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Abstract
In this article, we extend Dung’s formal approach from admissibility to less demanding extension semantics allowing arguments
in cycles of attacks. We present an acceptance criterion leading to the characterization of three semantics called pairwise
cogency, weak cogency and cyclic cogency. Particular game-theoretic protocols allow us to identify winning strategies with
extensions in different semantics. Furthermore, an algorithmic characterization of those games exhibits clearly how self-
attacking or in odd-length cycles of attack can be rationally managed beyond the limits of admissibility.
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1 Introduction

Argumentation is a process in which arguments for and against some claim are put forward by
contending parties. While it might adopt different patterns, a very general characterization of
argumentation starts from a general set of arguments and a given ‘attack’ relation among them.
In [10], Dung formalizes an argumentation framework as a tuple AF = 〈A,�〉, which consists of a
set of arguments A and the attack relation �⊆A×A such that, given A,B∈A, A�B means that
A attacks B. For simplicity, we will only consider finite argumentation frameworks, i.e. frameworks
based in a finite set A.1

The main problem for argumentation frameworks is the determination of which arguments should
be accepted in the framework. Acceptance, in turn, depends on the way in which arguments can
be defended from attacks. The different ways in which this can be achieved lead to corresponding
notions of acceptance. An acceptance criterion can be captured as an extension semantics S, yielding,
for every argumentation framework AF, a family ES (AF)⊆2A of ‘extensions’of AF. An argument is
said credulously accepted under a semantics S if and only if it belongs to some extension E∈ES (AF),
and is said to be sceptically accepted if and only if it belongs to every extension E∈ES (AF).

Argumentation semantics have been evaluated in different ways, usually in terms on how well they
behave on canonical examples but also through their confrontation with human behaviour [20]. Baroni
and Giacomin [3] presented a more systematic approach to the evaluation of extension semantics,

1From now on ‘AF’ will denote an arbitrary argumentation framework, unless the contrary is stated. Moreover, we will
eventually refer to attacks among arguments and/or sets of arguments, overloading the symbol ‘�’.
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2 Beyond admissibility: cogency criteria

based on how they satisfy certain principles. One of them is admissibility, a criterion introduced in
Dung’s seminal work and that most extension semantics in the literature satisfy. In [3] two versions of
admissibility are distinguished, a weak one (every argument that belongs to an extension is defended
by any argument within the extension) and a strong one (every argument that belongs to an extension
is defended by another argument within the extension).

The study of extension semantics under other principles gained attention in recent years. Most
of them are concerned with the treatment of loops in the attack relation and defining weaker forms
of defence. One of the reasons for the interest on this line of research is the failure of admissibility
in addressing loops in the attack relation. In fact, admissibility discards arguments attacked by
self-attacking arguments and rejects arguments involved in odd-length cycles of length ≥3 (ceteris
paribus). Arguably, CF2 [2] and stage [23] semantics are the best known amendments for these
shortcomings, but other alternatives exist. In [4] and [5] some extension semantics can be found,
based on a general criteria of defence called ‘cogency’. Unlike admissibility, which is a property of sets
of arguments, cogency is predicated as a relationship between sets of arguments. So, an admissible set
of arguments is one that defends itself from any external attack, while a set of arguments S is at least as
cogent as a set of arguments S′ if S is admissible in the argumentation framework restricted to S∪S′.

The notion of cogency, albeit based on the notion of admissibility, yields a class of acceptability
criteria with different degrees of tolerance to the presence of loops in the attack relations. Furthermore,
most usual proof-procedures for argumentation based on labellings [7, 15] and dialogue games
[1, 8, 11, 12, 16, 21, 22, 24, 26] can be retooled for cogency.

Precisely, the goal of this article is to provide a dialogue game counterpart to cogency-based
semantics (to our knowledge, this is the first approach of its kind for non-admissible extension
semantics). We present a precise game-theoretical formulation of two-party dialogue games in the
line of others in the literature, mainly [22]. Basic rules of the game allow to capture admissibility in
terms of the class of arguments for which their proponent has winning strategies. We will show that
winning strategies under specific protocols constraining the moves of the players allow to capture
three different cogency-based semantics. In [6] we made a first approach towards the capture of
pairwise and weak cogency; the present article is an extension of that work in which, in addition,
cyclic cogency is addressed (in line with the concepts introduced in [4] and [5]) and sceptical decision
games are defined for all the three criteria under specific conditions. Each protocol either adds new
constraints on the legal moves of the players (pairwise cogency) or specifies the ways other protocols
are invoked at different game rounds (weak and cyclic cogency). More precisely, the protocols for
weak and cyclic cogency define a meta-argumentation game in which the players (proponent and
opponent) play a series of (object level) argumentation games. Weak cogency is captured by the
winning strategies of the proponent that end up advancing, if it exists, a better theory (in terms of
cogency) than anyone the opponent can use against her. Cyclic cogency, in turn, is obtained by means
of the winning strategies of the proponent that prescribe advancing, if they exist, a finite sequence
of theories, each one better (in terms of cogency) than the previous one, starting at any theory the
opponent can use against her and ending back at the proponent’s initial theory. Finally, the sceptical
decision problem is approached through the winning strategies of the proponent under a protocol that
captures the arguments that belong to every set that maximally satisfies a given cogency criterion.

The article is organized as follows. In Section 2, we present several principles on which defence
criteria can be based. On one hand, the admissibility-related criteria introduced in [3] are revisited;
on the other hand, our cogency-related criteria are defined. In Section 3, the basics of a dialogue game
are defined together with protocols for admissibility. This game is in essence the same which, under
different protocols, captures in its winning strategies the different cogency criteria. This is shown
in Section 4. Section 5 evaluates some known non-admissible semantics according to our cogency
related principles. Final considerations close the paper in Section 6.
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2 Defence criteria

In [3], Baroni and Giacomin have proposed several criteria for the evaluation of extension semantics.
We will first analyse those related to the widely accepted notion of defence called admissibility.
Additionally, we will introduce the conflict-freeness criterion, which is satisfied by all the extension
semantics in the literature. After that, we will present the concept of cogency and its ensuing criteria:
pairwise, weak and cyclic cogency.

2.1 Admissibility and conflict-freeness

Admissibility is considered in [3] as a general criterion of defence that can appear with two different
degrees of strength: a weak version that we call ‘defensibility’ and a strong one called ‘strong
admissibility’.

