now a left-invariant (almost-) hermitian structure (J, ω, g) on a Lie group with Lie algebra g. The
integrability condition can be written as

[JX, JY ] = [X,Y ] + J [JX, Y ] + J [X,JY ], ∀X,Y ∈ g. (2)

It is proved in [24, Proposition 4.1] (see also [18]) that the Chern-Ricci form of (J, ω, g) is given by

p(X,Y ) = − 1
2 tr J ad [X,Y ] + 1

2 tr adJ [X,Y ], ∀X,Y ∈ g. (3)

We note that, remarkably, p only depends on J . The Chern-Ricci operator P ∈ End(g), defined by

p = ω(P ·, ·), (4)

is a symmetric and hermitian map with respect to (J, g) which vanishes on the center of g.
It follows from [24, Proposition 4.2] that p vanishes if J is bi-invariant (i.e. [J ·, ·] = J [·, ·]) or J is abelian (i.e.

[J ·, J ·] = [·, ·]) and g unimodular. On the other hand, it follows from [1, Lemma 2.2] that hermitian nilmanifolds
are all Chern-Ricci flat. We now give a proof of this fact for completeness, which is based on the proof of that
lemma and it is a bit shorter.

Proposition 2.1 The Chern-Ricci form vanishes for any left-invariant hermitian structure on a nilpotent Lie
group.

P r o o f. It is sufficient to prove that tr(J adX) = 0 for any X ∈ g (see (3)), or equivalently, tr(Jc adX) = 0,
for any X ∈ gC, where gC = g ⊕ ig is the complexification of g and Jc : gC → gC is given by Jc(X + iY ) =
JX+ iJY . Consider now the decomposition gC = g1,0⊕g0,1 in±i-eigenspaces of Jc. Since J is integrable and
g is nilpotent, we have that g1,0 is a (complex) nilpotent Lie subalgebra of gC. It follows that if {X1, . . . , Xn}
is a basis of g1,0, then β = {X1, . . . , Xn, X1, . . . , Xn} is a basis of gC and the matrix of adXk relative to β has
the form [

Ak ∗
0 Bk

]
.

Since trAk = 0 and tr adXk = 0 by nilpotency, we obtain that trBk = 0. On the other hand, as the matrix of
Jc relative to β is given by [

iId 0
0 −iId

]
,

it follows that the matrix of Jc adXk is of the form[
iAk ∗
0 −iBk

]
,

and so it has zero trace. A similar argument gives that tr(Jc adXk) = 0, concluding the proof.
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3 Chern-Ricci flow

Let (M,J) be a complex manifold. The Chern-Ricci flow (CRF) is the evolution equation for a one-parameter
family ω(t) of hermitian metrics defined by

∂

∂t
ω = −2p, or equivalently,

∂

∂t
g = −2p(·, J ·), (5)

where p = p(J, ω(t)) is the Chern-Ricci form and g = ω(·, J ·). We refer to [6, 21, 22, 7] and the references
therein for further information on this flow. If the starting metric ω0 is Kähler, then CRF becomes the Kähler-
Ricci flow (KRF).

Let (G, J) be a Lie group endowed with a left-invariant complex structure. Given a left-invariant hermitian
metric ω0, it follows from the diffeomorphism invariance of equation (5) that the CRF-solution starting at ω0

stays left-invariant and so it can be studied on the Lie algebra. Indeed, the CRF becomes the ODE system

d

dt
ω = −2p, (6)

where ω(t), p(t) ∈ Λ2g∗, as all the tensors involved are determined by their value at the identity of the group.
Thus short-time existence (forward and backward) and uniqueness of the solutions are always guaranteed.

Since on Lie groups the Chern-Ricci form p depends only on J (see (3)), we obtain that along the CRF-solution
starting at ω0, p(t) ≡ p0 := p(J, ω0), and so ω(t) is simply given by

ω(t) = ω0 − 2tp0, or equivalently, g(t) = g0 − 2tp0(·, J ·). (7)

If P0 is the Chern-Ricci operator of ω0 (see (4)), then

ω(t) = ω0((I − 2tP0)·, ·),

and so the solution exists as long as the hermitian map I − 2tP0 is positive. It follows that the maximal interval
of time existence (T−, T+) of ω(t) is given by

T+ =

 ∞, if P0 ≤ 0,

1/(2p+), otherwise,
T− =

 −∞, if P0 ≥ 0,

1/(2p−), otherwise,
(8)

where p+ is the maximum positive eigenvalue of the Chern-Ricci operator P0 of ω0 (see (4)) and p− is the
minimum negative eigenvalue.

Bracket flow

Given a left-invariant hermitian metric ω0 on a simply connected Lie group (G, J) endowed with a left-invariant
complex structure, one has that the new metric

ω = h∗ω0 := ω0(h·, h·),

is also hermitian for any h ∈ GL(g, J) ' GLn(C). Moreover, the corresponding holomorphic Lie group
isomorphism

h̃ : (G, J, ω) −→ (Gµ, J, ω0), where µ = h · [·, ·] := h[h−1·, h−1·],

is an equivalence of hermitian manifolds. Here [·, ·] denotes the Lie bracket of the Lie algebra g and so µ defines
a new Lie algebra (isomorphic to (g, [·, ·])) with same underlying vector space g. We denote by Gµ the simply
connected Lie group with Lie algebra (g, µ). This equivalence suggests the following natural question:

What if we evolved µ rather than ω?
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We consider for a family µ(t) ∈ Λ2g∗ ⊗ g of Lie brackets the following evolution equation:

d

dt
µ = δµ(Pµ), µ(0) = [·, ·], (9)

where Pµ ∈ End(g) is the Chern-Ricci operator of the hermitian manifold (Gµ, J, ω0) and δµ : End(g) −→
Λ2g∗ ⊗ g is defined by

δµ(A) := µ(A·, ·) + µ(·, A·)−Aµ(·, ·) = − d

dt
|t=0e

tA · µ, ∀A ∈ End(g).

