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Abstract We consider foliations of the whole three dimensional hyperbolic space H
3 by

oriented geodesics. Let L be the space of all the oriented geodesics of H3, which is a four
dimensionalmanifold carrying two canonical pseudo-Riemannianmetrics of signature (2, 2).
We characterize, in terms of these geometries of L, the subsets M in L that determine
foliations ofH3.We describe in a similar way some distinguished types of geodesic foliations
of H3, regarding to which extent they are in some sense trivial in some directions: On the
one hand, foliations whose leaves do not lie in a totally geodesic surface, not even at the
infinitesimal level. On the other hand, those for which the forward and backward Gauss
maps ϕ± : M → H

3 (∞) are local diffeomorphisms. Besides, we prove that for this kind
of foliations, ϕ± are global diffeomorphisms onto their images. The subject of this article is
within the framework of foliations by congruent submanifolds, and follows the spirit of the
paper by Gluck and Warner where they understand the infinite dimensional manifold of all
the great circle foliations of the three sphere.

Keywords Geodesic foliation · Hyperbolic space · Space of oriented lines

Mathematics Subject Classification 53C12 · 53C40 · 53C50

Partially supported by CONICET, FONCyT, SECyT (UNC).

B Marcos Salvai
salvai@famaf.unc.edu.ar

Yamile Godoy
ygodoy@famaf.unc.edu.ar

1 FaMAF - CIEM, Ciudad Universitaria, 5000 Córdoba, Argentina

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-015-1474-z&domain=pdf


44 Y. Godoy, M. Salvai

1 Introduction

1.1 Geodesic foliations

A smooth geodesic foliation of a Riemannian manifold N is given by a smooth unit vector
field V on N all of whose integral curves, the leaves, are geodesics. Throughout the paper,
smooth means of class C∞.

The standard examples of geodesic foliations of R3 are given by foliating the space by
parallel planes which are in turn foliated by parallel lines, with smoothly varying directions.
One can construct other examples by writing R

3 smoothly as the disjoint union of the z-axis
and one-sheet hyperboloids of revolution around that axis, and considering on each one,
coherently, one of the two ways of ruling it (the striction circles of the hyperboloids do not
need to be at the same height). Applying a linear isomorphism one obtains new examples.

Notice that the foliations of the hyperbolic three space by totally geodesic surfaces, as
well as the foliations of the hyperbolic plane by geodesics, are by far not as rigid as in the
Euclidean case [4,6]. So, the hyperbolic analogues of the standard examples of Euclidean
geodesic foliations are richer. Recently, Nuchi studied the fiberwise homogeneous geodesic
foliations of the three dimensional space forms [11].

Global smooth geodesic foliations of the three dimensional Euclidean space were char-
acterized in [17] in terms of the geometry of the space of oriented lines. Now, we deal with
the analogous problem in the hyperbolic context. The general basic theory for the Euclidean
case is still useful, but some crucial definitions and arguments in the proofs must be adapted
to the hyperbolic setting.

Let H3 be the three dimensional hyperbolic space of constant sectional curvature −1.
Let L0 and L− be the spaces of oriented geodesics of R3 and H

3, respectively, which are
manifolds of dimension four admitting canonical neutral pseudo-Riemannian metrics: L0

admits one (associated with the cross product) [9,15], and L− admits two of them, g× and
gK , coming from the cross product and the Killing form on Iso

(
H
3
)
, respectively [7,16].

See the precise definitions below in the preliminaries. Distinguished geometries on spaces
of oriented geodesics are also studied in [1] and [2].

While the geodesic foliations of R3 are described in terms of the canonical neutral metric
on L0, the characterization of the geodesic foliations of H3 involves both g× and gK (see
Theorem 3.2, one of the main results). This situation appears also in other problems in
hyperbolic geometry; for instance, A. Honda needed both canonical neutral metrics on L−
in the study of the isometric immersions of the hyperbolic plane into H

3 [10].
We will have two types of distinguished foliations, whose characterizations are given in

Theorems 4.3 and 4.6. We call a geodesic foliation nondegenerate if the leaves do not lie
in a totally geodesic surface, not even at the infinitesimal level. More precisely, if the only
eigenvectors of ∇V are in RV , where V is the unit vector field that determines the foliation.

We have also another notion, which turns out to be weaker: a semi-nondegenerate foliation
does not resemble, in any direction, a trivial foliation whose leaves are all orthogonal to a
fixed horosphere. In the upper half space model of H3, these are foliations congruent to
the those with vertical geodesics, with both orientations. See Definition 4.1. Both concepts
generalize the Euclidean notion of nondegeneracy (see Corollary 4 in [17]). For a higher
dimensional (local) analogue, see the foliations of Rn by pairwise skew p-planes in [12].

We want to emphasize that the statements of the results are similar to those of [17],
but the technical meaning of the definitions involved, for instance, (almost) semidefinite
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Global smooth geodesic foliations of the hyperbolic space 45

submanifolds and (semi-)nondegenerate foliations are quite different in the Euclidean and
the hyperbolic cases.