Definition 2.1
For any argumentation framework AF=〈A,�〉 and S⊆A, let F(S)={A :∀B(B�A ⇒∃C∈S C�
B)} ([10]’s characteristic function). A subset T⊆A is defensible iff T is such that:

T⊆F(T ) (1)

A semantics S satisfies the defensibility criterion iff for any argumentation framework AF and for
every E∈ES (AF), E is defensible.

Another important criterion considered in [3] demands that all the extensions sanctioned by a
semantics must be conflict-free.Although not strictly related with defence, all the extension semantics
in the literature satisfy the following principle:

Definition 2.2
A set of arguments T is conflict-free iff ∀A,B∈T (A �B). A semantics S satisfies the conflict-
free criterion iff for any argumentation framework AF=〈A,�〉 and for every E∈ES (AF), E is
conflict-free.

Dung [10] uses the term ‘admissible’ for sets of arguments which are both defensible and conflict-
free. In what follows, we use the term admissible to denote sets that satisfy Dung’s criteria. On the
other hand, defensibility is applied to denote a property of extension semantics. While related, these
uses are not identical since, while any semantics for which all its extensions are admissible satisfies
the defensibility criterion, its converse is not necessarily true.

A stronger criterion of defence is obtained also in terms of classes of arguments.

Definition 2.3
Given a class of arguments S⊆A, the set of arguments strongly defended by S is the set sd(S)⊆A
such that A∈sd(S) iff for all B∈A, if B�A then there exists some C∈S−{A} such that C�B and
C∈sd(S−{A}).
Definition 2.4
For any argumentation framework AF=〈A,�〉, a subset T⊆A is strongly admissible iff T satisfies
the following condition:

T⊆sd(T ) (2)

A semantics S satisfies the strong admissibility criterion iff for any argumentation framework AF
and for every E∈ES (AF), E is strongly admissible.
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All the semantics presented by Dung satisfy the defensibility criterion but only grounded semantics
satisfies the strong admissibility criterion.

2.2 Cogency

There also exist extension semantics that go beyond admissibility. Examples are stage [23], CF2 [2],
sustainable, tolerant [5] and lax [4] semantics. In the same way as [3] extract the admissibility-based
principles from Dung’s admissibility defence criterion, we will extract three defence criteria, weaker
than admissibility, for sustainable, lax and tolerant semantics, respectively: pairwise cogency, weak
cogency and cyclic cogency.

Informally, we call ‘cogent’ an argument that is accepted unless some of its attackers have better
defences than itself. For example, an argument supported by a well-established scientific theory, e.g.,
the argument from special relativity theory that no particle can exceed the speed of light is not defeated
by an argument drawn from experiments showing an ‘anomaly’, say neutrinos traveling faster than
light, unless this evidence is in turn supported by a rival, stronger scientific theory. Cogency can be
seen as a notion according to which admissibility exerts only a relative, contextual, authority.

Definition 2.5
Given an argumentation framework AF = 〈A,�〉, and two subsets S, S′ ∈ 2A, we say that S is at least
as cogent as S′, in symbols, S≥cog S′, iff S is admissible in the restricted argumentation framework
〈A,�|S∪S′ 〉. We say that S is strictly more cogent than S′, in symbols, S >cog S′, iff S≥cog S′ and not
S′ ≥cog S.

Up from ≥cog we obtain a new criterion of defence, weaker than admissibility.

Definition 2.6
For any argumentation framework AF=〈A,�〉, a subset T⊆A is pairwise cogent iff T is maximal
w.r.t. ≥cog, i.e.:

∀S⊆A S >cog T (3)

A semantics S satisfies the pairwise cogency criterion iff for any argumentation framework AF and
for every E∈ES (AF), E is pairwise cogent.

Let Cog(AF)={E⊆A :E is pairwise cogent}. It is easy to see that if E is admissible then
E∈Cog(AF) (moreover, E≥cog S for every S⊆A). Sustainable semantics, in particular, takes as
extensions all the maximal (w.r.t. ⊆) elements of Cog(AF).

The salient behaviour of sustainable semantics is the avoidance of undesired interferences of
self-attacking arguments.

Example 2.7 (Pollock’s ‘lottery paradox’ paradox example [19])
Imagine a fair lottery with 1,000,000 tickets, so that each ticket has one in a million chances of
winning. Given a particular ticket, we can tentatively conclude that it will not win, since its probability
is very low. But the same can be concluded about every ticket, hence we can conclude that none of
them will win. But given that the lottery is fair, one ticket must be drawn. This is called ‘the lottery
paradox’. Upon this contradiction a further contradiction can be obtained, namely that since none
of the tickets will win, the lottery cannot be fair. That is, the argument of the lottery paradox, based
upon the premise that the lottery is fair, attacks itself since one of its consequences contradicts its
premise. This is what Pollock called the ‘ ‘lottery paradox’ paradox’. It can be modelled with the
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Figure 1. Two argumentation frameworks with odd-length cycles of attack.

argumentation framework AF=〈{A,B},{(A,A),(A,B)}〉 (Figure 1a), where:

A= ‘there are good prima facie reasons to conclude that the lottery is fair, hence presumably the
lottery is fair’, and
B= ‘accepting argument A, for each ticket ti, 1≤ i≤1,000,000, we can tentatively infer that ti will
not win, but this implies that no ticket will be drawn, hence the lottery is not fair’.

This framework has only one sustainable extension, {B}. Note that the only subsets satisfying (3)
are ∅ and {B}, but the latter is the only maximal one. On the other hand, note that we have both
{B} >cog {A} and {A} >cog {B}. This explains why {B}∈Cog(AF), even if it is not admissible.

Even weaker (but sensible) defence criteria can be conceived. Let us see the following example:

Example 2.8
Assume you have to choose a school for your children and your candidates are s1, s2 and s3. You
evaluate them according to three criteria: proximity, tuition fee and social environment. A candidate
is preferred to another if it is better with respect to most of the criteria. Assume now that after a
one-to-one comparison you build these three arguments:

A: ‘s2 is better than s1 with respect to proximity, but s1 is better than s2 with respect to tuition fee
and environment; then choose s1’;
B: ‘s3 is better than s2 with respect to environment, but s2 is better than s3 with respect to proximity
and tuition fee; then choose s2’
C: ‘s1 is better than s3 with respect to tuition fee, but s3 is better than s1 with respect to environment
and proximity; then choose s3’.

This situation is modeled as the argumentation framework 〈{A,B,C}, {(A,B), (B,C), (C,A)}〉 which
is depicted in Figure 1b.