This evolution equation is called the bracket flow and has been proved in [14] to be equivalent to the CRF. Note
that since J is fixed, the algebraic subset{

µ ∈ Λ2g∗ ⊗ g : µ satisfies the Jacobi identity and J is integrable on Gµ
}
,

is invariant under the bracket flow; indeed, µ(t) ∈ GLn(C) · [·, ·] for all t.
For a given simply connected hermitian Lie group (G, J, ω0) with Lie algebra g, we may therefore consider

the following two one-parameter families of hermitian Lie groups:

(G, J, ω(t)), (Gµ(t), J, ω0), (10)

where ω(t) is the CRF (6) starting at ω0 and µ(t) is the bracket flow (9) starting at the Lie bracket [·, ·] of g.
Theorem 3.1 [14, Theorem 5.1] There exist time-dependent holomorphic Lie group isomorphisms h(t) :

G −→ Gµ(t) such that
ω(t) = h(t)∗ω0, ∀t,

which can be chosen such that their derivatives at the identity, also denoted by h = h(t) (in particular, µ(t) =
h(t) · [·, ·]), is the solution to any of the following systems of ODE’s:

(i) d
dth = −hP , h(0) = I .

(ii) d
dth = −Pµh, h(0) = I .

The maximal interval of time existence (T−, T+) is therefore the same for both flows, as it is the behavior of
any kind of curvature along the flows.

It is easy to see that the Chern-Ricci operator of (G, J, ω(t)) equals

P (t) = (I − 2tP0)−1P0,

from which it follows that the family h(t) ∈ GL(g) is given by h(t) = (I−2tP0)1/2. The solution to the bracket
flow is therefore given by

µ(t) = (I − 2tP0)1/2 · [·, ·],
and hence relative to any orthonormal basis {e1, . . . , e2n} of eigenvectors ofP0, say with eigenvalues {p1, . . . , p2n},
the structure coefficients of µ(t) are

µkij(t) =

(
1− 2tpk

(1− 2tpi)(1− 2tpj)

)1/2

ckij , (11)

where ckij are the structure coefficients of the Lie bracket [·, ·] of g (i.e. [ei, ej ] =
∑
ckijek).

The Chern scalar curvature is therefore given by

trP (t) =

2n∑
i=1

pi
1− 2tpi

.

Thus trP (t) is strictly increasing unless P (t) ≡ 0 (i.e. ω(t) ≡ ω0) and the integral of trP (t) must blow up at
a finite-time singularity T+ < ∞. However, trP (t) ≤ C

T+−t for some constant C > 0, which is the claim of a
well-known general conjecture for the Kähler-Ricci flow (see e.g. [20, Conjecture 7.7]).
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4 Chern-Ricci solitons

In this section, we deal with self-similar CRF-solutions on Lie groups. It follows from Proposition 2.1 that p = 0
if g is nilpotent, and thus any left-invariant hermitian structure on a nilpotent Lie group (and consequently, on any
compact nilmanifold) is a fixed point for the CRF. However, we will show in Section 7 that several 4-dimensional
solvable Lie groups do admit Chern-Ricci solitons which are not fixed points (i.e. p 6= 0), including the covers
of Inoue surfaces.

Definition 4.1 [14, (39)] (G, J, ω) is said to be a Chern-Ricci soliton (CR-soliton) if its Chern-Ricci operator
satisfies

P = cI + 1
2 (D +Dt), for some c ∈ R, D ∈ Der(g), DJ = JD.

This is equivalent to have

p(J, ω) = cω + 1
2 (ω(D·, ·) + ω(·, D·)) = cω − 1

2LXDω,

where XD is the vector field on the Lie group defined by the one-parameter subgroup of automorphisms ϕt with
derivative etD ∈ Aut(g) and LXD denotes Lie derivative. The CRF-solution starting at a CR-soliton (G, J, ω) is
given by

ω(t) = (−2ct+ 1)
(
es(t)D

)∗
ω, (12)

where s(t) := log(−2ct+1)
−2c if c 6= 0 and s(t) = t when c = 0.

The following structural result for Chern-Ricci solitons, which in particular holds for Kähler-Ricci solitons,
provides a starting point for approaching the classification problem.

Proposition 4.2 [14, Proposition 8.2] Let (G, J, ω) be a hermitian Lie group with Lie algebra g and Chern-
Ricci operator P 6= 0. Then the following conditions are equivalent.

(i) ω is a Chern-Ricci soliton with constant c.

(ii) P = cI +D, for some D ∈ Der(g).

(iii) The eigenvalues of P are all either equal to 0 or c, the kernel k = KerP is an abelian ideal of g and
its orthogonal complement k⊥ (i.e. the c-eigenspace of P ) is a Lie subalgebra of g (in particular, g is the
semidirect product g = k⊥ n k and c is always nonzero).