1.2 Foliations by congruent submanifolds

The general setting of this article is the study of foliations of a smooth manifold N by con-
gruent submanifolds: Suppose that the Lie groupG acts on N , let M be a closed submanifold
of N , and let C be the set of all submanifolds of N congruent to M via G. Let H be the
subset of all points in G that preserve M . Then H is a closed Lie subgroup of G since M is
closed in N and we can identify C ∼= G/H . Sometimes C admits distinguished G-invariant
geometries, which are useful to describe the foliations of N by submanifolds congruent to
M . More precisely, the problem is the following:

Describe geometrically which subsets M of C determine foliations of N .

The paradigm is the paper [8], where foliations of S3 by great circles are characterized
in this way. See also [14] (a partial generalization of [8]) and [17], with the global foliations
of R3 by oriented lines, which includes a pseudo-Riemannian reformulation of the principal
result of [8]. M. Czarnecki and R. Langevin are currently working, in this context, on the
classification of codimension two totally geodesic foliations of the complex hyperbolic space.

2 Preliminaries

A smooth geodesic foliation of H
3 is given by a smooth unit vector field V on H

3 all
of whose integral curves, the leaves, are geodesics. The set M of all the leaves admits a
canonical differentiable structure. For the sake of completeness, we include its existence as
a proposition.

Proposition 2.1 The set M of all the leaves of a geodesic foliation of H3 admits a unique
differentiable structure such that the canonical projection P : H3 → M is a smooth sub-
mersion.

Proof Let V be the smooth unit vector field on H
3 associated with the geodesic foliation

and consider the smooth distribution given byD = RV . By Theorem VIII in [13], it suffices
to prove that D is regular, that is, that for each p ∈ H

3 there is a cubical coordinate system
(U, (x1, x2, x3)) centered at p such that

{
(∂/∂x3)|q

}
is a basis of Dq for all q ∈ U and each

leaf of D intersects U in at most one 1-dimensional slice (x1, x2) = const.
Let us see that for each p ∈ H

3 we have such a coordinate system. Let u1, u2 ∈ TpH
3

such that {u1, u2, V (p)} is an orthonormal basis of TpH
3 and let F : R2 → H

3 be the totally
geodesic submanifold given by F (x, y) = Expp(xu1 + yu2) (here Exp is the geodesic
exponential map). We consider the smooth map

α : R3 → H
3, α(x, y, t) = ϑt (F (x, y)),

where ϑt is the flow of V . Since dα0 is an isomorphism, there exist ε > 0 and an open
neighborhood U ⊂ H

3 of p such that α : (−ε, ε)3 → U is a diffeomorphism. Hence,(
U, α−1 = (x1, x2, x3)

)
is a cubical coordinate system centered at p such that (∂/∂x3)|q =

V (q) for all q ∈ U . The 1-dimensional slices are clearly integral submanifolds of D and no
leaf of D intersects two different slices of U , since geodesics in H

3 transverse to a totally
geodesic surface intersect it at most at one point. �	
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46 Y. Godoy, M. Salvai

The spaceL of all complete oriented geodesics ofH3 (up to orientation preserving repara-
metrizations) admits a unique differentiable structure such that the canonical projection
� : T 1

H
3 → L is a differentiable submersion (by [13], as above, with the spray as the

vector field giving the foliation). We may think of c ∈ L as the equivalence class of unit
speed geodesics γ : R → H

3 with image c such that {γ̇ (t)} is a positive basis of Tγ (t)c for
all t . If 	 ∈ L, then by abuse of notation we sometimes write z ∈ 	, meaning that z is in the
underlying line.

Fixing a point o ∈ H
3, let

H : T (T 1
o H

3) → L (1)

be the map defined as follows: Let u ∈ T 1
o H

3 and v ∈ ToH3 with u⊥v, then H(u, v) is
the oriented geodesic with initial point Expo(v) and initial velocity the parallel transport of
u along the geodesic t �→ Expo(tv) at t = 1. Proposition 4.14 of [3] asserts that H is a
diffeomorphism.

Let γ be a complete unit speed geodesic ofH3 and let Jγ be the space of all Jacobi vector
fields along γ which are orthogonal to γ̇ . There exists a well-defined canonical isomorphism

Tγ : Jγ → T[γ ]L, Tγ (J ) = d

dt

∣
∣
∣∣
0
[γt ], (2)

where γt is any variation of γ by unit speed geodesics associated with J (see [16]).
Given a tangent vector X to a pseudo-Riemannianmanifold, we denote ‖X‖ = 〈X, X〉, the

square norm associated with the metric 〈. , .〉, and |X | = √|〈X, X〉|. Also, given v ∈ TH3,
we denote by γv the unique geodesic in H

3 with initial velocity v.
Now, we recall the definition of the two canonical pseudo-Riemannian metrics g× and gK

on L given in [16, Theorem 1]. In terms of the isomorphism (2) the square norms of these
metrics may be written as follows [16, page 362]: For J ∈ Jγ ,

‖Tγ (J )‖× = 〈γ̇ × J, J ′〉,
‖Tγ (J )‖K = |J |2 − ∣∣J ′∣∣2 . (3)

The cross product × is induced by a fixed orientation of H3 and J ′ denotes the covariant
derivative of J along γ (the right hand side in the expressions are constant functions, so they
are well defined).