The above example shows a decision which is blocked up as the three arguments are involved
in a odd-length cycle of attacks. Pairwise cogency (as well as admissibility) will deem all the three
arguments out of every extension. So, according to our intuition, pairwise cogency is still a too
stringent criterion in contexts of practical decisions as this one (readers familiarized with Social
Choice Theory will see the resemblance with Condorcet’s paradox). In our opinion, each argument
here should belong to some extension as each one is arguably not worse defended than its attacker.
The following criterion achieves the goal just requiring for a candidate that if there exists some
strictly more cogent set then this should not be pairwise cogent (notice that in the example we have
{A} >cog {B} >cog {C} >cog {A} and moreover none of this sets is pairwise cogent).

Definition 2.9
For any argumentation framework AF=〈A,�〉, a subset T⊆A is weakly cogent iff T satisfies the
following condition:

∀S⊆A (S >cog T⇒S ∈Cog(AF)) (4)
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Figure 2. {C} is not a weakly cogent set. The game shows that C cannot be defended by the opponent.

Figure 3. {D} is weakly cogent but not cyclically cogent.

A semantics S satisfies the weak cogency criterion iff for any argumentation framework AF and for
every E∈ES (AF), E is weakly cogent.

We call Lax a semantics characterized as the class of maximal (w.r.t. ⊆) subsets of arguments
satisfying (4). Note that every weakly cogent set T is such that it is either pairwise cogent or for
every S >cog T there exists T ′ satisfying T ′>cog S. It follows that every semantics that satisfies
pairwise cogency also satisfies weak cogency, and if it satisfies weak cogency then it is conflict-free
(note that if T is not conflict-free, then ∅>cog T and ∅∈Cog(AF)).

Going back to the last example, the lax extensions {A}, {B} and {C} coincide with those sanctioned
by the CF2 semantics. Nevertheless, CF2 does not satisfy pairwise nor weak cogency. For instance,
in the argumentation framework 〈{A,B,C},{(A,B),(B,A),(B,C),(C,A)}〉 (Figure 2, left), the CF2
semantics yields again the three extensions {A}, {B} and {C}, but {C} is not weakly cogent (since
{B}>cog {C} and {B}∈Cog(AF)).

On the other hand, weak cogency may seem too weak with respect to other situations. Consider
the following interpretation of the argumentation framework depicted in Figure 3.

Example 2.10
A: ‘s2 is better than s1 with respect to proximity, but s1 is better than s2 with respect to tuition fee
and environment; moreover, s2 is better than s4 in every respect. Then choose s1’;
B: ‘s3 is better than s2 with respect to environment, but s2 is better than s3 with respect to proximity
and tuition fee; moreover, s3 is better than s4 in every respect. Then choose s2’;
C: ‘s1 is better than s3 with respect to tuition fee, but s3 is better than s1 with respect to environment
and proximity; moreover, s1 is better than s4 in every respect. Then choose s3’;
D: ‘s4 is acceptable by default, then choose s4’.

Since neither A, B nor C belongs to a pairwise cogent set, {D} is weakly cogent. But accepting D
seems excessively naive, since {D} is defenceless against the attack of all the remaining extensions.
So, what we want here is a criterion so lax as to accept arguments that belong to odd-length cycles
of attack but stringent enough as to avoid the acceptance of arguments like D. The cyclic cogency
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criterion captures the idea that arguments that are considered once and again in any sequence of
defeats deserve acceptance.

Definition 2.11
Let S>=df {S′ : if S′ =S then there exists a sequence S >cog ...>cog S′}. For any argumentation
framework AF=〈A,�〉, a subset T⊆A is a cyclically cogent set iff T satisfies the following
condition:

∀S⊆A(S >cog T→S∈T>) (5)

A semantics S satisfies the cyclical cogency criterion iff for any argumentation framework AF and
for every E∈ES (AF), E is a cyclically cogent set.

Example 2.12
Consider again the argumentation framework depicted in Figure 3. {A}, {B} and {C} are cyclically
cogent sets, but {D} is not.

In the above example, the CF2 semantics also yields {A}, {B} and {C} as extensions and rejects {D}.
Nevertheless, it does not satisfy the cyclic cogency criterion. In the argumentation framework shown
in Figure 2 (left), note that {A} and {C} are CF2 extensions which are not cyclically cogent sets.

The following result connects conflict-free and cogency-related criteria (it will be useful later in
section 4.4).

Lemma 2.13

If S and S′ are both

⎧⎨
⎩

pairwise
weakly
cyclic

⎫⎬
⎭ cogent sets, then

S∪S′ is a

⎧⎨
⎩

pairwise
weakly
cyclic

⎫⎬
⎭ cogent set iff S∪S′ is conflict-free.

Proof. (→) By contraposition. Note that if S∪S′ is not conflict-free then∅>cog S∪S′, which implies
that S∪S′ is neither pairwise, weakly nor cyclic cogent.
(←) The cases related to pairwise and weakly cogency are both proved by way of contradiction in
a similar way, while that related to cyclic cogency follows immediately from the case of weakly
cogency since every cyclic cogent set is also weakly cogent. Let S∪S′ be conflict-free:

• Pairwise cogency. Assume that T >cog S∪S′. Then there exists some A∈T such that for some
B∈S∪S′, A�B and S∪S′ �A. But then either A�S and S �A or A�S′ and S′ �A. Hence
either S ∈Cog(AF) or S′ ∈Cog(AF). Either case contradicts the main hypothesis.

• Weak cogency. Assume that T >cog S∪S′ and there exists no T ′ such that T ′>cog T . Then there
exists some A∈T such that for some B∈S∪S′, A�B and S∪S′ �A. But then either A�S
and S �A or A�S′ and S′ �A. Hence there exists no T ′ such that T ′>cog T and either S is
not weakly cogent or S′ is not weakly cogent. Either case contradicts the main hypothesis.

�

3 Argumentation games over argumentation frameworks

We will introduce now the topic of how the defence criteria presented in the previous section can
be captured by means of dialogue games. More precisely, we will define a general dialogue model,
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in line with others in the literature, and specific protocols for the admissibility criteria. In the next
section, we will deal with our main goal which is to find specific protocol rules and their relationships
with the cogency-based criteria. A salient contribution will be to show that all the protocols, both
for admissibility and cogency criteria, can be seen in terms of variants of the same basic game.

The abstract character of argumentation frameworks calls for very general notions of acceptance.
Here we enumerate the most common features of dialogical proof procedures:

– Two party: one of the players is the ‘proponent’ (P), who defends an argument, and the the other
is the ‘opponent’ (O), who aims to defeat it.

– Zero-sum game: only one of the players wins.