The following corollary essentially follows from the observation that J must leave k⊥ and k invariant, as it
commutes with P .

Corollary 4.3 Any Chern-Ricci soliton can be constructed as (g = g1 n g2, J, ω), with J =
[
J1

J2

]
, ω =

ω1 ⊕ ω2, from the following data:

• a hermitian Lie algebra (g1, J1, ω1);

• a hermitian abelian Lie algebra (g2, J2, ω2);

• and a representation θ : g1 −→ End(g2);

such that the following conditions hold:

• [θ(J1X), J2] = J2[θ(X), J2], for all X ∈ g1;

• the Chern-Ricci operator P1 of (g1, J1, ω1) equals

P1 = cI − Pθ,

where Pθ ∈ End(g1) is defined by

ω1(PθX,Y ) = − 1
2 tr J2θ([X,Y ]) + 1

2 tr θ(J1[X,Y ]), ∀X,Y ∈ g1.
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The Chern-Ricci operator of (g, J, ω) is given by P |g1
= cI , P |g2

= 0.
Moreover, (g, J, ω) is Kähler (and so a Kähler-Ricci soliton) if and only if ω1 is closed (i.e. (g1, J1, ω1)

Kähler) and θ(g1) ⊂ sp(g2, ω2) (i.e. θ(X)t = J2θ(X)J2 for all X ∈ g1).

P r o o f. It is easy to check that the first condition which must hold is equivalent to J being integrable, and the
second one comes from the fact that the Chern-Ricci operator of (g, J, ω) is given by P =

[
P1+Pθ 0

0 0

]
. The last

claim on Kähler property easily follows from the closedness condition for ω.

Example 4.4 We therefore obtain a Chern-Ricci soliton from any hermitian Lie algebra (g1, J1, ω1) with
P1 = cI (i.e. p1 = cω1) and a representation θ : g1 −→ sl(g2, J2) (i.e. tr θ(X) = 0 and [θ(X), J2] = 0 for all
X ∈ g1); note that Pθ = 0 under such conditions. If in addition (g1, J1, ω1) is Kähler-Einstein and

θ(g1) ⊂ sl(g2, J2) ∩ sp(g2, ω2) = su(dim g2/2),

then what we obtain is a Kähler-Ricci soliton, which is actually isometric to the direct product G1 × Rdim g2 .

5 Convergence

We study in this section the possible limits of bracket flow solutions under diverse rescalings.
If a rescaling c(t)µ(t), c(t) ∈ R, of a bracket flow solution converges to λ, as t → T±, and ϕ(t) : G −→

Gc(t)µ(t) is the isomorphism with derivative 1
c(t)h(t), where h(t) is as in Theorem 3.1, then it follows from [13,

Corollary 6.20] that (after possibly passing to a subsequence) the Riemannian manifolds
(
G, 1

c(t)2ω(t)
)

converge
in the pointed (or Cheeger-Gromov) sense to (Gλ, ω0), as t → T±. We note that Gλ may be non-isomorphic,
and even non-homeomorphic, to G (see [14, Section 5.1]).

Recall also that all the limits obtained by any of such rescalings are automatically CR-solitons (see [14, Section
7.1]).

Two rescalings will be considered, the one given by the bracket norm µ(t)/|µ(t)|, which always converges,
and |2t+1|1/2µ(t), which corresponds according to the observation above to the standard rescaling ω(t)/(2t+1)
of the original CRF-solution in the forward case. We note that ω(t)/(2t+ 1) is, up to reparametrization in time,
the solution to the normalized Chern-Ricci flow

∂

∂t
ω̃ = −2p(ω̃)− 2ω̃, ω̃(0) = ω0, (13)

which is the one preserving the volume in the case when M is compact, ω is Kähler and [ω] = −c1(M). This
normalization has also been used in the general hermitian case (see e.g. [21, Theorem 1.7] and [6]).

Let (G, J, ω0) be a hermitian Lie group with Lie algebra g and Chern-Ricci operator P0. A straightforward
analysis using (11) gives that µ(t) converges as t→ T± if and only if T± = ±∞ (i.e. ±P0 ≤ 0) and KerP0 is a
Lie subalgebra of g. Moreover, the following conditions are equivalent in the case T± = ±∞:

• µ(t)→ 0, as t→ ±∞.

• KerP0 is an abelian ideal of g.

• |2t+ 1|1/2µ(t) converges as t→ ±∞.

Remark 5.1 Any statement as the above ones, involving the ± sign, must always be understood as two
separate statements, one for the + sign and the other for the − sign.

In the case±T± <∞, it follows that |T±−t|1/2µ(t) converges as t→ T± if and only if g± is a Lie subalgebra
of g, where g± is the eigenspace of P0 of eigenvalue p± (see (8)).

Lemma 5.2 If µ(t)→ λ, as t→ ±∞, then (Gλ, J, ω0) is Chern-Ricci flat.

P r o o f. We have that λ is a fixed point and so the solution starting at λ is defined on (−∞,∞), which implies
that Pλ = 0 by (8).