LetM be a submanifold ofL and we take [γ ] ∈ M. Next we show that any tangent vector
in T[γ ]M corresponds (via Tγ ) to a Jacobi vector field in Jγ associated with a variation of
γ by unit speed geodesics whose equivalence classes are in M. In fact, given X ∈ T[γ ]M,
there exists a smooth curve c : (−ε, ε) → Mwith c(0) = [γ ] and ċ(0) = X . By Proposition
3 in [16], there exists a standard presentation of c, that is, a function ϕ : R × (−ε, ε) → H

3

such that s �→ αt (s) := ϕ(s, t) is a unit speed geodesic of H
3 satisfying c(t) = [αt ],〈

β̇(t), α̇t (0)
〉 = 0 for all t ∈ (−ε, ε), where β(t) = ϕ(0, t), and ϕ(0, 0) = γ (0). It is easy to

see that

J (s) = d

dt

∣∣∣∣
0
αt (s)

is a Jacobi field in Jγ and it satisfies

Tγ (J ) = d

dt

∣∣∣∣
0
[αt ] = d

dt

∣∣∣∣
0
c(t) = X .
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Global smooth geodesic foliations of the hyperbolic space 47

3 Global geodesic foliations of H3

In this section we characterize, in terms of the canonical neutral metrics on L, the subsets
M in L that determine foliations of H3. To this end, it is convenient to give the following
definition.

Definition 3.1 A submanifold M of L is said to be almost semidefinite if ‖X‖× = 0 for
X ∈ TM only if ‖X‖K ≥ 0.

Theorem 3.2 LetM be a surface contained in L (the inclusion is a priori not even smooth).
Then the following statements are equivalent:

(a) The surfaceM is the space of leaves of a smooth foliation of H3 by oriented geodesics,
with the canonical differentiable structure.

(b) The surface M is a closed almost semidefinite connected submanifold of L.
Besides, if M satisfies (a) or (b), M is diffeomorphic to R

2.

Let o be a fixed point in H
3. We recall that

T (T 1
o H

3) = {(u, v) ∈ T 1
o H

3 × ToH
3 : 〈u, v〉 = 0} ∼= T S2.

Let f : L → H
3 be the map that assigns to each oriented unit speed geodesic 	 of the

hyperbolic space its closest point to o. Considering the following diagram,

T
(
T 1
o H

3
) H−→ L

π2 ↓ ↓ f

ToH3 Expo−→ H
3

we have that f is a smooth map, where H is the diffeomorphism given in (1) and π2 is the
projection onto the second component.

Let D : L → R be the square distance from o. In particular, if 	 = H (u, v), we have that
D(	) = |v|2 and so D is smooth.

For any unit speed geodesic γ , let ψγ : T[γ ]L � Jγ → γ̇ (0)⊥ be the linear map defined
by ψγ (J ) = J (0).

Lemma 3.3 Let M be an almost semidefinite closed connected two-dimensional submani-
fold of L.
(a) For any 	 = [γ ] ∈ M, ψγ

∣∣
T	M is surjective.

(b) Any critical point 	 of D|M is a strict local minimum of D|M with D(	) = 0. Moreover,
D(	n) → ∞ as n → ∞ for any sequence 	n in M without cluster points.

Proof (a) It suffices to show that the map is injective (T	M and γ̇ (0)⊥ have the same
dimension). If ψγ (J ) = 0, then J (0) = 0 and from (3) we have that ‖Tγ (J )‖× = 0. Since
M is almost semidefinite, using (3) we obtain that J ′(0) = 0, thus J ≡ 0.
(b) Let (u, v) ∈ T (T 1

o H
3) and let H(u, v) = 	. In particular, 	 = [γU ] with U = τγv

∣∣1
0 (u),

where τγv denotes the parallel transport along γv . By (a), there exists a Jacobi vector field
J ∈ JγU , with TγU (J ) ∈ T	M, such that J (0) = γ̇v(1). We take a variation of γU by unit
speed geodesics �(s, t) = γt (s) associated with J , with [γt ] = H(ut , vt ) ∈ M. We call α

the smooth curve in M given by α(t) = [γt ]. We have vt = π2 ◦ H−1 ◦ α(t), thus vt is a
smooth curve in ToH3.
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48 Y. Godoy, M. Salvai

Suppose that 	 ∈ M is a critical point of D|M. First we verify that D(	) = 0.We compute

0 = α̇ (0) (D) = d

dt

∣
∣
∣
∣
0
D(α(t)) = d

dt

∣
∣
∣
∣
0
|vt |2 = 2〈v, v′

0〉. (4)

Now, let λt be the smooth curve inR such that Expo(vt ) = γt (λt ) (in particular, λ0 = 0) and
consider the Jacobi vector field K associated with the geodesic variation (s, t) → �(s, t) =
�(s + λt , t), that is,

K (s) = λ′
0 γ̇U (s) + J (s).

