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ABSTRACT
The ANTARES dataset is a large collection of known and verified 
experimental bioconcentration factor data, involving 851 highly 
heterogeneous compounds from which 159 are pesticides. The BCF 
ANTARES data were used to derive a conformation-independent 
QSPR model. A large set of 27,017 molecular descriptors was 
explored, with the main intention of capturing the most relevant 
structural characteristics affecting the studied property. The structural 
descriptors were derived with different freeware tools, such as PaDEL, 
Epi Suite, CORAL, Mold2, RECON, and QuBiLs-MAS, and so it was 
interesting to find out the way that the different descriptor tools 
complemented each other in order to improve the statistical quality of 
the established QSPR. The best multivariable linear regression models 
were found with the Replacement Method variable sub-set selection 
technique. The proposed QSPR model improves previous reported 
models of the bioconcentration factor in the present dataset.

Introduction

The pesticides are agrochemical compounds playing a very important role in not only food 
production for the increasing demand of the human population, but also during the control 
of infectious diseases transmitted by insect-vectors and microorganisms [1]. During pesticide 
applications, these substances are in contact with plants or absorbed by them, although 
they can also be dissolved and washed away by the aqueous phase and introduced into its 
living organisms, thus moving to the entire food chain [2,3].

In bioconcentration processes, chemical compounds have a concentration in an organism 
exceeding the concentration in the surrounding environment, achieved through non-dietary 
routes such as respiratory and dermal surfaces [4,5]. The Bioconcentration Factor (BCF) rep-
resents the bioconcentration capability of a chemical, defined as the ratio between its 
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concentration in the organism and the concentration in water at steady-state equilibrium 
under laboratory conditions. The BCF parameter is an end-point of great relevance, due to 
its ecotoxicological impact: substances are identified as bioaccumulative when log BCF > 3.3, 
and as non-bioaccumulative under this limit. For the assessment, fish are generally used, 
due to their role in the food chain and the availability of standardized testing protocols [5].

Among the various methodologies available in the literature for predicting the properties 
of substances, i.e. BCF, and based on the knowledge of their chemical structure, the 
Quantitative Structure–Property Relationships (QSPR) Theory [6–8] has been widely used in 
past studies [9,10]. QSPR models constitute a fast and cost-effective alternative to the exper-
imental evaluation of BCF through animal testing.

In the QSPR framework, the molecular structure is quantified by means of molecular 
descriptors; in other words, numerical quantities carrying specific information on the con-
stitutional, topological, geometrical, hydrophobic, and/or electronic aspects [11–13]. 
Therefore, a descriptor set selected with an appropriate machine learning algorithm is sta-
tistically correlated to the experimental property under study, resulting in a mathematical 
model that can be used to find out useful structure–property parallelisms.

The first studies on BCF have involved its correlation to the octanol/water partition coef-
ficient (log Kow) through linear, bilinear, and polynomial models [14]. During last decades, 
more complex models have been continuously proposed for specific regulatory purposes, 
such as the CAESAR model [15,16] implemented in the VEGA platform [17] (473 substances), 
the Meylan model [18] implemented in the Estimation Program Interface (EPI Suite) BCFBAF 
module [19] (527 substances), or the T.E.S.T. model [20] (598 substances) among others. 
However, the availability of newer and higher quality experimental BCF measures encourages 
the development of newer and alternative bioconcentration QSPR models with improved 
statistical quality [21].

A recent QSPR study performed by Gissi et al. [21] in 2014 employs the ANTARES dataset 
[22], a larger dataset than other ones reported previously for establishing predictive BCF 
models. It involves 851 highly heterogeneous compounds, from which 159 compounds are 
pesticides. The best results were obtained with a 9-descriptors Artificial Neural Network 
(ANN) QSPR model of standard architecture (one input layer, one hidden layer, and one 
output layer), leading to a satisfactory predictive capability. This properly validated model 
includes interpretable biokinetics descriptors, and is derived from a training set of 608 com-
pounds and challenged against the validation and test sets containing 152 and 76 com-
pounds, respectively.