Copyright line will be provided by the publisher



8 J. Lauret and E. Rodrı́guez Valencia: Chern-Ricci flow

We now explore in which way is the limit of the normalization µ(t)/|µ(t)| related to the starting point
(G, J, ω0). The norm |µ| of a Lie bracket will be defined in terms of the canonical inner product on Λ2g∗ ⊗ g
given by

〈µ, λ〉 :=
∑

g0(µ(ei, ej), λ(ei, ej)) =
∑

µkijλ
k
ij , (14)

where {ei} is any orthonormal basis of (g, g0) and g0 = ω0(·, J ·). A natural inner product on End(g) is also
determined by g0 by 〈A,B〉 := trABt.

Proposition 5.3 Let (G, J, ω0) be a hermitian Lie group with Lie algebra g and Chern-Ricci operator P0,
and let k, g+ and g− denote the eigenspaces of P0 of eigenvalues 0, p+ and p−, respectively (see (8)).

(i) The normalized Chern-Ricci bracket flow µ(t)/|µ(t)| always converges, as t → T±, to a nonabelian Lie
bracket λ± such that (Gλ± , J, ω0) is a Chern-Ricci soliton, say with Chern-Ricci operator Pλ± .

(ii) If ±P0 ≤ 0 (i.e. ±T± = ∞), then Pλ± |k⊥ = c±I , Pλ± |k = 0, with ±c± < 0 if and only if k is an abelian
ideal of g. Otherwise, Pλ± = 0.

(iii) In the case when ±T± < ∞, one has Pλ± |g± = c±I , Pλ± |(g±)⊥ = 0, with ±c± > 0 if and only if g± is a
Lie subalgebra of g. Otherwise, Pλ± = 0.

Remark 5.4 In particular, the only way to obtain in the limit the Einstein-like condition pλ± = cω0 with
c 6= 0, is precisely when ±P0 < 0.

Remark 5.5 It follows from the last paragraph in [14, Section 5.1] that when Pλ± = 0, it actually holds that
Pν = 0 for any limit ν = lim

t→T±
c(t)µ(t) and any rescaling of the form c(t)µ(t), with c(t) ∈ R.

P r o o f. It follows from (14) and (11) that

µlrs
|µ|

=
clrs(∑

i,j,k

(1−2tpk)(1−2tpr)(1−2tps)
(1−2tpi)(1−2tpj)(1−2tpl)

(
ckij
)2)1/2

−→
t→T±

(λ±)lrs. (15)

Since each of the terms in the sum above converges, as t → T±, to either a nonnegative real number or∞, we
obtain that µ(t)/|µ(t)| always converges, and so part (i) follows.

We will only prove the +-statements, the proofs for those with a − sign are completely analogous. Since
Pµ/|µ| = 1

|µ|2P → Pλ+ , as t→ T+ (recall that Pµ(t) = P (t) = (I − 2tP0)−1P0), one can easily check that for
each eigenvalue pr of P0,

lim
t→T+

pr
|µ|2(1−2tpr) = lim

t→T+

pr∑
i,j,k

(1−2tpk)(1−2tpr)

(1−2tpi)(1−2tpj)
(ckij)

2

=



1∑
pi,pj,pk<0

pk
pipj

(ckij)
2
+2

∑
pi<0,pj=pk=0

1
pi

(ckij)
2 < 0, T+ =∞, pr < 0, k abelian ideal;

0, T+ =∞, otherwise;

p+∑
i,j,k=+

(ckij)
2
+2

∑
i,k 6=+,j=+

p+−pk
p+−pi (ckij)

2 > 0, T+ <∞, pr = p+, g+ subalgebra;

0, T+ <∞, otherwise.

This shows that the value of Pλ+
is as in parts (ii) and (iii), concluding the proof of the proposition.
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Proposition 5.6 Let (G, J, ω0) be a hermitian Lie group as in the above proposition and consider λ±, the
limit of µ(t)/|µ(t)| as t→ T±.

(i) If ±P0 ≤ 0 (i.e. ±T± =∞) and k is an abelian ideal of g, then (g, λ±) = k⊥ n k and λ±(k, k) = 0. On the
contrary, if k is not an abelian ideal of g, then k⊥ is an abelian ideal of (g, λ±). Moreover, if k is not even a
Lie subalgebra of g, then λ± is 2-step nilpotent and k⊥ is contained in its center.

(ii) If ±T± < ∞ and g± is a Lie subalgebra of g, then (g, λ±) = g± n g⊥± and λ±(g⊥±, g
⊥
±) = 0. On the

contrary, if g± is not a Lie subalgebra of g, then λ± is 2-step nilpotent and g⊥± is contained in its center.

P r o o f. The first claims in the items are both direct consequences of Proposition 4.2, (iii). As above, we only
prove the +-statements.

If k is not an abelian ideal of g, then there is a ckij 6= 0 with either pi, pj , pk = 0, or pipj = 0 and pk < 0. The
corresponding term in the sum appearing in formula (15) therefore converges to ∞ for any triple (r, s, l) such
that either pr, ps, pl < 0, or pl = 0, or pl < 0 and at least one of pr, ps is negative. This implies that λlrs = 0 for
all such triples and hence λ+(k⊥, k⊥) = 0 and λ+(g, k⊥) ⊂ k⊥, respectively.

Assume now that k is not a subalgebra of g. Thus there is a ckij 6= 0 with pi, pj = 0 and pk < 0. The
corresponding term in (15) therefore converges to∞ for any triple (r, s, l) such that either pl = 0, or pl < 0 and
at least one of pr, ps is negative. This implies that λ+(g, g) ⊂ k⊥ and λ+(g, k⊥) = 0, respectively. The second
claim in part (i) therefore follows.