Since Expo(vt ) = �(0, t), we have

(d Expo)v(v
′
0) = K (0) = λ′

0U + J (0). (5)

Besides, (d Expo)v(v) = J (0). Then, by (4), the Gauss Lemma and (5), we obtain

0 = 〈v, v′
0〉 = 〈(d Expo

)
v
(v),

(
d Expo

)
v
(v′

0)〉 = |J (0)|2 = |v|2 = D(	), (6)

as desired. Next we see that 	 is a strict local minimum. Let X be a nonzero vector in T	M
and let J ∈ Jγu such that X = Tγu (J ). Since J is not an identically zero Jacobi vector field,
by (a) we have J (0) �= 0. As above, we take a smooth curve [γt ] = H(ut , vt ) in M such
that its initial velocity is X and J (s) = d

dt

∣∣
0 γt (s). Then,

d2

dt2

∣∣∣∣
0
D([γt ]) = 2(〈v0, v′′

0 〉 + |v′
0|2) = 2|v′

0|2 > 0,

since v0 = v = 0 by (6) and v′
0 �= 0 by (5).

The last statement is proved in a similar way as in Lemma 5(b) of [17]. �	
Proof of Theorem 3.2 (a)⇒ (b) Suppose that the foliation is given by a smooth unit vector
field V on H

3 and let P : H3 → M be the smooth submersion induced by V as in Propo-
sition 2.1. Since M = P(H3), we have that M is connected. The fact that the inclusion
i : M → L is a submanifold is proved in the same way as in the Euclidean case (the
beginning of (a)⇒ (b) in the proof of Theorem 2 in [17]).

Let us see that M is almost semidefinite. Let X ∈ T[γ ]M with ‖X‖× = 0 and let
J ∈ Jγ with X = Tγ (J ). We want to see that ‖X‖K ≥ 0. First, we observe that if γt is any
variation of γ by geodesics in the foliation, associatedwith J , we have that γ̇t (s) = V (γt (s))
and so we compute

J ′(s) = D

ds

d

dt

∣∣∣∣
0
γt (s) = D

dt

∣∣∣∣
0

d

ds
γt (s) = D

dt

∣∣∣∣
0
γ̇t (s) = ∇J (s)V . (7)

By (3), J (0) and J ′ (0) are linearly dependent. If J (0) = 0, then J ′(0) = 0 by (7), and
so ‖X‖K = 0. If J (0) �= 0, there exists a ∈ R such that J ′(0) = a J (0). So, J (s) =
(a sinh s + cosh s)Z(s), where Z is a parallel vector field along γ and orthogonal to γ̇ .
If |a| > 1 there exists so = (tanh)−1(−1/a) such that J (so) = 0. By (7), we have that
J ′(so) = 0. Hence, J ≡ 0, which is a contradiction. Therefore, |a| ≤ 1 and consequently
‖X‖K = (1 − a2)|J (0)|2 ≥ 0, as desired.

Next we show that M is closed. Let [γn] = H(un, vn) be a sequence in M with
limn→∞[γn] = [γ ] ∈ L. Let (u, v) ∈ T (T 1

o H
3) such that [γ ] = H(u, v). Since H is a diffeo-

morphism we have that (un, vn) → (u, v). Let H̄ : T (T 1
o H

3) → T 1
H
3 be the smooth map

defined by H̄(u, v) = τγv

∣∣1
0 (u) and recall that H = � ◦ H̄ holds by definition of H , where

� : T 1
H
3 → L is the canonical projection. Since [γn] ∈ M, H̄(un, vn) = V (Expo(vn)).
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Global smooth geodesic foliations of the hyperbolic space 49

So, to prove thatM is closed we have to see that H̄(u, v) = V (Expo(v)). Now, the assertion
follows from the continuity of H̄ , Expo and V .
(b)⇒ (a) The facts that the union of all geodesics in M covers the whole space H3 and that
two distinct geodesics in M do not intersect are proved in a similar way as in Theorem 2
of [17], but using in this case Lemma 3.3 (b). As in that theorem, the hypotheses force the
existence of only one critical point (cf. the second paragraph of Remark 3.4) and that M is
diffeomorphic to R