This work resorts to the same large collection of known and verified experimental BCF 
data used by Gissi et al. [21], in order to report a new alternative QSPR model involving 
pesticide information. The conformation-independent QSPR approach [23–26] employed 
here does not consider the conformational representation of the chemical structures, by 
only relying on their constitutional and topological representations. It is worthy to note that 
this approach is not ‘geometry independent’, because also the so calculated descriptors 
depend on the geometry through the chemical graph. The exclusion of 3D-structural aspects 
avoids ambiguities due to the existence of compounds in various conformational states, 
which would lead to the loss of predictive capability of the QSPR model.
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SAR AND QSAR IN ENVIRONMENTAL RESEARCH   3

Materials and methods

Experimental dataset

The ANTARES dataset [21,22] includes experimental BCF values collected among various 
reliable and publicly available databases. This dataset involves compounds with different 
chemical classes, from which 159 compounds are pesticides. Compounds characterized by 
ambiguous data, inorganic compounds, or isomeric mixtures were discarded [21], thus lead-
ing to a set containing 851 experimental BCF values ranging in the interval –1.70–5.69. The 
complete list of compounds studied here is provided in Table 1S as Supplementary Material.

Structural representation and molecular descriptors calculation

The 851 molecular structures were first drawn with ACDLabs ChemSketch freeware [27] with 
molecules in MDL mol (V2000) format. All file format conversions were performed with Open 
Babel for Windows [28].

The conformation-independent molecular descriptors were computed as follows. We use 
the Pharmaceutical Data Exploration Laboratory (PaDEL) freeware program version 2.20 [29], 
because it has the advantage that it is a freely available and open source program. PaDEL 
allows us to calculate 1444 0D-2D descriptors and 12 fingerprint types (16,092 bits) [30]. The 
categorical (indicator) fingerprint descriptors involve the presence or count of specific chem-
ical sub-structures: we treat the fingerprints like they are ‘constitutional descriptors’ describ-
ing the molecular composition, and, as such, these can be used for modelling any property 
of interest.

Five semi-empirical descriptors were calculated from the EPI Suite freeware modules [19], 
with molecules in SMILES format. EPI Suite uses a series of group contribution factors for 
calculating (in decimal logarithmic units): (i) octanol/water partition coefficient log KowEPI; 
(ii) water solubilities log Sw1EPI and log Sw2EPI: the second parameter is based on log KowEPI; 
(iii) soil sorption partition coefficients log Koc1 and log Koc2: the first parameter is based on 
the first order molecular connectivity index, while the second one is based on log KowEPI. 
We also calculate the Bioconcentration Factor log BCFEPI in order to compare EPI Suite′’s BCF 
predictions with the ones found in the present work.

Optimal molecular descriptors (DCW, descriptor of correlation weights) were also calcu-
lated in our QSPR study; in other words, descriptors that depend both on the molecular 
structure and the property under analysis (BCF), but they do not explicitly depend on the 
molecular conformation of compounds. We have already shown the importance of using 
optimal descriptors in previous QSPR studies [26,31–33]. The CORAL freeware [34] defines 
different kinds of optimal descriptors. The structural representation (SR) used, i.e. graph or 
SMILES, determines the structural attributes (SA) available for the linear model. Therefore, 
it is necessary to decide which SA combination is the most appropriate, and this is done in 
a stepwise fashion, i.e. first search for the best single SA, then search for a second SA that 
combines the best with the previous one, and so on. The DCW descriptor is a linear combi-
nation of correlation weights (CW), refer to Supplementary Table 2S. The CW was calculated 
for each SA in the training set through the Monte Carlo (MC) simulation method. The DCW 
depends on the threshold (T) and the number of epochs (nepochs): the rare attributes occur 
in less than T compounds, and in this work T is a positive integer (T = 0–2). The molecules 
were provided to CORAL in SMILES format.
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4   J. F. ARANDA ET AL.

More molecular descriptors were calculated with the Molecular Descriptors from 2D struc-
tures (Mold2) freeware [35], which generates 779 1D–2D structural variables with molecules 
in MDL sdf format.

Atomic charge density-based descriptors were calculated by means of the RECON 5.5 
freeware [36], which encodes electronic and structural information relevant to the chemistry 
of intermolecular interactions. The robustness of RECON has previously been demonstrated 
elsewhere [37]. RECON is an algorithm for the reconstruction of molecular charge densities 
and charge density-based electronic properties of molecules, using atomic charge density 
fragments pre-computed from ab initio wave functions. The method is based on the Quantum 
Theory of Atoms in Molecules [38]. A library of atomic charge density fragments has been 
built in a form that allows for the rapid retrieval of the fragments and molecular assembly. 
In the present case, the molecules were in SMILES format, as input for the generation of 248 
Transferable Atom Equivalent (TAE) descriptors [39].