It only remains to prove the second claim in part (ii). If g+ is not a subalgebra of g, then there is a ckij 6= 0
with pi, pj = p+ and pl 6= p+. Thus the corresponding term in (15) does not converge to ∞ if and only if
pr = ps = p+ and pl 6= p+, that is, the only part of λ+ which survives is λ+ : g+ × g+ −→ g⊥+, as was to be
shown.

We now study the rescaling |2t + 1|1/2µ(t), or equivalently ω(t)/(2t + 1), corresponding to the normalized
CRF given in (13). Recall that we always denote by [·, ·] the Lie bracket of the Lie algebra g of the Lie group G.

Proposition 5.7 Let (G, J, ω0) be a hermitian Lie group as in the propositions above.

(i) If ±P0 ≤ 0 (i.e. ±T± =∞) and k is an abelian ideal of g, then |2t+ 1|1/2µ(t) converges, as t→ ±∞, to
a Chern-Ricci soliton ν± such that (g, ν±) = k⊥ n k, ν±(k, k) = 0 and with Chern-Ricci operator given by
Pν± |k⊥ = ∓I , Pν± |k = 0.

(ii) If g± is a nonzero Lie subalgebra of g, then ±T± < ∞ and |T± − t|1/2µ(t) converges, as t → T±,
to a Chern-Ricci soliton ν± such that (g, ν±) = g± n g⊥±, ν±(g⊥±, g

⊥
±) = 0 and with Pν± |g± = ± 1

2I ,
Pν± |(g±)⊥ = 0.

P r o o f. One can prove this proposition in much the same way as Propositions 5.3 and 5.6, by using for the
second statements that(

|2t+ 1|1/2µ(t)
)l
rs

=

(
|2t+ 1|(1− 2tpl)

(1− 2tpr)(1− 2tps)

)1/2

clrs −→
t→T±

(ν±)lrs,

and considering separately the cases T+ =∞ and T+ <∞.

6 Almost-abelian Lie groups

We apply in this section the results obtained above on CR-solitons and convergence on a class of solvable Lie
algebras, which are very simple from the algebraic point of view but yet geometrically very rich.

Let (G, J, ω) be a hermitian Lie group with Lie algebra g and assume that g has a codimension-one abelian
ideal n. These Lie algebras are sometimes called almost-abelian in the literature (see e.g. [4]). It is easy to see
that there exists an orthonormal basis {e1, . . . , e2n} such that

n = 〈e1, . . . , e2n−1〉, ω = e1 ∧ e2n + · · ·+ en ∧ en+1, Jei = e2n+1−i (1 ≤ i ≤ n),
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10 J. Lauret and E. Rodrı́guez Valencia: Chern-Ricci flow

where {ei} denotes the dual basis. It follows from (2) that J is integrable if and only if

−[e1, Jei] = [e2n, ei]− J [e1, ei] + J [e2n, Jei], ∀i = 2, . . . , 2n− 1,

and since the left-hand side and the middle term in the right-hand side both vanish, we obtain that J is integrable
if and only if ad e2n leaves the subspace 〈e2, . . . , e2n−1〉 invariant and commutes with the restriction of J on
such subspace. The matrix of ad e2n in terms of {ei} is therefore given by

ad e2n =


c 0 0
d1
... A 0

d2n−2
0 0 0

 , A ∈ gln−1(C). (16)

We call µ = µA,c,d1,...,d2n−2 the Lie bracket on g defined by (16) and the condition that n is an abelian ideal. It is
easy to prove that two of these Lie algebras are isomorphic if and only if the corresponding adjoint maps ad e2n|n
are conjugate up to nonzero scaling.

Lemma 6.1 Any hermitian Lie algebra (g, J, ω) with a codimension-one abelian ideal is equivalent to

(g, µA,c,d1,...,d2n−2
, J, ω), for some A ∈ gln−1(C), c ≥ 0, di ∈ R.

The Chern-Ricci form and operator of this structure are respectively given by

p = − 1
2c(2c+ trA)e1 ∧ e2n, P = − 1

2c(2c+ trA)


1 0 0

0 0 0

0 0 1

 .
P r o o f. It only remains to prove the formula for the Chern-Ricci form. We use formula (3) to compute p as

follows:

p(e2n, e1) =− 1
2 tr J

(
c ad e1 +

2n−2∑
i=1

di ad ei+1

)
+ 1

2 tr adJ(ce1),

=− 1
2c tr J ad e1 + 1

2c tr ad e2n

= 1
2c

2 + 1
2c(c+ trA) = 1

2c(2c+ trA)

p(e2n, ei) =− 1
2 tr J adAei + 1

2 tr adJAei = 0 + 0 = 0, ∀i = 2, . . . , 2n− 1,

concluding the proof of the lemma.

It is proved in [15] that (g, µ, J, ω) is Kähler (i.e. dω = 0) if and only if di = 0 for all i and A ∈ u(n)
(i.e. At = −A). In such a case, the metric is known to be isometric to RH2 × R2n−2, where RH2 denotes the
2-dimensional real hyperbolic space (see e.g. [9, Proposition 2.5]). On the other hand, it is easy to prove that
(g, µ, J, ω) is bi-invariant if and only if c = d1 = · · · = d2n−2 = 0, and abelian if and only if A = 0.