– Finiteness: the number of arguments put forward by both P and O is finite.2

These features provide a very basic underlying framework of dialogue games ([16], etc.). Other,
more comprehensive notions of acceptance can be defined on the basis of this model by adding further
protocol rules, without changing the features of the original game. Next we redefine argumentation
games in precise game-theoretical terms as two-players zero-sum games [18], following in general
the formalism in [22].

Definition 3.1
An argumentation game on an argumentation framework AF=〈A,�〉 is a zero-sum extensive game
in which:

(1) There are two players, i and −i, who play the roles of P and O, respectively.
(2) A history in the game is any sequence A0,A1,A2,...,A2k,A2k+1,... of choices of arguments in

A made by the players in the game. A2k corresponds to P and A2k+1 to O, for k=0,1,....
(3) At any history, A0 is the argument that player P intends to defend.
(4) In a history the choices by a player i at a level k >0 are Ci(k)={A∈A :∃B∈C−i(k−1),A�B}.
(5) A history of finite length K , A0,...,AK , is terminal if AK corresponds to player j (j= i or j=−i)

and C−j(K+1)=∅.
(6) Payoffs are determined at terminal histories: at A0,...,AK , P’s payoff is 1 if K is even (i.e. O

cannot reply to P’s last argument), and −1 otherwise. In turn, O’s payoff at A0,...,AK is 1 if
K is odd and −1 otherwise.

A game in which P intends to defend an argument A can be represented by a rooted tree, in which
A is the root. Each non-terminal node at level l consists of a history A0,...,Al and its children are all
the histories A0,...,Al,Al+1. The terminal nodes are, of course, the terminal histories.3

Definition 3.2
A strategy for a player i is a function that assigns an element Al+1∈Ci(l) at each non-terminal history
A0,...,Al where Al corresponds to player−i. A strategy W of the player i in game in which i intends
to defend argument A will be denoted by ‘W (A)i’.

Notice that any pair of strategies, one for each player, in a game starting at A, W (A)i and W (A)−i
determine a unique terminal history.

2All the ensuing results can be extended to determined infinite games [13], but we will keep our analysis in the finite realm
since this extension involves topological questions far removed from the mathematical approach followed in the literature on
argumentation [17].

3The usual custom is to identify each node with the last argument in the corresponding history. So for instance the node
for A0,...,Al is denoted just Al .
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Definition 3.3
A strategy W∗(A)i of player i in a game in which i=P is said a winning strategy for P if for every
strategy chosen by −i, W (A)−i, the ensuing terminal history yields a payoff 1 for player i.4

If P has a winning strategy, it means that her initial argument can be defended against any possible
attack. On the contrary, if O has a winning strategy, it means that P is defeated.

Notice that winning strategies for either P or O cannot be ensured to exist if the game tree is
infinite. Even being finite, an argumentation framework which is not free of cycles in the attack
relation can yield an infinite tree.

Let W(A)P the set of arguments played by P in a winning strategy W (A)P in a game for A. It is
easy to see that P has a winning strategy for every argument belonging to W(A)P.

Lemma 3.4
Let A be an argument P has a winning strategy W (A)P for. Then P has a winning strategy for every
argument B∈W(A)P.

Proof. Trivial. Suppose that P does not have a winning strategy for B∈W(A) P. It means that once
P plays B, she can no longer force the game towards a terminal history in which she gets 1. But then,
when the game for argument A leads P to declare B, the game can follow a history in which P does
not win, contradicting the assumption that W (A) P is a winning strategy. �
Lemma 3.5
The set W(A)P of all the arguments played by P in her winning strategy W (A)P constitutes an
admissible and strongly admissible set of arguments.

Proof. First we prove that W(A)P satisfies condition (1) and is conflict-free.Assume P has a winning
strategy W (A)P for A and assume by contradiction that W(A)P is not admissible. This implies that
one of the following must be the case: (a) W(A)P is not conflict-free; (b) there exists some argument
B∈W(A)P which is not acceptable w.r.t. W(A)P. But then:

(a) The hypothesis that B,C∈W(A)P are such that B�C leads to a contradiction, since it implies
that if P plays C then O can win the game by playing B and following the same sequence of moves
as P would play in W (A)P if she were to defend B.
(b) It follows that there exists some C∈A such that C�B and for every D∈W(A)P it is not the case
that D�C. Then O can win the game by playing C when P plays B. This, in turn, implies that B
does not belong to a winning strategy of P, contradicting the hypothesis.

To prove that W(A)P satisfies condition (2) just notice that no history built on this strategy can have
cycles. Otherwise it would be infinite and the strategy would not be winning. �
Proposition 3.6
Let S⊆A be the set of all the arguments that can be defended by P with a winning strategy. The set⋃

A∈S W(A)P is an admissible and strongly admissible set of arguments.

Proof. Given lemma 3.5 we need only prove that
⋃

A∈S W(A)P is conflict-free. Let A,B∈S, and
suppose by contradiction that A′ ∈W(A)P and B′ ∈W(B)P are such that A′�B′. By lemma 3.4 we
have that P has a winning strategy W (A′)P for A′. But then W (A′)P is also a winning strategy for O
in the game against B′. Hence, W (B)P is not a winning strategy for P. Contradiction. �

4Similarly, if i=O, W∗(A)i is winning for O.
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10 Beyond admissibility: cogency criteria

However, an argument that belongs to an admissible and strongly admissible but not conflict-free
set is not ensured to be defended by P with a winning strategy. To see this, consider the argumentation
framework 〈{A,B,C}, {(A,B), (B,C), (C,A)}〉 in which some (strange) semantics could sanction
only the single extension {A,B,C}, satisfying both admissibility and strong admissibility. But no
argument in this extension can be defended by P (the cycle of attacks makes the game infinite). Of
course, this semantics does not satisfy the conflict-free criterion, unlike all the known semantics in
the literature.

3.1 Protocols capturing defensibility for finite argumentation games

Argumentation games, according to Definition 3.1, are not necessarily finite. Given the rules of
the game, it is clear that a possible source of non-finiteness is the existence of cycles in the attack
relation. Thus, there are basically two ways to avoid infiniteness in a framework with a finite number
of arguments: (i) restricting argumentation games to argumentation frameworks in which the attack
relation is acyclic; (ii) adding rules forbidding either one or both of the players to repeat arguments
in some specific way. The first alternative leaves out many interesting cases. So, we (as usual in the
literature) will follow the latter one.