2.
Next, we define the vector field V which determines the foliation. Given z ∈ H

3, let
V (z) = γ̇ (t), where [γ ] is the unique element in M such that z is in the trajectory of γ and
z = γ (t). Now, we verify that V is smooth. The arguments differ from those in the Euclidean
case only at the end, but we include the details for the sake of completeness. The image of V
coincides with �−1(M), and hence it is a smooth submanifold of T 1

H
3, since � is a fiber

bundle. We have to check that zero is the only vertical (with respect to p : T 1
H
3 → H

3)
tangent vector η of the image of V . Suppose that (dp)V (z)(η) = 0 and let t �→ V ◦ c(t)
be a smooth curve in T 1

H
3 such that c(0) = z and with initial velocity equal to η. So,

we have that c′(0) = 0. Let 	 be the curve in M defined by 	(t) = �(V (c(t))) and set
	′(0) = X . Let 	(0) = [γ ] with γ (0) = c(0) and let J (s) = d

dt

∣
∣
0 γV (c(t))(s). We compute

J (0) = c′(0) = 0 and we have that J ′ (0) is orthogonal to γ̇ (0), since V is a unit vector field.
Hence, X = Tγ (J ) and ‖X‖× = 0 by (3) and so ‖X‖K ≥ 0 sinceM is almost semidefinite.
This implies, again by (3), that J ′(0) = 0. Finally, if we consider the isomorphism

(dpV (z),KV (z)) : TV (z)TH
3 → TzH

3 × TzH
3, (8)

where KV (z) is the connection operator, we obtain that η is equal to zero, since
(dpV (z),KV (z))(η) = (J (0), J ′(0)) = (0, 0). �	

Remark 3.4 We construct in Proposition 3.5 below an example of a two dimensional sub-
manifoldM ofL satisfying all conditions of part (b) in Theorem 3.2, except to be closed. The
geodesics inM not only fail to foliate the wholeH3, as expected, but they do not even foliate
the open set U in H

3 given by the union of all their trajectories (there exist two geodesics in
M intersecting at a point in U).

The same proposition shows that if the hypothesis that M is closed in L is removed in
Lemma 3.3, there might exist two different critical points 	1 and 	2 of D|M. One can take
o = f (2, 0) and as 	1 and 	2 the geodesics through o with initial velocities Vλ (2, 0) and
Vλ (2, 2π).

We begin by defining an immersion f of an open set of the plane into a totally geodesic
submanifold S of H3 covering an annulus in S in a non-injective way. Let U be an open
set in the half plane {(r, t) | r > 0} containing the rectangle R = [1, 3]× [−δ, 2π + δ]. Fix
o ∈ H

3 and define f : U → H
3 by

f (r, t) = Expo (r cos t uo + r sin t vo),

where uo, vo ∈ ToH3 are unit orthogonal vectors. We consider vector fields u, v, w along f
forming an orthonormal basis of T f (r,t)H

3 for each r, t . They are given by

u = ∂ f

∂r
, v = 1

sinh r

∂ f

∂t
, w = u × v.

Now, let αλ (r, t) = α0 +λt −λr for some λ > 0 and α0 ∈ (0, π/2), and let Vλ be the vector
field along f defined by Vλ = cosαλ v + sin αλ w. Let Ro be the interior of R.
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50 Y. Godoy, M. Salvai

Proposition 3.5 For some λ > 0, the map

Fλ : Ro → L, Fλ (r, t) = [
γVλ(r,t)

]

is an immersion and g× induces a Riemannian metric on its image Fλ (Ro) = M. Moreover,
the trajectories of γVλ(r,0) and γVλ(r,2π) intersect at f (r, 0), for each r ∈ (1, 3).

Proof We fix (r, t) ∈ Ro and 0 �= (x, y) ∈ T(r,t)R◦. For the sake of simplicity we omit
the subindex λ and write α instead of αλ(r, t). Let us see that

∥
∥dF(r,t) (x, y)

∥
∥× > 0. Let

J be the Jacobi field associated with the variation s �→ γV (r+sx,t+sy). We compute that
J (0) = x u + y sinh r v. Now, since

∇uu = 0, ∇uv = 0, ∇uw = 0, ∇vu = (coth r) v, ∇vv = − (coth r) u and ∇vw = 0,

we obtain that

J ′(0) = − (y cosh r cosα) u + λ(x − y) (sin α) v − λ(x − y) (cosα) w.

On the other hand, calling γ = γV (r,t), we have that

γ̇ (0) × J (0) = V (r, t) × J (0) = − (y sinh r sin α) u + (x sin α) v − (x cosα) w.

Then, since the expression for g× in (3) is valid also if J is not orthogonal to γ̇ , we have that
∥∥dF(r,t) (x, y)

∥∥× = 〈γ̇ (0) × J (0), J ′(0)〉 = λx2 − λxy + 1
4 (sinh 2r sin 2α) y2.

Thus, forM to be Riemannian, it is enough that λ makes this bilinear form positive definite
for all (r, t) ∈ R. Equivalently, that hλ (r, t) > 0 for all (r, t) ∈ R, where for each λ > 0,
hλ : R → R is defined by

hλ (r, t) = sinh (2r) sin (2 (α0 + λt − λr)) − λ.