Proposition 6.2 Let (Gµ, J, ω) be the hermitian Lie group with µ = µA,c,di .

(i) (Gµ, J, ω) is a CR-soliton if and only if either p = 0 or p 6= 0 and di = 0 for all i.

(ii) The maximal interval of time existence of the CRF-solution ω(t) starting at (Gµ, J, ω) is ( 1
e ,∞), e < 0,

(−∞, 1e ), e > 0,
(−∞,∞), e = 0,

, where e := −c(2c+ trA).
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g Lie Bracket

rh3 [e1, e2] = e3

rr3,0 [e1, e2] = e2

rr3,1 [e1, e2] = e2, [e1, e3] = e3

rr′3,0 [e1, e2] = −e3, [e1, e3] = e2

rr′3,γ [e1, e2] = γe2 − e3, [e1, e3] = e2 + γe3, γ > 0

r2r2 [e1, e2] = e2, [e3, e4] = e4

r′2 [e1, e3] = e3, [e1, e4] = e4, [e2, e3] = e4, [e2, e4] = −e3

r4,1 [e4, e1] = e1, [e4, e2] = e2, [e4, e3] = e2 + e3

r4,α,1 [e4, e1] = e1, [e4, e2] = αe2, [e4, e3] = e3, −1 < α ≤ 1, α 6= 0

r4,α,α [e4, e1] = e1, [e4, e2] = αe2, [e4, e3] = αe3, −1 ≤ α < 1, α 6= 0

r′4,γ,δ [e4, e1] = e1, [e4, e2] = γe2 − δe3, [e4, e3] = δe2 + γe3, γ ∈ R, δ > 0

d4 [e1, e2]1 = e3, [e4, e1]1 = e1, [e4, e2]1 = −e2

[e1, e2]2 = e3, [e4, e1]2 = e1, [e4, e2]2 = −e2 + e3

d4,1 [e1, e2] = e3, [e4, e1] = e1, [e4, e3] = e3

d4, 12 [e1, e2]1 = e3, [e4, e1]1 = 1
2e1, [e4, e2]1 = 1

2e2, [e4, e3]1 = e3

[·, ·]2 = [·, ·]1

[e1, e2]3 = e3, [e4, e1]3 = e1, [e4, e2]3 = e2, [e4, e3]3 = 2e3

d4,λ [e1, e2]1 = λe3, [e4, e1]1 = λe1,

[e4, e2]1 = (1− λ)e2, [e4, e3]1 = e3, 1
2 < λ 6= 1

[e1, e2]2 = (1− λ)e3, [e4, e1]2 = λe1,

[e4, e2]2 = (1− λ)e2, [e4, e3]2 = e3, 1
2 < λ < 1

[e1, e2]3 = (λ− 1)e3, [e4, e1]3 = λe1,

[e4, e2]3 = (1− λ)e2, [e4, e3]3 = e3, 1 < λ

d′4,0 [e1, e2] = e3, [e4, e1] = −e2, [e4, e2] = e1

d′4,δ [e1, e2] = e3, [e4, e1] = 1
2e1 −

1
δ e2,

[e4, e2] = 1
δ e1 + 1

2e2, [e4, e3] = e3, δ > 0

h4 [e1, e2] = e3, [e4, e1] = e1, [e4, e2] =
√

10e1 + e2, [e4, e3] = 2e3

Table 1 Solvable Lie algebras of dimension 4 admitting a complex structure.
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12 J. Lauret and E. Rodrı́guez Valencia: Chern-Ricci flow

g Complex structures

rh3 Je1 = e2, Je3 = e4

rr3,0 Je1 = e2, Je3 = e4

rr3,1 Je1 = e4, Je3 = e2

rr′3,0 Je1 = e4, Je2 = e3

rr′3,γ J1e1 = e4, J1e3 = e2 − 2γe3, γ > 0 J2e1 = e4, J2e3 = 2γe3 − e2, γ > 0

r2r2 Je1 = e2, Je3 = e4

r′2 J1e1 = e3, J1e2 = e4 Js,te2 = − 1
t e1 −

s
t e2, Js,te3 = e4, s ∈ R, t 6= 0

r4,1 Je1 = e2, Je4 = e3

r4,α,1 Je1 = e3, Je4 = e2

r4,α,α Je4 = e1, Je2 = e3

r′4,γ,δ J1e4 = e1, J1e2 = e3 J2e4 = e1, J2e3 = e2

d4 J1e3 = e1, J1e4 = e2 J2 = J1

d4,1 Je1 = e4, Je2 = e3

d4, 12 J1e1 = e2, J1e4 = e3 J2e2 = e1, J2e4 = e3 J3e4 = e1, J3e3 = e2

d4,λ J1e1 = e4, J1e2 = e3 J2e1 = e3, J2e4 = e2 J3e1 = e3, J3e2 = e4

d′4,0 J1e1 = e2, J1e3 = e4 J2e1 = e2, J2e4 = e3

d′4,δ J1e2 = e1, J1e4 = e3 J2e1 = e2, J2e3 = e4 J3e1 = e2, J3e4 = e3 J4e2 = e1, J4e3 = e4

h4 Je1 = e3, Je4 = e2

Table 2 Complex structures on 4-dimensional solvable Lie algebras.