Dung’s grounded semantics is the best known strongly admissible semantics. It sanctions only one
extension, the least fixed point of the characteristic function F(S) (def. 2.1). No protocol needs to be
added to the rules 1–6 to capture grounded semantics. This is shown, mutatis mutandis, in [16] and
[22]. It is also known that every semantics satisfying strong admissibility is ‘covered’ by grounded
semantics (cf. [3]). So, the game protocol needs only be extended to ensure the finiteness of the
game.

Protocol 1. Rules 1–6 plus

7. P is not allowed to play an argument that was previously played by either player.

The following two results are immediate after the considerations on grounded semantics discussed
above (we make explicit the proofs anyway).

Proposition 3.7
Let A∈E for any extension E∈ES (AF) of a semantics S satisfying the conflict-free, admissibility
and strong admissibility criteria. Then P has a winning strategy for A under protocol 1.

Proof. If P could play an argument played before under her winning strategy, her strategy would
lead to a non-terminating game (by engendering a cycle of attacks), contradicting the very concept
of winning strategy. Hence, any winning strategy of P is obtained when P plays in accordance with
Protocol 1. �
Proposition 3.8
If P has a winning strategy for A under protocol 1 then A∈E for some set E⊆A satisfying strong
admissibility (i.e. condition (2)).

Proof. Given Lemma 3.5, we only have to prove that P does not need to repeat any argument played
before in the same history. This is trivially true since, otherwise, there would exist some loop in her
play, enabled by her strategy, contradicting the fact that it is a winning one. �

The next protocol captures defensibility and its properties were, in essence, already found by
Vreeswijk and Prakken [26].
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Protocol 2. Rules 1–6 plus

7. Neither player is allowed to advance an argument that was previously played by O (if P repeats
O then she is introducing a conflict within her own strategy; if O repeats O then she is repeating
an unsuccessful counter-argument).

8. Neither player is allowed to move if the last argument in the sequence was previously played
by P (i.e. if the next move corresponds to O and P has repeated herself then O looses –her
strategy failed; if the next move corresponds to P and O has repeated an argument that was
previously played by P then P looses —O has made an eo ipso move).

9. If O is out of moves according to the preceding rules, she can backtrack to the last
node where an argument played by P can lead to a different, non previously played,
history.

The corresponding results arise from what is known about games for preferred semantics [26]:

Proposition 3.9
Let A∈E for any extension E∈ES (AF) of a semantics S satisfying the defensibility criterion. Then
P has a winning strategy for A under Protocol 2.

Proof. Note that A is acceptable with respect to E, hence P can win by playing only arguments in E.
Since E is defensible, it is conflict-free, hence O cannot make an eo ipso move nor P can be forced
to play an argument that was previously played by O. �
Proposition 3.10
If P has a winning strategy for A according to Protocol 2 then A∈E for some set E⊆A satisfying
admissibility (i.e. condition (1)).

Proof. Assume that P has a winning strategy W (A)P for A following Protocol 2 and consider any
history H of W in which O plays optimally. Let HP be the set of arguments used by P in H and
assume by contradiction that HP is not defensible. But HP is conflict-free since, by Protocol 2, P can
not repeat arguments used by O. Hence there exists some argument B∈HP which is not acceptable
w.r.t. HP, i.e. there exists C∈A, C�B and  ∃D∈HP, D�C. Then O could win the game by playing
D against C. Contradiction. �

4 Game protocols and algorithms capturing cogency-related criteria

We define specific game protocols capturing pairwise, weak and cyclic cogency.

4.1 Protocol capturing pairwise cogency

To define a protocol for pairwise cogency, notice that the only case in which a pairwise cogent set
S of arguments is not admissible is when S is attacked by some self-attacking argument: Assume S
is pairwise cogent but not admissible. Then there exist A∈S and B∈A such that B�A and S �B.
But if {B} is conflict-free then {B}>cog S. Nevertheless, S is pairwise cogent and hence {B} >cog S.
Therefore, {B} is not conflict-free, implying that B is self-attacking. The intuition obtained from this
discussion leads naturally to the following Protocol.

Protocol 3. Protocol 2 plus

10. Neither player is allowed to play a self-attacking argument.
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12 Beyond admissibility: cogency criteria

Proposition 4.1
Let A∈E for any extension E∈ES (AF) of a semantics S satisfying the pairwise cogent criterion.
Then P has a winning strategy for A under Protocol 3.

Proof. Assume that P has no winning strategy for A. Then, there exists some history leading O to
win, which means that in this history either (i) O made an eo ipso move, or (ii) all the arguments that
attack the last move of O were already deployed by O, or (iii) all the arguments that attack the last
move of O are self-attacking. Cases (i) and (ii) imply that there exists an odd-length cycle of attacks
involving an argument played by P. Hence, for every set S that P tries to build to defend A, there
exists some set S′ such that S′>cog S. Hence A cannot belong to a pairwise cogent set. For case (iii),
assume B is the last argument played by O and for every argument C, if C�B then C�C. Then
{B} is pairwise cogent and for every set S that P tries to build for A, {B}�S. �
Proposition 4.2
If P has a winning strategy for A according to protocol 3, then A∈E for some set E⊆A satisfying
pairwise cogency (i.e. condition (3)).

Proof. Assume P has a winning strategy W (A)P for A following Protocol 3 and consider any history
H obtained with P playing W (A)P in which O plays optimally. Let HP be the set of arguments used
by P in H and assume by contradiction that HP ∈Cog(AF). This implies that there must exist some
set S >cog HP. But since O has not played an eo ipso move in H, HP is conflict-free, hence there
exist some arguments B∈S and C∈HP such that B�C and for any D∈HP, D �B (in particular for
D=C). Then O could win the game by playing B against C. Contradiction. �

Winning strategies in dialogue games provide characterizations for the extensions of various
semantics and can be rather easily translated into algorithms yielding those extensions. In
fact, algorithms and complexity issues for admissibility have been already widely discussed
[8, 9, 11, 12, 16, 25]. Up from them, a generic procedure can be distilled, which we call
proc_Protocol_2, implementing Protocol 2. It is intended as a basic ingredient for the algorithms that
will be introduced henceforth. In fact, since it is known that more efficiency is gained by forbidding
P to play self-conflicting moves [16], we add this restriction. Moreover, since the pairwise cogency
protocol differs from the admissibility protocol only in that self-attacking arguments are excluded
from the legal moves of both players, any algorithm for admissibility can be adapted easily to become
an algorithm for pairwise cogency. So, proc_Protocol_2 with this modification yields an algorithm,
proc_Protocol_3 that will be invoked by the algorithms implementing the weak and cyclic cogency
protocols.