Finally, 2D molecular descriptors were calculated with the Quadratic, Bilinear, and N-Linear 
MapS (QuBiLs) [40] suite by using the Graph-Theoretic Electronic-Density Matrices and 
Atomic Weightings (MAS) module from the ToMoCoMD-CARDD free multi-platform freeware. 
The QuBiLs-MAS algebraic module calculates 8448 Quadratic, Bilinear, and Linear Maps, 
based on Pseudograph-Theoretic Electronic-Density Matrices and Atomic Weightings, when 
the program is used with the following options selected: ‘bilinear’, ‘linear’, and ‘quadratic’ 
algebraic forms; ‘atom-based’, ‘non-chiral’, and ‘duplex’ constraints; ‘non-stochastic’, ‘simple 
stochastic’, ‘double stochastic’, and ‘mutual probability’ matrix forms (maximum order 15); 
‘keep all’ cut-off; ‘total’ groups; ‘Ghose-Crippen LogP’, ‘Polarizability’, ‘Charge’, ‘Polar Surface 
Area’, ‘Electronegativity’, ‘Refractivity’, ‘Mass’, and ‘Van der Waals volume’ properties; ‘Euclidean 
distance’, ‘arithmetic mean’, and ‘standard deviation’ invariants (non-standardized option).

Therefore, the total number of non-conformational molecular descriptors explored in 
this work was 27,017. It was our intention to capture, with such a great number of descriptors, 
the most relevant structural characteristics affecting the studied property.

Model development 

Molecular descriptors selection in MLR
The 27,017 non-conformational molecular descriptors calculated with PaDEL, EPI Suite, 
CORAL, Mold2, RECON, and QuBiLs-MAS were analysed in order to remove the ‘collinear’ 
descriptors. In this way, the linearly dependent pairs were identified, and only one variable 
from each pair was kept for further analysis. Therefore, non-informative descriptors that were 
not relevant to our QSPR analysis were excluded, such as descriptors with constant and 
near-constant values, and descriptors with at least one missing value. This process leads to 
a set containing 8122 linearly independent 0D-2D descriptors.

We employ the Replacement Method (RM) technique [41] in order to generate MLR mod-
els on the training set (train), by searching in a pool having D = 8122 descriptors for optimal 
sub-sets containing d descriptors (d is much lower than D), with smallest values for the 
standard deviation (Strain) or the root mean square error (RMStrain).

The main idea behind the RM is that one can approach the minimum of Strain by judiciously 
taking into account the relative errors of the coefficients of the least-squares model given 
by a set of d descriptors. In other words, we should find the global minimum of Strain(d) in a 
sub-space of D!∕ [d!(D − d)!] points d, where D represents the total number of available 
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SAR AND QSAR IN ENVIRONMENTAL RESEARCH   5

descriptors. The quality of the results achieved with this technique approaches that obtained 
by performing an exact (combinatorial) full search of molecular descriptors; although, of 
course, requires much less computational work. The RM is more computationally expensive 
than the Stepwise Regression (SR) and Genetics Algorithm (GA) approaches, although it 
produces similar or better results than GA and better results than SR [41,42].

Supplementary Table 2S includes a list of mathematical equations involved in the present 
study. All the MATLAB [43] programmed algorithms used in our calculations are available 
upon request.

Model validation
Several validation strategies have been proposed during the last years for the validation of 
a QSPR model [44,45], which consists on testing its ability to predict the property of com-
pounds not considered during the model development. For this purpose, the complete 
molecular set was split into three sub-sets: training (train), validation (val), and test sets. The 
training set is used to calibrate the model and to obtain its parameters through the RM 
technique, while the validation set helps to partially validate the model. Finally, the test set 
includes compounds ‘never seen’ during the calibration step and demonstrates the true 
predictive capability of the QSPR.