(iii) If T± = ±∞ and p 6= 0 (i.e. e 6= 0), then the rescaled solution ω(t)/|2t+ 1| converges in the pointed sense,
as t→ ±∞, to the CR-soliton (Gλ, J, ω), where λ = 1

2 |e|
1/2µA,c,0.

(iv) If ω is not a CR-soliton, then, as t approaches any finite-time singularity, c(t)ω(t) converges in the pointed
sense to (H3 × R) × R2n−4, where H3 × R is the universal cover of the Kodaria-Thurston manifold, for
some rescaling c(t) > 0.

Remark 6.3 Recall that in part (iii), if λ 6' µ, which never holds if c is not an eigenvalue of A, then the limit
is a left-invariant hermitian metric on a different Lie group (see Example 7.2).

P r o o f. Part (i) follows from Proposition 4.2 and Lemma 6.1, by using that the image of any derivation must
be contained in n, and part (ii) follows from (8). Since k is always an abelian ideal, the limit ν± from Proposition
5.7 equals µA,c,0, up to a positive scaling, and so part (iii) holds. On the other hand, g± = 〈e1, e2n〉 is never a Lie
subalgebra if di 6= 0 for at least one i, in which case by Proposition 5.6, λ± is 2-step nilpotent with g⊥± contained
in its center. Thus (g, λ±) is isomorphic to h3⊕R2n−3, where h3 denotes the 3-dimensional Heisenberg algebra,
from which part (iv) follows.
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7 Lie groups of dimension 4

We now study the existence problem for CR-solitons on 4-dimensional solvable Lie groups. We have listed in
Table 1 all 4-dimensional solvable Lie algebras admitting a complex structure and in Table 2 all the complex
structures up to equivalence on each Lie algebra (see [17]). In order to obtain simpler forms for the matrices of
the complex structures and the CR-soliton metrics, we decided to give more than one different (but isomorphic)
Lie brackets [·, ·]i for each Lie algebra d4, d4,λ with λ 6= 1, in such a way that the pair ([·, ·]i, Ji) is integrable for
any i = 1, 2, 3 (see (2)).

Let (G, J, ω) be a 4-dimensional hermitian Lie group with Lie algebra g.
Example 7.1 Assume that g has a codimension-one abelian ideal n (i.e. g is any of the Lie algebras denoted

with r in Table 1 except r2r2 and r′2). By Lemma 6.1, we can assume that in terms of an orthonormal basis {ei},

J =

[
0 −1
−1 0

0 1
1 0

]
, ω = e1 ∧ e4 + e2 ∧ e3,

and the Lie bracket of g, denoted by µ = µa,b,c,d,e, is given by

adµ e4|n =

c 0 0
d a −b
e b a

 , c ≥ 0.

The Chern-Ricci form and operator are therefore given by

p = −c(c+ a)e1 ∧ e4, P = −c(c+ a)

[
1
0
0
1

]
.

In the case p 6= 0, µ is a CR-soliton if and only if d = e = 0 (see Proposition 6.2, (i)). These are precisely the
long time pointed limits one obtains by rescaling CRF-solutions (see Proposition 6.2, (iii)). By giving different
values to a, b, c, we have found a CR-soliton for any complex structure on any Lie algebra in this class (see Table
3), with the only exception of r4,1 (see example below).

Example 7.2 We have that µ is isomorphic to r4,1 if and only if a = c 6= 0, b = 0 and at least one of
d, e is nonzero, from which it follows that (r4,1, J) does not admit any CR-soliton metric. It follows that ν+ =
µa,0,a,0,0 ' r4,1,1, and so the rescaled solution ω(t)/(2t + 1) converges in the pointed sense, as t → ∞, to the
4-dimensional real hyperbolic space RH4.

Example 7.3 For any γ ∈ R, δ > 0, consider the solvable Lie algebra r′4,γ,δ with Lie bracket as defined in
Table 1, which coincides with µγ,−δ,1,0,0 from Example 7.1:

adµ e4|n =

1 0 0
0 γ δ
0 −δ γ

 , γ ∈ R, δ > 0.

The canonical metric is therefore a CR-soliton for both complex structures J1 and J2, with p = −(1 + γ)e1 ∧ e4,
which is therefore expanding, steady and shrinking for γ > −1, γ = −1 and γ < −1, respectively. Moreover,
(J, ω) is a Kähler-Ricci soliton if and only if γ = 0 (expanding) and for γ = − 1

2 , the corresponding Lie group
admits a lattice giving rise to a hermitian metric on an Inoue surface of type S0 which is an expanding CR-soliton
when pulled back on its universal cover (see [8]).