4.2 Protocol capturing weak cogency

The intuition underlying weak cogency is that a proponent has enough justification for her thesis
if any opposing theory (i.e. set of arguments) is not better (in terms of cogency) than her own
theory. We think of a meta-argumentation game seen as a series of argumentation games, which
will facilitate a definition as an algorithm which invokes modularly procedure proc_Protocol_3.
The meta-game starts with P aiming to defend an argument A against O in an argumentation game
under proc_Protocol_3. If P succeeds, the meta-game ends; otherwise, O has still to defend with a
pairwise cogent set the argument B with which she has blocked P in the first phase of the meta-game.
Now the burden of proof is on O, so a new argumentation game is in order, in which P just tries to
make O unable to support B with a pairwise cogent set. If O succeeds at this round she wins the
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meta-argumentation game and P looses; otherwise P wins (O failed in her attempt to find a better
theory than P’s). If P has a winning strategy in this meta-argumentation game, be it at the first or at
the second phase, her argument A belongs to a weakly cogent set.

To avoid confusion with respect to the roles that P and O play in the two rounds of the game, let us
introduce some new terminology which will facilitate the definition of the algorithm. Call exponent
the player who has the burden of proof at a round of the game, and challenger the other player (i.e.
the one who tries to defeat the exponent). The exponent and the challenger must play under the rules
governing the proponent and the opponent, respectively, in the corresponding protocol. Also call
thesis the argument for which the exponent has the burden of proof and challenge the argument that
allowed the challenger to block the exponent in the previous stage.

Protocol 4. The game is played according to this algorithm:

proc_Protocol_4
BEGIN
% The game starts distributing the roles of Exponent and

% Challenger, respectively.

Exponent := P
Challenger := O
RUN proc_Protocol_3% Exponent aims to defend her thesis argument

% with a pairwise cogent set.

IF Exponent succeeds
% P has proved that her thesis belongs to a pairwise cogent set.

THEN
Payoff(P) :=1
Payoff(O) :=−1

ELSE % Round 2: O has to defend her formerly challenge argument

% with a pairwise cogent set, while P tries to show she can’t.

Exponent := O
Challenger := P
RUN proc_Protocol_3
IF Exponent succeeds
% A better proposal than P’s first one has been found by O.

THEN
Payoff(P) :=−1
Payoff(O) :=1

ELSE
Payoff(P) :=1
Payoff(O) :=−1

END.

Example 4.3
To illustrate the procedure, let us suppose that P is aimed to defend A in the argumentation framework
depicted in Figure 2 in the left. On the right side, we show the game tree according to Protocol 4.
Assume O plays optimally the first round under Protocol 3, attacking A with C. As P is blocked (B is
in conflict with her thesis) O succeeds. Round 2 starts by shifting the burden of proof to O who has
to defend C. Then O assumes the role of the exponent P, who in turn becomes the challenger. Now
P succeeds playing B and blocking O. Therefore, P wins the meta-argumentation game. (Viewed as
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14 Beyond admissibility: cogency criteria

a rational choice problem, notice that {A}≥cog {B}, which is a reason for P not to dropping {A} in
favour of {B}.)
Proposition 4.4
Let A∈E for any extension E∈ES (AF) of a semantics S satisfying the weakly cogent criterion. Then
P has a winning strategy for A under Protocol 4.

Proof. By way of contradiction, assume that P has no winning strategy for A. If A is self-attacking
it is clearly excluded from any weakly cogent set. Otherwise there exists some history in which O
could win the second round game. This means that P failed to build a pairwise cogent set for A at the
first round game, which implies that for any set S such that A∈S, O can play an argument B∈S′ for
some set S′ and S′>cog S. At round 2, let B be the argument that O defends. Since P has no winning
strategy, no matter which set of arguments T is used by P in her strategy at the second round, O can
play a strategy with arguments drawn from some set of arguments T ′ such that B∈T ′ and T ′ ≥cog T .
Therefore, A cannot belong to any weakly cogent set of arguments. Contradiction. �
Proposition 4.5
If P has a winning strategy for A under protocol 4 then A∈E for some set E⊆A satisfying weak
cogency (i.e. condition (4)).

Proof. Assume P has a winning strategy for A in a game played according to Protocol 4. Let us
analyse two cases: (i) P wins at Round 1; (ii) P wins only at Round 2.

(i) In this case, the set of arguments in the winning strategy, W(A)P is a pairwise cogent set and,
hence, a weakly cogent set.
(ii) Assume i= P has no winning strategy for A at Round 1 but has one at Round 2. First note that if
P cannot win the game at Round 1 she is unable to build a set for A in Cog(AF), that is, for every set
S such that A∈S there has to exist some set S′ such that S′>cog S. Now let B be an optimal choice
of P among the non eo ipso arguments played by O at Round 1. This choice forces −i to defend B
at Round 2. Since at the second round game i= O wins the game, it must be that −i= P will not
be able to build a set in Cog(AF) for B. Hence, for any set S′ such that B∈S′ and S′>cog S for any
set S such that A∈S, there exists some subset S′′ (containing some of the arguments played by P at
Round 2) such that S′′>cog S′. This implies that S satisfies (4). �

4.3 Protocol capturing cyclic cogency

To capture cyclic cogency, we follow here a similar approach as for weak cogency: P tries to defend
her thesis with a good theory T⊆A according to Protocol 3. If P succeeds then she wins: T is a
pairwise cogent set, hence also a cyclically cogent set. Otherwise a sequence of argumentation games
begins with both players alternating the roles of exponent and challenger, each one trying to find a
better theory than the last one played by her counterpart. P, in particular, is aimed to show that the
sequence of dialogues will yield a cycle going back to T (in particular, to the argument in T , say B,
that was blocked by O); O, in time, is aimed to show that some pairwise cogent set R used against
T will be found in the way. Thus, unlike Protocol 4, the sequence of dialogues goes on until some
player either finds a pairwise cogent set or repeats B. The meta-game is won by O if, and only if, a
pairwise cogent set is found: the exponent, either P or O, has succeeded at some round (note that
P herself could be who finds a better theory than her own theory T !). Otherwise, the meta-game is
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won by P since the challenger (either P or O) has succeeded in the last round with the help of B,
confirming that a theory better founded than T has not been found.

Protocol 5. The game is played according to this algorithm:

proc_Protocol_5
BEGIN
% The game starts distributing the roles of Exponent and

% Challenger, respectively.

Exponent := P
Challenger := O
RUN proc_Protocol_3 % Exponent aims to defend her thesis.