The dataset partitioning was independent of the model building. We partitioned the 
dataset first, and afterwards we searched for the best linear correlations. This partitioning 
has to achieve similar structure–property relationships in the three sub-sets; in other words, 
the training set molecules should be representative of the validation and test set compounds. 
For this purpose, the split of the dataset was carried out by means of the Balanced Subsets 
Method (BSM) [46,47], a procedure proposed by our group that ensures that balanced sub-
sets are generated. The BSM is based on the k-Means Cluster Analysis (k-MCA) method [48]: 
the essence of k-MCA is to create k-clusters or groups of compounds, in such a way that 
compounds in the same cluster are very similar in terms of distance metrics (i.e. Euclidean 
distance), and compounds in different clusters are very distinct. The so generated train, val 
and test sets are independent molecular sub-sets, and they would accomplish, with the 
model′’s Applicability Domain (see above), that the experimental property range and chem-
ical structures are similar in such sets, in line with the similar structure–property relationships 
principle of BSM.

The linear regression models are theoretically validated through the Leave-One-Out Cross-
Validation (loo) procedure [49], and also through the more rigorous Leave-30%-Out Cross-
Validation (l30%o), with 200,000 cases. According to Golbraikh and Tropsha [49], the 
Cross-Validation explained variances (r2

loo and r2
l30%o) should be greater than 0.5, although 

this is a necessary but not sufficient condition for demonstrating the real predictive power.
The QSPR models are also validated with a new criteria based on the mean absolute error 

(MAE) [45]. The quality of the test set predictions is determined through the MAE parameter 
and its standard deviation σ, both computed from the test set predictions after omitting 5% 
high residual data points, in order to obviate the influence of rarely occurring high prediction 
errors that may significantly affect the quality of predictions for the whole external test set. 
For good test set predictions, it is considered that an error of 10% of the training set range 
should be acceptable, while an error value more than 20% of the training set range should 
be a very high error.
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6   J. F. ARANDA ET AL.

Finally, we scramble the experimental property values with Y-Randomization [50] and 
10,000 cases, as a way of checking that the model is not a result of chance correlation when 
RMSrand (RMS for Y-randomization) is greater than RMStrain.

Applicability domain
A predictive QSPR model is only able to predict molecules falling within its applicability 
domain (AD), so that the predicted property is not a result of substantial extrapolation (unre-
liable prediction) [51,52]. The AD definition is dependent on the model’s descriptors and the 
experimental property.

In this work, we determine the AD through two alternative methodologies. The first one 
is based on the well-known leverage approach [53], where a test set compound i must have 
a calculated leverage hi smaller than the warning leverage h*. The second one is based on 
a simple standardization approach [52]: a given test set compound i having d standardized 
descriptor values sik , k = 1, ..., d must have a maximum value smax

ik
≤ 3. In the case that smax

ik
> 3 

and its minimum value smin
ik

< 3, then the snewi  parameter has to be calculated and must fulfil 
the condition: snewi =

⟨

si
⟩

+ 1.28.�si
≤ 3, where 

⟨

si
⟩

 is the mean of sik values for i and �si
 is 

the standard deviation for such values.

Importance of model descriptors
In order to find out the relative importance of the j-th descriptor in the linear QSPR model, 
the regression coefficients were standardized (bsj , see Supplementary Table 2S). The larger 
the absolute value of bsj , the greater is the importance of such a descriptor [54].

Results and discussion

The BSM technique was applied to the ANTARES dataset of 851 heterogeneous compounds, 
thus generating balanced sub-sets of similar size with ntrain = 284, nval = 284 and ntest = 283 
compounds; Supplementary Table 1S denotes the members of each set as validation (^) and 
test (*). In this way, the model′’s calibration compounds in train and val sets constitute 66.75% 
of the whole dataset.

As the next step, the most representative molecular descriptors are searched in the train-
ing set through the RM variable sub-set selection approach. The best MLR models based on 
1–7 structural features are listed in Table 1, while a brief description of the descriptor’s mean-
ings is supplied in Supplementary Table 3S.

Table 1. the best multidimensional QSPR found for BcF. the selected model is in bold.

d Descriptors r2
train RMStrain r2

val RMSval r2
test RMStest

1 DCW 0.64 0.83 0.50 0.91 0.54 0.85
2 PC406; DCW 0.66 0.80 0.54 0.88 0.57 0.82
3 GATS3c; Sub295; DCW 0.69 0.77 0.56 0.86 0.62 0.77
4 GATS3c; Sub295; AP402; DCW 0.70 0.76 0.58 0.84 0.62 0.77
5 AATS5e; GATS3c; Sub295; K1406; 