Now, hλ converges pointwise (and also uniformly, since R is compact) to sinh (2r) sin (2α0)

as λ → 0+. Since the limit function is positive, for λ > 0 small enough, hλ (r, t) > 0 for all
(r, t) ∈ R, as desired. �	

4 Global nondegenerate geodesic foliations of H3

Two unit speed geodesics γ and α of H3 are said to be asymptotic if there exists a positive
constant C such that d(γ (s), σ (s)) ≤ C , ∀s ≥ 0 [5]. Two unit vectors v,w ∈ T 1

H
3 are said

to be asymptotic if the corresponding geodesics γv and γw have this property.
A point at infinity for H3 is an equivalence class of asymptotic geodesics of H3. The

set of all points at infinity for H3 is denoted by H
3(∞) and has a canonical differentiable

structure diffeomorphic to the 2-sphere. The equivalence class represented by a geodesic γ is
denoted by γ (∞) and the equivalence class represented by the oppositely oriented geodesic
s �→ γ (−s) is denoted by γ (−∞). Let ϕ± : L → H

3(∞) be the forward Gauss map (for
+) and the backward Gauss map (for −), defined by ϕ±([γ ]) = γ (±∞), which are smooth.

In the introduction we commented on some distinguished types of geodesic foliations of
H
3, regarding towhich extent they are in some sense trivial in some directions. Thatmotivates

the following precise definitions. Before we recall that by Theorem 3.2, any smooth geodesic
foliation of H3 has an associated submanifold M of L.
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Global smooth geodesic foliations of the hyperbolic space 51

Definition 4.1 We say that a smooth foliation by oriented geodesics of H
3 is semi-

nondegenerate if the Gauss maps ϕ± : M → H
3(∞) are local diffeomorphisms, where

M ⊂ L is the space of leaves. And we say that it is nondegenerate if the only eigenvectors
of ∇V are in RV , where V is the unit vector field that determines the foliation.

In order to characterize the semi-nondegenerate and nondegenerate global geodesic foli-
ations of the hyperbolic space in terms of the geometry of L, we have the next definition.
Definition 4.2 A submanifoldM of L is said to be semidefinite if ‖X‖× = 0 for a nonzero
X ∈ TM only if ‖X‖K > 0.

Theorem 4.3 Let M be the submanifold of L associated with a foliation of H3 by oriented
geodesics. Then

(a) the foliation is semi-nondegenerate if and only if M is semidefinite.
(b) the foliation is nondegenerate if and only if g× induces on M a definite metric.

Some definitions and lemmas will be necessary to prove the theorem.
A Jacobi vector field J along a geodesic γ of H3 is said to be stable (unstable) if there

exists a constant c > 0 such that

|J (s)| ≤ c, ∀s ≥ 0 (∀s ≤ 0).

It is well-known that a Jacobi vector field J along a geodesic γ of H3 and orthogonal to γ̇ is
stable (respectively, unstable) if and only if J (s) = e−sU (s) (respectively, J (s) = esU (s))
for some parallel vector field U along γ orthogonal to γ̇ .

We recall that given v ∈ T 1
H
3 and any point p ∈ H

3, there exists a unique unit tangent
vector at p that is asymptotic to v (see [5, Proposition 1.7.3]). A smooth vector fieldW inH3

is called an asymptotic vector field if W (p) and W (q) are asymptotic for every p, q ∈ H
3.

Lemma 4.4 Let c be a smooth curve inH3. Then an asymptotic vector field W onH3 satisfies
the following differential equation

∇ċ(t)W = 〈ċ(t),Wc(t)〉Wc(t) − ċ(t). (9)

Proof After decomposing ċ(t) into its components tangent and orthogonal to Wc(t), the
statement follows directly from the following equations:

∇X W = −X, if X⊥W and ∇W W = 0.

The first one is true (see (1.10.9) in [5]), since it is well known that the shape operator of a
horosphere is the identity. The second one holds, since the integral curves of an asymptotic
vector field are geodesics. �	
Lemma 4.5 Let γ be a geodesic ofH3 and let J ∈ Jγ be given by J (s) = d

dt

∣∣
0 γut (s), where

t �→ ut is a smooth curve in T 1
H
3, with foot points c(t) (in particular, u0 = γ̇ (0) ⊥ċ (0)).

If vt ∈ T 1
γ (0)H

3 is the asymptotic vector to ut for each t ∈ R, then the Jacobi vector field K
along γ associated with vt satisfies

K ′(0) = J (0) + J ′(0).