IF Exponent succeeds
% P has proved that her thesis belongs to a pairwise cogent set

THEN
Payoff(P) :=1
Payoff(O) :=−1

ELSE
blocked_argument := last argument played by P
REPEAT % A run against the counterpart begins.

player_var := Exponent
Exponent := Challenger
Challenger := player_var
RUN proc_Protocol_3 % Exponent defends her

% formerly challenging argument.

SCha := {B∈A : B is an argument
played by Challenger}

UNTIL blocked_argument ∈SCha

IF Exponent succeeds
% A better proposal than P’s first one has been found.

THEN
Payoff(P) :=−1
Payoff(O) :=1

ELSE
% Challenger has repeated P’s blocked argument and

% Exponent has not succeeded.

Payoff(P) :=1
Payoff(O) :=−1

END.

Example 4.6
Suppose we want to know whether A can be defended by P with a winning strategy in the
argumentation framework 〈{A,B,C},{(A,B),(B,C),(C,A)}〉 (Figure 4). The first round will end with
O blocking A with C (P cannot play B since she would be playing a self-conflicting strategy). Then
the protocol forces O to show in a second game round that her challenging argument C belongs
to a pairwise cogent set. But P can reply with B, leaving O out of moves. Then in the next round
O can attack B only with A. In this way, O is forced to accept A and thus P wins the overall
game.
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Figure 4. {A} is cyclically cogent. In the game, the opponent is forced to use the proponent’s thesis.

Figure 5. P wins the last round but she herself has found a better theory ({B}) than her first one
({A}), so she looses the meta-game.

Example 4.7
Let us see now whether A belongs to some cyclically cogent set in the argumentation framework
depicted in Figure 5. O has two options to attack A: B and C. Choosing B is not an optimal move
since P can reply moving A again, forcing O to backtrack and start a new attack with C. So, assume
O plays optimally in the first round moving C. Since the only argument attacking C is B, which is in
conflict with A, P is blocked at A and looses the first round. Now O has the burden of proof on her
challenging argument C: she has to assume the role of the exponent and show that C belongs to a
pairwise cogent set. Once she advances C as her thesis in this second round, P replies with B. This
leaves O out of moves since A, the only attacking argument of B, is in conflict with her previous
move C. Then a third round starts with P defending the argument she used to challenge O, B. Then
O challenges B playing A, her only possible move, but P can defend successfully B. At this point, we
have the particular situation in which P wins this last round but looses the meta-game: P, by herself,
has found a better theory than her initial one since {B} is a pairwise cogent (admissible, indeed) set.
(Also notice that O has used P’s blocked thesis A, but without success). In fact, {B}>cog {C}>cog {A}
but {A} >cog {B}, hence A does not belong to a cyclically cogent set.

Next we show the results ensuring the correspondence between cyclic cogency and winning
strategies under Protocol 5.

Proposition 4.8
Let A∈E for any extension E∈ES (AF) of a semantics S satisfying the cyclic cogency criterion. Then
P has a winning strategy for A under Protocol 5.

Proof. If A belongs to a pairwise cogent or to an admissible set, P is ensured to win at the first run of
proc_Protocol_3. So let us analyse the case where A belongs to some cyclically, non-pairwise cogent
set. In this case, P does not succeed in the first round game (she is left out of moves since O forces her
to use a self-conflicting strategy). But since A belongs to a cyclically cogent set, it follows that either
A or an argument defending (directly or indirectly) A are involved in an odd-length cycle of attacks.
In either case, the second round starts with O trying to show that her blocking argument belongs to a
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pairwise cogent set. But O also fails being pushed by the challenger, P, into a self-conflicting strategy
as well. Then a new round starts in which O challenges P’s challenging argument, and so on. Note
now that for any odd-length k of the cycle, the player who has the role of challenger will repeat, in
the [(k+1)/2+1]th round, the argument of P blocked in the first game round (i.e. B∈SCha

r , where
B is the blocked argument of P and SCha

r is obtained from the strategy played by the challenger in
the round r= (k+1)/2+1). Hence, the game ends with a successful defence of A by P according to
Protocol 5. �
Proposition 4.9
If P has a winning strategy for A under protocol 5 then A∈E for some set E⊆A satisfying cyclic
cogency.

Proof. Assume P has a winning strategy for A under Protocol 5, and let us prove that A belongs to
a cyclically cogent set. Assume O plays optimally when P plays her winning strategy. If P wins the
first run of proc_Protocol_3 then A belongs to a pairwise cogent set and hence to a cyclic cogent set.
Otherwise, P wins after several game rounds. Clearly, O won the first round. But since P still has
a winning strategy, it follows that the strategy played by O does not yield a pairwise cogent set in
the second round. Thus, the players play arguments involved in an odd-length cycle. Let C be the
blocking argument of O in the first round. Then C does not belong to a pairwise cogent set since
she looses in the second round, and the same is the case for all the Exponents of the following game
rounds. Thus, according to the protocol, some player repeats the argument of P blocked in the first
game round. Hence, for any set S of arguments that O can advance in her strategy (in particular,
anyone such that C∈S) P can close a cogency cycle with a set S′ such that {A,B}⊆S′. Therefore, A
belongs to a cyclically cogent set. �

4.4 Sceptical games and cogency-related criteria

Finally, an interesting question is whether justification games can be defined as to capture the
arguments included in every extension that satisfies a given cogency criterion (sceptical decision
problem). This is a difficult question to address in the case of preferred semantics [16] and it seems
to be so also for cogency-based semantics. A strategy followed in [26] is to impose symmetric
obligations on both players by asking O to defend her challenging argument satisfying the same
requisites as those imposed on P. If O succeeds, she has proved the existence of a set that satisfies
those requirements without including P’s thesis. But this strategy only works for preferred extensions
which are also stable (i.e. extensions that attack every external argument) and not for general preferred
semantics. It does not work for general cogency-based semantics neither. Nevertheless, we can show
that it works for semantics sanctioning maximally pairwise, weakly or cyclic cogent sets (namely
sustainable, lax or tolerant semantics).

Protocol 6. (Sceptical games)
If P is successful playing under protocol x, x∈{3, 4, 5}, O is prompted to defend her challenging
argument under the same protocol x.

Proposition 4.10
P has a winning strategy for A under protocol 6 iff A∈E for every set E⊆A maximally (w.r.t. ⊆)
satisfying the cogency criterion of protocol x.