DCW
0.71 0.74 0.58 0.83 0.65 0.75

6 ATS8m; AATS5e; Sub295; K1406; 
AP391; DCW

0.73 0.71 0.60 0.81 0.67 0.71

7 ATS8m; AP391; DCW; D708; FPIP9; 
SD_B_AB_nCi_2_NS0_T_KA_
psa-e_MAS; N2_B_AB_nCi_2_
NS3_T_KA_a-psa_MAS

0.75 0.69 0.60 0.82 0.67 0.71
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SAR AND QSAR IN ENVIRONMENTAL RESEARCH   7

From Table 1, it is appreciated that the RMStrain parameter continuously improves with 
the addition of molecular descriptors to the linear equation, a typical behaviour in variables 
sub-set selection, but RMSval does not significantly improve beyond the number of six 
descriptors. In order to keep the model′’s size as small as possible, we select such model as 
the best linear regression QSPR:

 

From these results rij max is the maximum correlation coefficient between descriptor pairs, 
indicating the absence of serious correlation between the six selected descriptors. The o3 
parameter indicates the number of outlier compounds in the training set having a residual 
(difference between experimental and predicted property) greater than 3-times RMStrain. 
Equation (1) does not involve training set compounds with very high residuals.

The plot of the predictions as a function of the experimental values is provided in Figure 1. 
The dispersion plot of residuals in Figure 2 tends to obey a random pattern around the zero 
line, suggesting that equation (1) predicts the whole dataset without systematic errors or 
residual bias.

(1)
log BCF = −3.06.10 - 5 ATS8m + 0.071 AATS5e − 0.70 Sub295 − 0.87 K1406

+0.48 AP391 + +0.069 DCW + 0.51

n
train

= 284, r2
train

= 0.73, RMS
train

= 0.71, r2ijmax
= 0.13, o3 = 0, r2

rand
(1)

= 0.10, RMS
rand

= 1.31, r2
loo

= 0.72, RMS
loo

= 0.73, r2
l30%o

(2)

= 0.67, RMS
l30%o

= 0.79, n
val

= 284, r2
val

= 0.60, RMS
val

(3)

= 0.81, n
test

= 283, r2
test

= 0.67, RMS
test

= 0.71. (4)

Figure 1.  Predicted and experimental log BCF values according to the QSPR of equation (1).
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8   J. F. ARANDA ET AL.

The QSPR of equation (1) has an acceptable predictive power on the external test set of 
283 BCF values according to r2

test and RMStest parameters. Such model approves the internal 
validation process of Leave-One-Out and Leave-30%-Out Cross Validation, through the pre-
diction of one or more molecules excluded at a time from the training set. The Y-randomization 
technique demonstrates that the model has RMStrain < RMSrand and r2

rand < r2
train, and that a 

valid structure-log BCF relationship is established without chance correlation. Also, the rec-
ommended external validation criteria [49] to assure predictive capability are also achieved: 
1 − r2

0/r2
test(6.0410-4) < 0.1, or 1 − r2

0/r2
test(0.21) < 0.1; 0.85 ≤ k(1.0035) ≤ 1.15, or 0.85 ≤ k(0.9095) 

≤ 1.15; r2
m(0.66) > 0.5.

The prediction performance of our QSPR model on the 283 test set compounds is found 
to be ‘intermediate’ by the MAE-based criteria, which means an acceptable model [45]. For 
the complete test set, MAE(100%) = 0.57 and σ(100\) = 0.43, while omitting 5% of the high 
residuals compounds leads to MAE(95%) = 0.51 and σ(95%) = 0.34.

The six conformation-independent molecular descriptors appearing in the proposed 
quantitative structure–log BCF relationship are readily calculated from the molecular struc-
ture, and such variables belong to different classes [11–13]: 

•  two Autocorrelation of the Topological Structure descriptors: ATS8m, the Broto-Moreau 
autocorrelation – lag 8/weighted by mass, and AATS5e, the average Broto-Moreau auto-
correlation – lag 5/weighted by Sanderson electronegativities. The structural variables 
introduced by Broto-Moreau are bidimensional autocorrelations between atom pairs 
(i, j) in a molecule, with the main purpose of capturing the degree of interaction between 
them. The nature of atoms is considered through a given property as atomic weight (w), 
i.e. atomic mass, polarizability, electronegativity, or volume. These indices are calculated 

Figure 2.  dispersion plot of residuals for equation (1).
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SAR AND QSAR IN ENVIRONMENTAL RESEARCH   9

from the graph by summing products of terms wi.wj including terminal atomic contri-
butions in all the paths of a prescribed length (lag).