We have found a compatible CR-soliton for each complex structure on a 4-dimensional solvable Lie group,
with the exceptions of the following seven cases:

(r′2, J1), (r4,1, J), (d4, J2), (d
4,

1
2
, J2), (d′4,δ, J1), (d′4,δ, J2), (h4, J). (17)

We were able to prove the non-existence of a CR-soliton only in the case of (r4,1, J) (see Example 7.2). The
CR-soliton metrics g = ω(·, J ·) and their respective Chern-Ricci operators P are given in Table 3 as diagonal
matrices with respect to the basis {e1, e2, e3, e4}, together with the constant c and the derivation D such that
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14 J. Lauret and E. Rodrı́guez Valencia: Chern-Ricci flow

g J Metric P c D K

rh3 J Any (0, 0, 0, 0) 0 (0, 0, 0, 0) ——

rr3,0 J (1, 1, 1, 1) (−1,−1, 0, 0) −1 (0, 0, 1, 1) Yes

rr3,1 J Any (0, 0, 0, 0) 0 (0, 0, 0, 0) ——

rr′3,0 J Any (0, 0, 0, 0) 0 (0, 0, 0, 0) Yes

rr′3,γ J1 Any (0, 0, 0, 0) 0 (0, 0, 0, 0) ——

J2 Any (0, 0, 0, 0) 0 (0, 0, 0, 0) ——

r2r2 J (1, 1, 1, 1) (−1,−1,−1,−1) −1 (0, 0, 0, 0) Yes

r′2 J1 (1, 1, 1, 1) (−2, 2,−2, 2) —— —— ——

Js,t Any (0, 0, 0, 0) 0 (0, 0, 0, 0) ——

r4,1 J (1, 1, 1, 1) (0, 0,−2,−2) —— —— ——

r4,α,1 J (1, 1, 1, 1) −α(α+ 1)(0, 1, 0, 1) −α(α+ 1) α(α+ 1)(1, 0, 1, 0) ——

−1 < α ≤ 1, α 6= 0

r4,α,α J (1, 1, 1, 1) −(α+ 1)(1, 0, 0, 1) −(α+ 1) (α+ 1)(0, 1, 1, 0) ——

−1 ≤ α < 1, α 6= 0

r′4,γ,δ J1 (1, 1, 1, 1) −(γ + 1)(1, 0, 0, 1) −(γ + 1) (γ + 1)(0, 1, 1, 0) γ = 0

γ ∈ R, δ > 0

J2 (1, 1, 1, 1) −(γ + 1)(1, 0, 0, 1) −(γ + 1) (γ + 1)(0, 1, 1, 0) γ = 0

γ ∈ R, δ > 0

d4 J1 (1, 1, 1, 1) (0,−1, 0,−1) −1 (1, 0, 1, 0) ——

J2 (1, 1, 1, 1) (0,−1, 0,−1) —— —— ——

d4,1 J (1, 1, 1, 1) (−2, 0, 0,−2) −2 (0, 2, 2, 0) ——

d4, 12 J1 (1, 1, 1, 1) − 3
2 (1, 1, 1, 1) − 3

2 (0, 0, 0, 0) Yes

J2 (1, 1, 1, 1) 3
2 (1, 1,−1,−1) —— —— ——

J3 (2, 5, 54 , 2) −3(1, 0, 0, 1) −3 3(0, 1, 1, 0) ——

d4,λ J1
(
e
λ2 , 2, 2, e

)
(a, 0, 0, a) a (0,−a,−a, 0) λ = 2

1
2 < λ 6= 1

J2

(
2, d

(λ−1)2 , 2, d
)

(0, b, 0, b) b (−b, 0,−b, 0) ——

1
2 < λ < 1

J3

(
2, d

(λ−1)2 , 2, d
)

(0, b, 0, b), 1 < λ b (−b, 0,−b, 0) ——

d′4,0 J1 Any (0, 0, 0, 0) 0 (0, 0, 0, 0) ——

J2 Any (0, 0, 0, 0) 0 (0, 0, 0, 0) ——

d′4,δ J1 (1, 1, 1, 1) 3δ
2 (1, 1,−1,−1) —— —— ——

J2 (1, 1, 1, 1) 3δ
2 (1, 1,−1,−1) —— —— ——

J3 (1, 1, 1, 1) − 3δ
2 (1, 1, 1, 1) − 3δ

2 (0, 0, 0, 0) Yes

J4 (1, 1, 1, 1) − 3δ
2 (1, 1, 1, 1) − 3δ

2 (0, 0, 0, 0) Yes

h4 J
(
5, 2, 54 , 2

)
−3(0, 1, 0, 1) —— —— ——

Table 3 Chern-Ricci solitons.
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P = cI + D. For example, the metric for the complex Lie algebra (d
4,

1
2
, [·, ·]3, J3) is given by g(ei, ej) = δij

for all i 6= j and
g(e1, e1) = 2, g(e2, e2) = 5, g(e3, e3) = 5/4, g(e4, e4) = 2.

In the last column we added the condition under which the metric is Kähler, that is, a Kähler-Ricci soliton.
In the case of d4,λ, in order to simplify the description of the metrics in Table 3, we have introduced the

following notation:

a := −λ(λ+ 1), b := (1− λ)(λ− 2), d := (λ− 1)2 + 1, e := λ2 + 1.

Remark 7.4 The existence of a CR-soliton on the complex Lie groups listed in (17) other than r4,1 is an
open problem. Based on the structure results obtained in [12] for Ricci soliton solvmanifolds, we conjecture that
(h4, J) does not admit any CR-soliton.

Remark 7.5 There is an infinite family plus five individual solvable Lie groups of dimension 4 admitting a
left-invariant complex structure which also admit a lattice, giving rise to the compact complex surfaces which are
solvmanifolds (see [8]). Their Lie algebras are:

• R4: Complex tori.

• rh3: Primary Kodaira surfaces.

• rr′3,0: Hyperelliptic surfaces.

• r′
4,− 1

2 ,δ
: Inoue surfaces of type S0.

• d4: Inoue surfaces of type S±.

• d′4,0: Secondary Kodaira surfaces.
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