Proof. (→) Protocol 3: Let A∈S, where S is the pairwise cogent set supplying a winning strategy
to P in the defence of A, and let B be any challenging argument (unsuccessfully) used by O (B does
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not belong to any pairwise cogent set). Assume now by contradiction that S′ is a maximal pairwise
cogent set such that A ∈S′. By Lemma 2.13, we have that if S′ ∪S is conflict-free then it is pairwise
cogent. But this contradicts the maximality of S′, hence it is not conflict-free, i.e. there exist some
attack among S′ and S. Now, as they are pairwise cogent sets, each set can reply any attack from the
other set; in particular, we will have an attack from S′ to S. But then this attack can be used by O to
build a pairwise cogent set with elements of S′ not containing A. This contradicts the hypothesis.
Protocol 4: Let us take the same assumptions as in the previous proof, but assuming now that S
is weakly cogent and that, by way of contradiction, S′ is a maximal weakly cogent set such that
A ∈S′. Since O cannot build a weakly cogent set attacking A, it follows that S′ does not attack S, in
particular, S′ �A. But S′ ∪{A} cannot be conflict-free, otherwise by lemma 2.13 S′ ∪{A} would be
weakly cogent, contradicting the maximality of S′. Hence A�S′, which implies that (*) {A}>cog S′.
But since S′ is weakly cogent, it follows that there exists some set T such that T >cog {A}. In turn, T
cannot be weakly cogent (otherwise it would be used by O). Hence there exists a pairwise cogent set
T ′ such that T ′>cog T . Note that T ′ cannot attack A (otherwise it would be used by O again), while
A cannot attack T ′, otherwise it would not be pairwise cogent. But then T ′ ∪{A} is pairwise cogent
and moreover by (*) we have that T ′ ∪{A}>cog S′. This contradicts that S′ is weakly cogent.
Protocol 5: It follows immediately from the previous proof and the fact that every cyclic cogent set
is also weakly cogent.
(←) Let A∈E for every set E⊆A which maximally (w.r.t. ⊆) satisfies the cogency criterion
corresponding to protocol x (let us call such sets ‘x-cogent’). Then for each protocol x, P has a
winning strategy for A under protocol x. Assume by way of contradiction that O wins under protocol
6. Then O has found an x-cogent set S such that B∈S where B is O’s challenging argument, i.e.
B�A. But, by hypothesis, there exists some maximal x-cogent set T such that {A,B}⊆T . Then T is
not conflict-free, contradicting that it is x-cogent. �

5 Discussion

5.1 Non-admissible semantics from the point of view of cogency criteria

Extension semantics which do not satisfy admissibility have not been widely explored. Among them,
sustainable semantics satisfy pairwise cogency, tolerant semantics satisfy cyclic cogency [5] and lax
semantics only satisfies weak cogency [4]. This is straightforward since, in each case, the extensions
are defined as to be the maximal (w.r.t.⊆) subsets of arguments satisfying the corresponding criterion.
CF2 [2] and stage [23] semantics, on the other hand, do not satisfy neither weak nor cyclic cogency,
though their behaviour is in many cases similar to that of lax and tolerant semantics regarding
self-attacking arguments and odd-length cycles of attack. The argumentation framework depicted in
Figure 2 is a counterexample where {C} is a CF2 extension but it is neither weakly nor cyclic cogent.
For stage semantics, consider the argumentation framework 〈{A,B,C},{(A,A),(A,B),(B,C),(C,A)}〉
where the stage extension {C} is neither weakly nor cyclic cogent too, since {B}>cog {C} and {B} is
pairwise cogent. Table 1 summarizes the above remarks.

5.2 Cogency criteria from a rational choice point of view

Admissibility and pairwise cogency can be interpreted as models of rational choice, with admissibility
corresponding to a stringent maximalization function while pairwise cogency corresponds to a liberal
maximalization function [14]. A stringent maximalization function chooses the subset of alternatives
{S :S�S′, for any alternative S′}, where ‘�’ is a reflexive and transitive preference relation, while the
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Table 1. Non-admissible semantics comparison through cogency criteria

Semantics Pairwise cogency Cyclic cogency Weak cogency

CF2 No No No
Stage No No No
Lax No No Yes
Tolerant No Yes Yes
Sustainable Yes Yes Yes

class of admissible subsets of A is {S :S≥cog S′, for any subset S′ ⊂A}. On the other hand, a liberal
maximalization function chooses the subset of alternatives {S :S′ >S, for any alternative S′}, while
the class of pairwise cogent subsets of A is {S :S′ >cog S, for any subset S′ ⊂A}. Nevertheless, we
cannot disregard a fundamental difference between preference relationships, on which the rational
choice functions are defined, and the cogency relationship: while preferences are transitive, cogency
is not. This notwithstanding, the cogency relationship can be seen as a justification for the use of
cycles in argumentative disputes, being natural and not deprived of rationality.

On the other hand, while loops tend to induce problems in preference relationships, they arise
with naturality in strategic decision-making, as shown in Example 2.8. So, if decisions are to be
supported by arguments it seems sensible to analyse also the possible cycles in the argumentation
process. In [5], cyclically cogent sets of arguments are put in correspondence with rationalizable
strategies in a two-player normal-form game: every S is chosen as the best response to any S′ such
that S≥cog S′. Here, instead, we focus on extensive-form games under protocols leading to different
types of dialogues. The most involved protocol from those presented in this article was designed
for cyclic cogency. It characterizes the cycling argumentation process as an alternation of partial
dialogues intended to find, again, a ‘rationalizable theory’.

6 Conclusion

Dialogue games are usually studied as proof-theoretical counterparts of extension semantics. Our
work goes one step further, relating them to general criteria of argument defence. In this sense, we
have focused on a precise game-theoretical framework and have shown that particular protocols of
play can be defined in such way that the arguments in the ensuing winning strategies constitute the
extensions that satisfy general criteria of defence. Moreover, all the protocols presented here can be
algorithmically implemented, ensuring the finiteness of the game.

In particular, we have shown this characterization for three defence criteria weaker than
admissibility: pairwise, weak and cyclic cogency. These criteria exploit the intuition that acceptability
depends on how argument strategies are able to protect their arguments. Unlike admissibility, which
is defined in terms of defending an argument against any attack, cogency requires to defend an
argument only against coordinated attacks. This yields an immediate dialectical interpretation: the
opponent is urged to build a more convincing argument strategy than the proponent’s. Pairwise
cogency offers a rational criterion for solving undesired interferences of self-attacking arguments. In
turn, weak and cyclical cogency, with different degrees of credulity, yield rationalizable choices —in
the game-theoretical meaning of the term— of arguments involved in odd-length cycles of attack.
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