•  a CORAL descriptor: DCW, optimal descriptor based on HSG EC2 and SMILES s attributes. 
In the graph approach, EC2 is the Morgan’s extended connectivity index of second order. 
It should be noted that the index of zero-th order EC0 for vertex (atom) j represents the 
vertex degree for j (number of neighbour atoms to j), while the higher order indices ECk 
are obtained through a recursive formula based on EC0 [31,32]. In the SMILES approach, 
s represents a one-element attribute: i.e. if a SMILES is a sequence of elements such as 
‘ABCDE’, then the s structural attribute can be represented with ‘A’, ‘B’, ‘C’, ‘D’, ‘E’.

and the next descriptors have a straightforward structural interpretation: 

•  a 2D Atom Pairs Fingerprint descriptor: AP391, the presence of C-C at topological dis-
tance 6;

•  a Klekota Roth Fingerprint descriptor: K1406, indicating the presence of the SMARTS 
pattern [!#1]C(=O)[OH]; and

•  a Substructure Fingerprint: Sub295, the presence of a C_ONS bond.

All the molecular descriptors of equation (1) have positive numerical values with the 
exception to DCW, which can have either positive or negative values. The sign of the regres-
sion coefficient in the linear model indicates when the descriptor contribution increases or 
decreases the predicted log BCF values. Higher positive numerical values of DCW, AATS5e 
and AP391 and lower values for ATS8m, Sub295 and K1406 tend to predict higher log BCF 
values. After standardization, the most important descriptor from equation (1) is DCW 
(bsj = 0.66), thus having numerical values changing most in accordance with the numerical 
variations of the experimental property. The remaining descriptors ATS8m (bsj = 0.14), AATS5e 
(bsj = 0.12), Sub295 (bsj = 0.21) K1406 (bsj = 0.16), and AP391 (bsj = 0.17) complement each 
other inside the linear equation and have a comparable relevance.

The model’s squared correlation matrix is provided in Supplementary Table 4S, showing 
the absence of high correlations between descriptors pairs, as mentioned before. We also 
calculate the variance inflation factor (VIF), a parameter that measures the multicollinearity 
among descriptors. A VIF of 1 for a specific descriptor means that there is no correlation 
between this descriptor and all the remaining descriptors of the model, and a VIF exceeding 
10 indicates that multicollinearity is a problem in the dataset [55]. From Supplementary 
Table 4S, it is demonstrated that the VIF parameter for each descriptor of equation (1) is near 
to 1. The numerical descriptor values are given in Supplementary Table 5S.

Now we demonstrate that the proposed QSPR of equation (1) is generalizable and useful 
for application, that is to say, our model is not determined only by the training set compo-
sition due to the specific dataset partitioning of BSM. For this, we perform 1000 different 
random splitting operations and recalculate the statistics of the model proposed by us in 
the present work. We find that, for 1000 random external test sets, equation (1) leads to r2

test 
ranging from 0.56–0.76 and RMStest ranging from 0.66–0.85. These findings suggest that the 
final model of equation (1) has an acceptable stability of its predictive ability. The good 
predictivity of our QSPR model on the test set does not result by chance, and the molecular 
descriptors involved in equation (1) work satisfactorily on the different training–test sets 
partitions. The 1000 random training and test sets are provided in matrix form, the randtrain 
and randtest spreadsheets from the Random splittings xls-file of the Supplementary Material.
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10   J. F. ARANDA ET AL.

Following with the exploration of the applicability domain of the developed QSPR model, 
a compound with high leverage would reinforce the model if the compound is in the training 
set (good leverage), but such a compound in the test set could have unreliable predicted 
data, the result of substantial extrapolation of the model (bad leverage) [51]. In our case, it 
was found that the 283 test set compounds belonged to the AD, as their hi values fall under 
the h* limit (0.0739). The Williams plot for equation (1) (standardized residuals as function 
of the hi values) is provided in Figure 3. Some compounds belonging to the training and 
validation sets have high leverages reinforcing the model, such as chemicals 41, 59, 265, 
403, 427, 468, 504, 505, 522, and 659. This result obtained with the leverage approach for 
the test set coincides with the one obtained by using the standardization approach, as the 
two conditions smax

ik
≤ 3 or snew

i ≤ 3 are followed by all the 283 test set compounds. Thus, the 
predicted log BCF values for the test set compounds can be considered as reliable. Some 
compounds have standardized residuals higher than three units: this may be purely attrib-
uted to the high structurally heterogeneous dataset of 851 compounds, which cannot be 
expected to be modelled by using only a 6-descriptors model (equation 1).