Proof For each s, t ∈ R, let V (s, t) be the unique unit vector at c(s) that is asymptotic to ut .
In particular, V (0, t) = vt and V (t, t) = ut . We compute

D

dt

∣∣∣∣
0
ut = D

dt

∣∣∣∣
0
V (t, t) = D

dt

∣∣∣∣
0
V (t, 0) + D

dt

∣∣∣∣
0
V (0, t) = D

dt

∣∣∣∣
0
V (t, 0) + D

dt

∣∣∣∣
0
vt (10)
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The second equality follows from the well-known corresponding identity in the calculus of
several variables (writing V in coordinates). The vector field V (t, 0) is an asymptotic vector
field along t �→ c(t). So, using that J is orthogonal to γ̇ (in particular 〈ċ (0) , V (0, 0)〉 = 0)
and (9) with Wc(t) = V (t, 0), we have that

D

dt

∣∣
∣
∣
0
V (t, 0) = −ċ(0). (11)

Finally, since J ′(0) = D
dt

∣
∣
0 ut and K ′(0) = D

dt

∣
∣
0 vt , by (10) and (11) we obtain K ′(0) =

J (0) + J ′(0), as desired. �	

Proof of Theorem 4.3. (a) Suppose that the foliation is semi-nondegenerate. Let [γ ] ∈ M
and let 0 �= X ∈ T[γ ]M such that ‖X‖× = 0. We want to see that ‖X‖K > 0. By (a) ⇒
(b) in Theorem 3.2 we have ‖X‖K ≥ 0. Suppose now that ‖X‖K = 0. Let J ∈ Jγ be the
Jacobi vector field associated with X via the isomorphism Tγ given in (2). Hence, by (3),

{J (0), J ′(0)} is linearly dependent and
∣
∣J ′ (0)

∣
∣2 = |J (0)|2. Since X �= 0, we have that J is

a stable or an unstable vector field. If J is a stable Jacobi vector field, by Proposition 1.10.7
in [5], J (s) = d

dt

∣∣
0 γut (s) for some smooth curve t �→ ut ∈ T 1

H
3 with u0 = γ̇ (0) and ut

asymptotic for all t . Then,

(dϕ+)[γ ]X = d

dt

∣∣∣∣
0
ϕ+([γut ]) = 0,

which is a contradiction since ϕ+ is a local diffeomorphism. The case J unstable is similar.
Therefore, M is semidefinite.

Conversely, ifM is semidefinite,we have to prove that the foliation is semi-nondegenerate,
that is, that the backward and forward Gauss maps ϕ± are local diffeomorphisms. So, let
[γ ] ∈ M and 0 �= X ∈ T[γ ]M. Let J ∈ Jγ be the Jacobi vector field associatedwith X via (2)
and consider a smooth curve t �→ ut ∈ T 1

H
3 such that [γut ] ∈ M and J (s) = d

dt

∣∣
0 γut (s).

Let us prove that (dϕ+)[γ ]X �= 0 (the proof of the corresponding assertion for ϕ− instead
of ϕ + is similar). We have to see that the initial velocity of t �→ γut (∞) is different from
zero. By the definition of the differentiable structure of H3(∞) we have that the map that
assigns to each v ∈ T 1

γ (0)H
3 the equivalence class of γv in H

3(∞) is a diffeomorphism. So,

we consider the smooth curve t �→ vt ∈ T 1
γ (0)H

3 such that γut (∞) = γvt (∞) and we show

that d
dt

∣∣
0 vt �= 0. Let K be the Jacobi vector field along γ given by K (s) = d

dt

∣∣
0 γvt (s)

with initial conditions K (0) = 0 and K ′(0) = D
dt

∣∣
0 vt . By the isomorphism given in (8), it

suffices to see that K ′(0) �= 0. Now, by Lemma 4.5, K ′(0) = J (0)+ J ′(0). If ‖X‖× �= 0, the
set {J (0), J ′(0)} is linearly independent and so K ′(0) �= 0. Now suppose that ‖X‖× = 0.
Since X �= 0 and M is semidefinite, then ‖X‖K = |J (0)|2 − |J ′(0)|2 > 0. By (3), the set
{J (0), J ′(0)} is linearly dependent, and J (0) �= 0. Hence, J ′(0) = λJ (0)with λ ∈ R−{±1}.
Consequently, K ′(0) = (1 + λ)J (0) �= 0, as desired.
(b) First, suppose that the foliation is nondegenerate, that is, the only eigenvectors of ∇V
are in RV . We want to see that ‖X‖× �= 0 for all 0 �= X ∈ TM. Suppose that there exists
a nonzero vector X ∈ T[γ ]M such that ‖X‖× = 0. Let J ∈ Jγ the Jacobi vector field
associated with X via the isomorphism Tγ defined in (2). By (7), ∇J (0)V = J ′(0) and since
X �= 0 we obtain that J (0) �= 0. Now, since

0 = ‖X‖× = ‖Tγ (J )‖× = 〈
γ̇ (0) × J (0), J ′(0)

〉
,
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we have that J (0) × J ′(0) is orthogonal to γ̇ (0) = V (γ (0)). Or equivalently, J ′(0) is a
multiple of J (0). Again by (7), J (0) is an eigenvector of ∇V orthogonal to V (γ (0)) (recall
that J ∈ Jγ ), which is a contradiction.

Conversely, let u ∈ TpH
3 be an eigenvector of ∇V with eigenvalue λ. Let c : (−ε, ε) →

H
3 be a smooth curve such that ċ(0) = u − 〈u, V (p)〉 V (p)⊥V (p). So, the Jacobi vector

field given by J (s) = d

dt

∣
∣
∣
∣
0
γV (c(t)) (s) is in Jγ , where γ = γV (p). Since J (0) = ċ(0) and

∇V (p)V = 0, we have that ∇J (0)V = λu. As ∇J (0)V = J ′(0) by (7), Tγ (J ) ∈ TM satisfies

‖Tγ (J )‖× = 〈
γ̇ (0) × J (0), J ′(0)

〉 = 〈V (p) × ċ(0), λu〉 = 〈V (p) × u, λu〉 = 0.

Since g× induces on M a definite metric, we have that Tγ (J ) = 0 and so ċ(0) = J (0) = 0.
Thus, u is a multiple of V (p), as desired. �	

The definition of semi-nondegenerate foliation says that geodesics varying smoothly
within the foliation do not meet at infinity. The following theorem states that this local
condition implies in fact the global property that geodesics in the foliation do not meet at
infinity at all. In the proof we have to use coordinates in H

3.

Theorem 4.6 LetM be the space of leaves of a semi-nondegenerate smooth foliation of H3

by oriented geodesics. Then the forward and backward Gauss maps ϕ± : M → H
3 (∞) are

one to one. In particular, they are diffeomorphisms onto their images.

Proof Let P : H
3 → M be the map assigning to each point q in the hyperbolic space

the oriented geodesic in the foliation containing q , that is, P (q) = [
γV (q)

]
. This is a fiber

bundle with typical fiber R. Since M is diffeomorphic to R
2 by Theorem 3.2, there exists

a global section S : M → H
3. Let F : M′ × R → H

3 be the diffeomorphism given by
F (q, t) = γV (q) (t), where M′ = S (M) ⊂ H

3. Let

F± : M′ → H
3 (∞) , F± (q) = γV (q) (±∞) ,

which satisfies F± ◦ S = ϕ±. Clearly, it suffices to prove that F± is one to one.
We consider the upper half space model of the hyperbolic space, that is, {(x, y, z) | z > 0}

with the Riemannian metric ds2 = 1
z2

(
dx2 + dy2 + dz2

)
. Without loss of generality, we

may suppose that
[
γo

] ∈ M, where γo (t) = (
0, 0, et

)
, and that S

([
γo

]) = (0, 0, 1). In this
model,H3 (∞) = (

R
2 × {0})∪{∞}, ϕ+ [

γo
] = γo (∞) = ∞ and ϕ− [

γo
] = γo (−∞) = 0.

Since ϕ± (or equivalently F±) are local diffeomorphisms, there exists a neighborhood A
of (0, 0, 1) inM′, and neighborhoodsU+ andU− of ∞ and 0 in H

3 (∞), respectively, such
that F± : A → U± is a diffeomorphism. Let B+ ⊂ U+ be the complement of a closed disk
centered at 0 of radius R in R2 ×{0}. Let A′ ⊂ A and B− ⊂ U− be such that F± : A′ → B±
are diffeomorphisms. Taking, if necessary, a larger R, we may suppose that B− is contained
in the disk of radius δ (also centered at 0).

Let us see that F
(
A′ × R

)
contains the horoball {(x, y, z) | 2z ≥ R + δ}. If ∂A′ is the

border of A′ inM′, then F
(
∂A′ × R

)
is a cylinder inH3 separating the space in two connected

components, in such a way that F
(
A′ × R

)
is the component containing the trajectory of γo.

The assertion follows from the fact that the cylinder is built up with trajectories of geodesics
in H

3 (vertical semicircles with center in R
2 × {0}) whose z-component is smaller than

1
2 (R + δ).

Finally, given [σ ] ∈ M such that σ (∞) = γo (∞), we want to see that [σ ] = [
γo

]
.

The geodesic σ must have the form σ (t) = (
xo, yo, zoet

)
for some real numbers xo, yo, zo,

with zo > 0. For t large enough, σ (t) is in the horoball. In particular, there exists t1 such
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54 Y. Godoy, M. Salvai

that σ (t1) = F (q, s) for some (q, s) ∈ A′ × R. Hence σ (t1) = γV (q) (s). Now, since for
each point of H3 passes only one geodesic inM, we have that [σ ] = [

γV (q)

]
. Consequently,

γV (q) (∞) = ∞ and so q = (0, 0, 1), since F+ is one to one on A′. Therefore [σ ] = [
γo

]
.

The injectivity of ϕ− is verified in a similar way. �	
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