A comparison can be done between the performance of our proposed alternative BCF 
QSPR model of equation (1) and the one reported by Gissi et al. [21]. By means of 836 com-
pounds in a 608:152:76 splitting (ntrain:nval:ntest), the statistical quality achieved by the reported 
9-descriptors ANN model appears summarized in Table 2 (model-1). We consider that our 
model improves such reported result due to the following four main reasons: 

(i)  Number of molecules treated: we contemplate all the 851 molecules in the QSPR 
study without excluding anyone, contrary to the reported QSPR, which employs 836 

Figure 3.  Williams plot for equation (1). the line indicates the warning leverage of 0.0739.
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compounds and excludes 15 compounds due to limitations in the descriptor calcu-
lation software.

(ii)  Model size: equation (1) involves six descriptors instead of nine.
(iii)  Suitability of the dataset partitioning: we use a 284:284:283 splitting, while the 

reported one uses 608:152:76. Thus, more test set compounds are considered during 
the present QSPR study for determining the predictive capability than in model-1.

(iv)  Simplicity: our linear model is simpler than the reported non-linear ANN model, and 
is not dependent on the molecular conformations of the heterogeneous compounds.

By means of defining the applicability domain of the reported model-1 through four 
independent filtering methods [21], 27 compounds are further excluded from val and test 
(42 compounds excluded in total from the initial dataset). Although a better statistical result 
is achieved by model-2 when compared to model-1 (Table 2), such a model considers only 
8.53 % of the compounds in the test set, instead of the 33.25% considered by our model of 
equation (1). Indeed, our proposed model leads to a better result on the 283 test set com-
pounds with RMStest = 0.71, compared to RMStest = 0.82 for model-2 on 69 compounds.

Figure 4.  Predicted and experimental log BCF values according to EPi suite.

Table 2.  comparison of the statistical performance of different BcF QSPR models on the AntARES  
dataset.

Model n Splitting detail r2
train RMStrain r2

val RMSval r2
test RMStest

Present work (equation (1)) 851 284:284:283 0.73 0.71 0.60 0.81 0.67 0.71
9-descriptors Ann model-1 [21] 836 608:152:76 0.73 0.67 0.63 0.79 0.62 0.84
9-descriptors Ann model-2 [21] 809 608:132:69 0.73 0.67 0.77 0.62 0.66 0.82
EPi Suite BcFBAF module 851 284:284:283 0.70 0.77 0.64 0.77 0.69 0.70
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12   J. F. ARANDA ET AL.

Finally, we compare the predicted log BCF values obtained by equation (1) with the pre-
dictions calculated by using the BCFBAF module from the EPI Suite freeware and the BSM 
splitting. From Table 2, similar statistics were found for the training, validation, and test sets, 
although achieved by different methodologies in both cases. However, when plotting the 
predictions as a function of the experimental values for the EPI Suite results in Figure 4, 
together with the dispersion plot of residuals in Figure 5, it is observed that many compounds 
are predicted with the same value: 131 compounds have predicted log BCF = 0.50. In this 
sense, we consider equation (1) behaves as a better QSPR model.

Conclusions

We propose an alternative QSPR model for the bioconcentration capability of chemical com-
pounds, for which a large number of non-conformational molecular descriptors was simul-
taneously analysed in order to find the best predictive capability of the relationship. The 
ANTARES dataset includes highly heterogeneous molecular structures together with 159 
pesticides, so that the applicability domain of our best QSPR model considers in its definition 
different chemical classes for the BCF prediction, and, therefore, could be applied to the 
prediction of heterogeneous pesticides of different types.

The novelty of the present work relies on the analysis of a great pool of molecular descrip-
tors (27,017 descriptors), in order to select the best ones in the final linear regression model. 
In this way, we focus our work on better describing the chemical structure, and complement 
different descriptor software types for improving the statistical quality of the established 
QSAR.

Figure 5.  dispersion plot of residuals for EPi suite log BCF.
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The consideration of the constitutional and topological aspects of the molecular struc-
tures in the conformation-independent QSPR approach achieves once more acceptable 
results, and new investigations on other physicochemical and biological properties of interest 
will be published soon elsewhere.
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